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Abstract

Here we present analysis of a 3D cryo-EM map of the 70S ribosome from Mycobacterium smegmatis, a saprophytic cousin of
the etiological agent of tuberculosis in humans, Mycobacterium tuberculosis. In comparison with the 3D structures of other
prokaryotic ribosomes, the density map of the M. smegmatis 70S ribosome reveals unique structural features and their
relative orientations in the ribosome. Dramatic changes in the periphery due to additional rRNA segments and extra
domains of some of the peripheral ribosomal proteins like S3, S5, S16, L17, L25, are evident. One of the most notable
features appears in the large subunit near L1 stalk as a long helical structure next to helix 54 of the 23S rRNA. The sharp
upper end of this structure is located in the vicinity of the mRNA exit channel. Although the M. smegmatis 70S ribosome
possesses conserved core structure of bacterial ribosome, the new structural features, unveiled in this study, demonstrates
diversity in the 3D architecture of bacterial ribosomes. We postulate that the prominent helical structure related to the 23S
rRNA actively participates in the mechanisms of translation in mycobacteria.
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Introduction

A wealth of structural and functional studies over the last decade

has led to a deeper understanding of the overall mechanism by

which translation of mRNA code into peptide proceeds [1].

Nevertheless our understanding of mechanisms underlying

different steps of translation is still not fully clear, reflecting the

complex molecular architecture of the ribosome itself. Further-

more, while enormous amount of biochemical and genetic studies

addressing the mechanism of translation has been carried out in

the model organism E. coli, only a limited number of studies have

been performed on the ribosomes of other organisms [2–6].

Detailed structural studies on prokaryotic ribosome are also mostly

restricted for E. coli,and T. thermophilus ribosomes so far [7,8].

Although principles of translation mechanism deduced from

ribosomal structures of different organisms is expected to be the

same, but it is not clear to which extent the details of translation

mechanisms postulated based on studies of these organisms can be

extrapolated to all other organisms.

Progress toward an understanding of the mechanism of

translation in bacteria is of great importance in fighting

devastating pathogenic diseases, as it has the potential to furnish

clues for designing antibiotics against drug-resistant pathogenic

species [9,10]. Mycobacterium is well-known for its antibiotic

resistance property. However, Mycobacterial tolerance to antibi-

otics has been studied mostly at cellular level since this property

has been traditionally attributed to its impermeable cell wall [11–

13]. Interestingly, many of these antibiotics (e.g. streptomycin,

tetracycline, erythromycin) target translation. A detailed structural

investigation on the mycobacterium ribosome may unveil new

targets with drug discovery potential. In addition, structural studies

on mycobacterium ribosome may allow us to piece together

mechanistic models that interpret biochemical data collected on

mycobacteria in structural terms.

A previous study demonstrated that both the size and the charge

of the mycobacterial ribosomal proteins are considerably different

from those of E. coli [5]. The study suggested that the divergent

properties of the mycobacterial ribosomes may be related to some

exceptional properties of mycobacteria, e.g. their slow growth.

Comparison of the rRNA secondary structures with that of the E.

coli also exhibits some distinctive features in mycobacterial rRNA.

Here, we present a cryo-EM reconstruction of a 70S ribosome

from M. smegmatis containing a tRNA at the P-site. In comparison

with the ribosomal 3D structures from other bacterial species, the

density map of mycobacterial 70S ribosome shows the presence of

unusual structural components. The most prominent one is a long

helical structure in the large subunit near the L1-stalk related to an

extra helix in the 23S rRNA secondary structure. We propose that

this unusual ribosomal component is actively involved in

regulating various steps of translation process in mycobacteria.

Results and Discussion

Overall architecture of the 70S ribosome
Cryo-EM and the single-particle reconstruction methods were

employed to generate a three-dimensional (3D) map of the 70S
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ribosome from purified M. smegmatis ribosomal particles. The

resolution of the map (Figure S1) was determined to be 12 Å

(FSC = 0.5 criterion). We will be referring to this map in the

following as the ‘Msm70S’. We compared the resulting density

map with a previous 12.8 Å cryo-EM map of the E. coli 70S

ribosome (here referred to as ‘Eco70S’) with tRNAs at the P and E

sites [14]. Additionally, in order to facilitate analysis of the

intermolecular contacts on the molecular level, we made reference

to an x-ray structure of E. coli 70S ribosome [15].

The overall structure of the Msm70S exhibits well defined small

and large subunits (Figure 1A, C), in keeping with the feature

identified in the Eco70S (Figure 1B, D). Morphological comparison

of the Msm70S with the Eco70S demonstrates that landmark

characteristics of the 30S subunit, such as head, body, and

platform, are well defined in the Msm70S, as are the central

protuberance (CP), L1 stalk and L7/L12 stalk base of the 50S

subunit.

In terms of the ribosomal proteins, sequence search in ExPASy

Proteomics Server (http://www.expasy.org/sprot/) indicates that

almost all E. coli ribosomal proteins have counterparts in

mycobacteria (except for S21), with sequence identities varying

between 30% to 70%. However, some of the M. smegmatis small

and large ribosomal proteins have longer N- or C-terminal

extensions (see Table 1). Densities attributable to most of the

proteins are identifiable in both the small and large subunits of

Msm70S as reflected by the docking of the crystal structures of the

E. coli ribosomal subunits into the density maps of the Msm70S

subunits (Figure 2 and 3). However, either full or partial densities

corresponding to some proteins are absent. The most noticeable

one is the extended L7/L12 stalk in the Eco70S (Figure 1D) which

is not visible in the Msm70S map (Figure 1C). Densities

corresponding to S1 and S2 proteins are also largely missing from

the Msm70S map (marked with arrow in Figure 1A). The absence

of these proteins from the Msm70S ribosome map might be a

reflection of more dynamic nature of these proteins in mycobac-

teria. It may not be ruled out, however, that the purification

procedure led to the removal of these proteins (known to be loosely

bound to the ribosome).

The cryo-EM map of the Msm70S clearly displays an L-shaped

density in the intersubunit space (Figure 1) showing that Msm70S is

purified with the occupied tRNA. Juxtaposition of Msm70S map

with the Eco70S coordinates containing P- and E-site tRNAs [15],

identified that this density corresponds to the P-site tRNA in its

entirety (Figure 1E,F). The fact that the tRNA is visible with high

occupancy gives us confidence that the map represents an active

ribosome.

The core of the Msm70S shows overall similarity with the core of

the Eco70S while containing additional mass in the periphery.

Density in the Msm70S map that is not accounted for by the crystal

structures of E. coli 70S ribosome predicts largely the locations of

the extra rRNA helices or of additional domains in the

homologous proteins. To facilitate the docking of the crystal

structure, the Msm70S map was computationally separated into

the core and the additional density maps. The characteristic

features of the subunits of Msm70S are elaborated below.

Pronounced differences observed in the 30S subunit
Overall, the 30S subunit of Msm70S (Msm30S) appears shorter

than its E. coli counterpart (Figure 1). It is observed that a piece of

density is missing from the bottom part of the 30S subunit of

Msm70S (marked with asterisk in Figure 1C) when compared to

the same of Eco70S (Figure 1D). In the 30S subunit of Eco70S, h17

(for brevity, rRNA helices are denoted as ‘h’ for the 16S rRNA, or

‘H’ for the 23S rRNA) runs parallel to the long axis of the subunit

at the bottom of the body domain. The density is absent at the

bottom of Msm30S where h17 packs against h10 in E. coli 30S

subunit (Figure 2). The sequence alignment of M. smegmatis and M.

tuberculosis 16S rRNAs does not show major insertion/deletion.

Hence, in the absence of M. smegmatis rRNA secondary structures,

we inspected the available 16S rRNA secondary structure of M.

tuberculosis (Figure 2A; database: www.rna.ccbb.utexas.edu). The

16S rRNA secondary structure indeed shows that h10 and h17 are

substantially shorter in mycobacteria relative to the same of E. coli.

Additional density clusters are distributed over the head,

platform and body regions of the solvent side of Msm30S

(Figure 2B). Data mining and bioinformatics analysis of the

sequences revealed that some of the mycobacterium ribosomal

proteins are significantly bigger as compared to their E. coli

homologs (Table 1). Interestingly, these proteins are anchored on

the solvent-exposed surfaces of the subunits. The positions of the

major extra density clusters located in the head and upper part of

the body of the Msm30S are in good agreement with the locations

of S3, S5, and S9 proteins, allowing the tentative identification of

the additional segments of these proteins (Figure 2B).

In contrast to h10, h9 is longer in mycobacteria than its E. coli

counterpart. Proteins S16 and S17 adjacent to h9 are also bigger

than their E. coli homologs (Table 1). An additional bulky density

at the lower body region in Msm30S (marked with asterisk in

Figure 2B) is visible that can be accounted for by the extra

segments of h9, as well as S16 and S17 proteins.

Differences are seen in the shapes and sizes of the spur and the

beak regions. The corresponding rRNA elements, h6 and h33a

respectively, are truncated in mycobacterial 16S rRNA as

compared to those of the E. coli, thereby resulting the overall

curvatures of the spur and the beak different in Msm30S

(Figure 1, 2).

These rRNA regions, where marked differences are seen, have

been identified as variable regions in 16S rRNA [16], and

differences in size are expected to be observed. Our study reveals

how these differences in secondary structures reflect in the 3D

structure of the Msm70S.

Additional structural features in the 50S subunit
The 50S subunit of Msm70S (Msm50S) also contains several

extra densities located at its periphery and solvent-exposed side

(Figure 3B). The sequence alignment of different mycobacterial

23S rRNAs also suggests that there is no significant difference

exists in the 23S rRNA secondary structures of different

mycobacterial species. Several extra helices are present in the

23S rRNA of mycobacteria (Figure 3A; database: www.rna.ccbb.

utexus.edu). Interestingly, the salient features are concentrated in

the 59 half of the 23S rRNA (domains I, II and III), that occupies

the solvent-exposed surface of the 50S subunits [17]. Most of the

additional density of the Msm50S can largely be attributed to the

extra helices present in the 23S rRNA.

The most conspicuous structural feature in Msm50S is a slender

rod-like additional density (which we term the ‘steeple’) that

emerges from the bottom of a lateral side of Msm50S and runs up

at the L1 protuberance (Figure 3B). The steeple measures ,160 Å

in length with the upper end forming a pointed structure.

Strikingly, this region in the yeast 80S ribosome is very similar

in appearance. The main helix of expansion segment 27 (ES27) of

25S rRNA (domain IV, [18]), one of the rRNA insertions

characteristic for 80S ribosomes, makes similar helical feature

(,150 Å long) (termed ‘yeast-spine’ [19]) in the back of S. cerevisiae

60S subunit close to L1 arm. Superimposition of yeast 60S subunit

[18] and the Msm50S revealed that the yeast spine originates at a

lower region of the yeast 60S subunit compared to the steeple of

Novel Features in Mycobacterial Ribosome Structure
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the Msm50S (see Figure S2A). The base of the steeple, in contrast,

juxtaposes on the ES26 (designated as insertion at H54) of the

yeast 25S rRNA (domain III). As a result, the upper end of the

steeple reaches much closer to the L1 stalk and the shoulder of the

30S subunit as compared to the yeast spine (Figure 4). Indeed, a

long extra helix (marked as H54a in Figure 3A) following helix

H54 exists in the secondary structure of mycobacterial 23S rRNA.

Helix H54a contains ,110 nucleotides. Docking of a 96

nucleotide long RNA helix (taken from pdb code: 2XKV) inside

the steeple density (Figure 4) matched the length reasonably well

(cross-correlation coefficient 0.70). Docking of the rRNA crystal

structure of E.coli 50S subunit into the Msm50S map allowed us to

unambiguously identify the steeple as the extra helix, H54a

(Figure 5A). Mining of database revealed that this extra helix exists

in some other members of Actinobacteria like Frankia, Micrococcus,

Rhodococcus and Streptomyces.

Besides the steeple structure, additional density clusters are also

present in the solvent side of the large subunit of Msm70S

(Figure 3B). As indicated in the secondary structure (Figure 3A),

Mycobacterium 23S rRNA possesses three more extra helices as

insertions at H14, H16, and H31 (designated as H15 (as marked in

the H. marismortui 50S subunit structure [17]), H16a, and H31a in

Figure 3A), in addition to H54a. The H15 and H16a are placed at

the solvent side of the Msm50S, appearing to branch into two

irregular helices (Figure 5B). The larger branch runs toward the

base of the L1 stalk and appears to interact with the N-terminal of

Figure 1. Comparison of the 70S Ribosome from M. smegmatis with the E. coli 70S ribosome. The cryo-EM map of the Msm70S (A, C) is
shown together with the cryo-EM map of the Eco70S (B, D; EMD-1395). The ribosomes are shown from the L1 side (A, and B) and the L7/L12 side
(C, and D). Missing extended L7/L12 Stalk is marked in Msm70S with solid triangle (b). Asterisk (*) marks the missing density in the bottom part of the
30S subunit of Msm70S due to shorter h10 and h17. The location of the S1 and S2 proteins where corresponding densities are largely absent in
Msm70S is marked with arrow. The computationally separated small subunit (E) and large subunit (F) of the Msm70S are shown with the P site-bound
tRNA (green) from the interface sides. The small subunits are shown in yellow, the large subunits blue in all the panels. Landmarks for the 30S subunit:
bk, beak; h, head; pt, platform; sh, shoulder; sp, spur; h44, helix 44 of 16S rRNA. Landmarks for the 50S subunit: CP, central protuberance; L1, L1
protein; st, L7/L12 stalk; sb, L7/L12 stalk base; SRL, sarcin ricin loop; H69, helix 69 of 23S rRNA.
doi:10.1371/journal.pone.0031742.g001
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the L9 protein (Figure 6). Density attributable to H31a is also

visible (Figure 5C) at the solvent side of the Msm50S below the

central protuberance (CP).

The bottom surface of the Msm50S, which includes the exit of

polypeptide tunnel, is studded with extra density (Figure 3B).

Proteins L17, L22 and L29 that surround the tunnel exit and L4

are significantly bigger in M. smegmatis than their E. coli

counterparts (Table 1). Majority of the extra density in this region

may be accounted for by the additional domains of these proteins

(Figure 5D). We suggest that the extra domains of the proteins

around the tunnel exit may play a role in coordinating access of

nonribosomal factors, such as ribosome-associated chaperones,

signal recognition particle (SRP), or the translocon to the tunnel

exit site and thereby to the emerging nascent chain. In addition,

they may interact directly with the nascent chain or with nascent

chain-interacting proteins.

Another interesting feature is visible at the groove formed by the

CP and the base of L7/L12 stalk. H38 in this region looks

expanded due to the presence of a large piece of density adjacent

to the helix (Figure 5E). The protein in the immediate

neighbourhood of this helix, L25, in M. smegmatis is much longer

(121 amino acids more at the C-terminal) than its E. coli homolog

(94 amino acids). Thus the extra density must be attributed to the

extra part of the protein L25. L25 in T. thermophilus is also 206

amino acids long, and the position of its C-terminal domain in the

crystal structure [20] is in agreement with our localization of the

extra domain of L25 in the Msm50S. The tail of the protein L25,

adjacent to H38, appears to be of mechanistic interest because of

the prominent role of H38 in the formation of a bridge (b1a) with

the 30S subunit and in forming a contact with the elbow of the A

site-bound tRNA (A site finger) [21]. It appears that L25

participates in the regulation of H38 movements [22] in Msm70S.

Major parts of the additional density present in Msm30S and

Msm50S (Figure 2, 3) are accounted for by the positions of the

additional rRNA helices, as well as additional domains in the

homologous proteins. Nevertheless, extra density regions of

unknown identity also exist in both the subunits of Msm70S. It

should be noted at this point that studies in the seventies identified

an antigen (designated as beta antigen), common to all

mycobacteria, which is ribosomal. It was suggested that the beta

antigen is a constituent of the ribosome [3,4,23]. Therefore, it is

plausible that part of the unaccounted additional density in the

Msm70S is attributable to the beta antigen. However, in the

absence of additional information, localization of this antigen is

not possible.

Implications for the translation process
The structural components visible as additional mass in the 3D

structure of Msm70S appear to be engaged in additional tertiary

and quaternary interactions. The most intriguing of the extra

elements is the steeple. In the current map the steeple is tilted

toward the platform of the 30S subunit and the pointed tip of the

steeple structure is located in the immediate vicinity of the mRNA

exit channel. The distances between the tip of the steeple and the

mRNA exit, L1 stalk, and E-site tRNA are <50 Å, 35 Å, and

65 Å respectively. The middle part of the steeple interacts with the

C-terminal of L9, and forms a unique bridge with the protein S6 of

the 30S subunit (Figure 6).

In the Msm70S map the steeple apparently blocks the exit path

of the E-site tRNA and likely act as a gate for the E-site tRNA.

The freestanding conformation of the steeple would allow a certain

freedom of movement. Thus, it is possible that this helical structure

alternates between a ‘closed’ conformation, as seen in the current

map, and an ‘open’ conformation, where the exit path of the E-site

tRNA is free. Previous cryo-EM studies on Eco70S have suggested

that the L1 stalk actively participates in the translocation process

[24]. In mycobacteria, along with the L1 stalk, the steeple appears

to participate in the exit process of the E-site tRNA. Therefore, a

legitimate guess would be that the dynamics of this helix may

facilitate efficient exit of the E site tRNA. Ratchet-like rotation of

the small vs. large subunit [25] has been postulated to be an

integrated part of the tRNA translocation mechanism [24,26,27].

We have aligned a cryo-EM map of the EF-G-bound E. coli 70S

ribosome (EMD-1363) in ratcheted state with the Msm70S map

(Figure S2B). The small subunit movement apparently disrupts the

bridge between the steeple and the S6 protein. Thus, the 30S

subunit conformational change due to ratchet motion would most

likely facilitate the movement of the steeple.

The close proximity of the steeple to the mRNA exit channel

(Figure 4, 6), observed in the current map, led us to propose that

the steeple may be involved in modulating the initiation process in

mycobacteria. In this context, it is noteworthy that the platform

Figure 2. Structural analysis of the Msm30S. (A) Secondary structure diagram of the M. tuberculocis 16S rRNA. The helices which are different in
mycobacterial 16S rRNA as compared to the E. coli 16S rRNA are marked (shorter, red; longer, cyan). (B) Stereo view of the solvent side of Msm30S
(yellow wire mesh) with the docked crystal structure of E. coli 30S subunit (16S rRNA in olive, proteins in grey colour) (pdb code: 2I2U). Major extra
density clusters (solid yellow) are shown. Proteins with additional segments are coloured and designated with their names. Density cluster marked
with asterisk (*) represents the density corresponding to extra components of h9 and proteins S16, S17. Landmarks are as in Figure 1.
doi:10.1371/journal.pone.0031742.g002
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region, which is in the immediate neighborhood of the tip of the

steeple, is a crucial center for the binding and adaptation of the

mRNA during the initiation [28,29]. Although the localization of

the domains (N- and C-terminals) of IF3 is still controversial, the

structural studies [30,31] have identified the platform of 30S

subunit as the IF3 binding region. It is tempting to propose that

the steeple structure may play a role in modulating interactions of

cis- and trans-acting regulators involved in translation initiation

[32]. Other possibility that the steeple may interact directly with

the progressing mRNA 59 end can not be ruled out. Interestingly,

the S1 protein is much smaller in mycobacteria (479 aa) as

compared to that of the E. coli (557 aa). It appears from sequence

alignment that a whole C-terminal domain is missing in

mycobacterial S1. As evident from the biochemical studies, S1

protein has a crucial role in stabilizing mRNAs [33–35]. It is

possible that in the absence of a C-terminal domain in S1, the

steeple plays a similar role in mycobacterial ribosome.

The bacterial ribosome structures elucidated so far are very

similar. In contrast, the archaeal [17], eukaryotic (cytoplasmic)

[18], or organellar ribosomes [36] show extra features that are

proposed to have crucial functional roles [36,37,38]. The

mycobacterial ribosome described in this study is the first structure

showing structural diversity in bacterial ribosomes. Thus, it is

conceivable that the extra features, particularly the steeple

(considering the location of this unique helix), possess an active

role in different steps of the translation process in mycobacteria.

Overall, the mechanism of translation may be well conserved

between E. coli and M. smegmatis as concluded in a recent

Figure 3. Structural analysis of the Msm50S. (A) Secondary structure diagram of the M. laprae 23S rRNA (left: 59 end; right: 39 end). Locations of
extra rRNA helices in mycobacterium are highlighted (orange) and marked in the 59 23S rRNA structure (domains I, II, III). (B) Stereo view of the solvent
side of Msm50S (blue wire mesh) with the coordinates of E. coli 50S subunit (23S rRNA pale cyan, 5S rRNA deep blue, proteins grey) docked inside.
The atomic structure is adopted from the crystal structure of E. coli 70S ribosome (Protein Data Bank ID code 2I2V). Major additional density clusters
are highlighted in different colors; steeple, deep pink; H15/H16a, orange; H31a, purple; additional density of L25, yellow; additional densities of
proteins around the tunnel exit, green. Landmarks are as in Figure 1.
doi:10.1371/journal.pone.0031742.g003
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biochemical study [39], our results indicate that the intricate

details of the mechanisms of various steps likely differ in

mycobacterium due to the involvement of its unusual structural

features.

Materials and Methods

Purification of the M smegmatis 70S Ribosome
M. smegmatis cells were grown in 2XYT medium supplemented

with 0.5% glycerol, 0.2% Tween-80 and 1% glucose at 37uC until

OD600 reach to 0.8. 70S ribosomes are purified following the

method of E. coli 70S purification [40] with modifications.

Harvested cells (checked by Ziehl-Neelsen staining method to

check presence of any contaminating bacteria) were washed with

BufferA (20 mM Tris-HCl, pH 7.5, 10 mM Magnesium acetate,

100 mM Ammonium chloride, 5 mM 2-Mercaptoethanol) and

lysed at 30 K psi using a Cell Disruption System (Constant Cell

Disruption Systems, United Kingdom) in the same buffer where

DNase I (2 mg/ml) was added. Cell lysate was clarified by

centrifuging in a SIGMA 12158-H rotor at 15000 g for several

times till no pellet was seen. Supernatant was subjected to

ultracentrifugation at 4uC at 154000 g in a Sorvall AH-629 rotor

for 2 hrs and pellet resuspended in TMA10 buffer (Tris-HCl,

pH 7.5, 10 mM Magnesium acetate, 30 mM Ammonium chlo-

ride, 5 mM 2-Mercaptoethanol). The suspension was homoge-

nized for 1 hr in presence of 1 M ammonium chloride after which

the ribosomal preparation was centrifuged for several times at 4uC
at 15000 g in a SIGMA 12158-H rotor till no pellet was seen.

Supernatant solution was centrifuged in a Sorvall AH-629 rotor at

4uC at 154000 g for 2 hr. Supernatant discarded, pellet collected,

resuspended in TMA10 buffer. Sample was loaded on top of a

5%–20% linear sucrose gradient in TMA10 and centrifuged in a

Sorvall AH-629 rotor at 154000 g for 90 min at 4uC. Gradient

collected from bottom to top. Relevant fractions were pooled

together. To this 7.5 M ammonium acetate and chilled ethanol

were added and kept at 280uC overnight and centrifuged at 4uC
at 12000 rpm in a SIGMA 12155-H rotor. Pellet of purified 70S

particle was resuspended in TMA10 and concentration and purity

of ribosome samples were measured and stored at 280uC.

Table 1. List of M. smegmatis ribosomal proteins that are bigger than their E. coli counter parts (proteins more than 12 amino acids
(aa) longer are mentioned here).

Subunit Proteins Length in E. coli Length in M. smegmatis Extended region

S2 241 277 36 aa, at C-terminus

S3 233 275 42 aa, at C-terminus

30S S5 167 214 47 aa, in both termini

S9 130 150 20 aa, at N-terminus

S16 82 156 74 aa, at C-terminus

S17 84 98 14 aa, at N-terminus

L4 201 215 14 aa, in both termini

L17 127 199 72 aa, at C-terminus

50S L22 110 153 43 aa, in both termini

L25 94 215 121 aa, at C-terminus

L29 63 77 14 aa, in both termini

doi:10.1371/journal.pone.0031742.t001

Figure 4. Location of the steeple (H54a). Stereo representation of the density map of steeple is shown in wire mesh (deep pink) with 50S (blue)
and 30S subunit (yellow) to show its orientation relative to the Msm70S subunits. Atomic coordinates of the E. coli 30S (pdb code: 2I2U) and 50S (pdb
code: 2I2V) subunits docked into the corresponding density maps are also shown . A 96 nucleotide long rRNA helix has also been fitted into the
density of steeple. Landmarks for the 30S subunit: bk, beak; h, head; pt, platform; sh, shoulder; sp, spur; b, body. Landmarks for the 50S subunit: L1, L1
protein; sb, L7/L12 stalk base.
doi:10.1371/journal.pone.0031742.g004
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Cryo-electron microscopy (cryo-EM) and Image
Processing

Buffer solutions containing M smegmatis 70S ribosome with final

concentration of 32 nM were applied to grids and cryo-EM grids

were prepared according to standard procedures [41]. Data were

collected using 4 K64 K CCD camera with a physical pixel-size

of 15 um (corresponding to a pixel size of 1.69 Å on the object

scale) on a Philips FEI (Eindhoven, The Netherlands) Tecnai F20

field emission gun electron microscope equipped with low-dose kit

and an Oxford cryo-transfer holder at a total magnification of

89,0006.

From a total number of 268 micrographs, after evaluation of

drift, astigmatism, and the presence of Thon rings in the power

spectrum of each micrograph, 215 good micrographs were

selected and divided into 50 defocus groups (ranging from

,1.5–3.7 mm). Ribosomal particles were selected from these

micrographs through three steps: preliminary automated selection,

manual verification, and selection based on the size of the cross-

correlation coefficient with a template.

Since, as a bacterial ribosome, the Mycobacterium ribosome is

expected to display overall morphological similarity to the E. coli

ribosome, we initially used a 6.7 Å resolution map of E. coli 70S

ribosome (EMD-5036 [42]) as the reference to obtain a 13.6 Å

map of the M smegmatis ribosome using 48,708 images. The newly

reconstructed volume of M smegmatis 70S ribosome was then used

as reference volume applied to the entire data set for the final

reconstruction. The final resolution of the CTF-corrected volume,

estimated by the Fourier Shell Correlation (FSC) criterion with a

cutoff value of 0.5, was 12 Å (Figure S1). The falloff of the Fourier

amplitudes toward higher spatial frequencies was corrected as

described [43], using the x-ray solution scattering intensity

distribution of the E. coli 70S ribosome.

All of the steps of image processing were performed by using the

SPIDER package [44].

Molecular modelling and visualization
Crystal structures [15] of the small (PDB code: 2I2U) and the

large subunit (PDB code: 2I2V) of E. coli 70S ribosome were

docked (as rigid body) manually into the cryo-EM density map of

M. smegmatis 70S ribosome using PyMol (DeLano Scientific).

SPIDER was used for the computational separation of the cryo-

EM reconstructions into densities corresponding to individual

ribosomal subunits or extra densities in M smegmatis 70S ribosome.

Difference mapping computed by subtracting the map of each

Figure 5. Identification of the extra rRNA helices and additional segments of r-proteins in the Msm50S. Close-up views of the (A) H54
region showing that the steeple (deep pink) emerges from H54, (B) H14 and H16 region displaying that the bifurcated density (orange) is related to
these helices, and (C) H31 region identifying the density corresponding to the extra helix (purple), H31a, in the 23S rRNA, are shown in stereo. Density
clusters attributable to extra domains of M. smegmatis ribosomal large subunit proteins L4/L17/L22/L29 (D), and L25 (E) are also shown in stereo. T.
thermophilus L25 (from pdb code 2J01, chain Z, 3–179 amino acids) protein structure is shown here (magenta) to identify the C-terminal domain. Part
of the C-terminal extra domain overlaps with the density cluster attributed to L25 in Msm70S.
doi:10.1371/journal.pone.0031742.g005
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subunit of the E.coli 70S ribosome from the same of the M.

smegmatis 70S ribosome produced extra densities related to the

subunits of M. smegmatis 70S ribosome. Isolation of each of the

major density clusters was performed by selecting the mass of

interest from the remaining masses using a clustering procedure.

Comparison of the ribosomal protein sizes of M. smegamatis to

that of the E. coli was made in protein blast server (http://blast.

ncbi.nlm.nih.gov/) using Blastp algorithm. Visualization and

preparation of illustrations were done using Pymol and Chimera

[45].

Accession number
The cryo-EM map of the 70S ribosome from M. smegmatis has

been deposited in the 3D-EM Database (RCSB EMDB site

(http://www.emdatabank.org)) with accession code EMD-5307.

Supporting Information

Figure S1 Resolution curve. Fourier shell correlation (FSC)

curve for the cryo-EM map of the Msm70S. FSC = 0.5 indicates

12 Å resolution.

(TIF)

Figure S2 Position of the Steeple. (A) The density map (40S

subunit sand colour and 60S subunit cyan) of the yeast 80S

ribosome (EMD-1076) is superposed on the Msm70S (30S subunit

yellow and 50S subunit blue). The difference in the locations of the

steeple (deep pink) and the yeast-spine (marked) is clearly visible.

Landmarks: CP, central protuberance; L1, L1 protein; h, head; pt,

platform; bk, beak; sh, shoulder; b, body. (B) The density map

(EMD-1363) of the E. coli 70S ribosome in ratcheted state (30S

subunit in sand colour and 50S subunit in cyan) is superimposed

on the Msm70S (30S subunit yellow and 50S subunit blue) map.

The bridge formed by the steeple and the protein S6 in Msm70S

(marked with white arrow) apparently gets disconnected due to the

ratchet motion of the 30S subunit.

(TIF)
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Figure 6. Neighbourhood of the steeple structure. Close-up view of the steeple (deep pink) is shown with its neighbouring ribosomal proteins
and rRNA structures in stereo. The Msm70S density map is represented in grey wire mesh with the coordinates of the 30S (Wheat colour) and the 50S
(light cyan) subunits docked into the map. Coordinate of mRNA (blue stick model) is taken from a crystal structure [46] of the T. thermophilus 70S
ribosome (pdb code: 2HGR, chain 1) and aligned to the atomic structures used here. A thumbnail view of the Msm70S is shown on top to orient the
reader.
doi:10.1371/journal.pone.0031742.g006
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