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P2X receptors

P2X receptors are ligand-gated ion channels that induce the
flux of cations across the membrane when activated by ATP,
resulting in membrane depolarization and Ca2+ entry [1–4].
In mammals, P2X receptors have been shown to play a
critical role in regulating physiological processes in a wide
range of cell types such as neurons, glial cells, muscle,
endothelial and epithelial cells, osteoclasts, and hematopoietic
cells [1, 3]. The cloning of the first P2X receptor P2X1 in
1994 revealed an unusual structure of P2X receptors
containing two transmembrane segments [5, 6], which is
distinct from other ionotropic receptors such as glutamate
receptors and acetylcholine receptors [3]. P2X receptors
appear to be present in all vertebrate and many invertebrate
genomes but are absent in some invertebrates such as
Caenorhabditis elegans and Drosophila melanogaster [4, 7,
8]. It should be noted that C. elegans and D. melanogaster
are also known to lack two other Ca2+-permeable channels—
the voltage-gated CatSper Ca2+ channels at the plasma

membrane [9] and the two-pore channels underlying
NAADP-sensitive Ca2+ release from acidic Ca2+ stores [10].

ATP is widely utilized as an energy source in many
organisms, and so, ATP could serve as an evolutionarily
conserved means to mediate cell–cell communications or
intracellular signaling through P2X receptors. The emer-
gence of purinergic signaling by P2X receptors is believed
to have occurred in early evolution of eukaryotes [4, 8],
which is supported by the identification and characteriza-
tion of P2X receptor homologs in non-metazoan organisms
such as the dictyostelid social amoeba Dictyostelium
discoideum [11], the green alga Ostreococcus tauri [12],
and the choanoflagellate Monosiga brevicollis, one of the
closet unicellular relatives of animals [12, 13]. Interestingly,
even though a P2X receptor homolog is characterized in D.
discoideum [11], P2X receptor homologs have not been
detected in known genomes of fungal species [4, 8]. It is
generally believed that P2X receptors had been lost in fungi
[4, 8].

We have recently demonstrated in the choanoflagellate
M. brevicollis the presence of extensive Ca2+ signaling and
amplification pathways, most of which are previously
believed to be animal specific [13]. To further explore the
origin of the Ca2+ signaling machinery, we have more
recently reported the examination of several genomes at the
Origins of Multicellularity Database [14, 15], the Broad
Institute and the NCBI genomic databases including the
genomes of three basal fungi Allomyces macrogynus,
Spizellomyces punctatus, and Batrachochytrium dendroba-
tidis [16].

Surprisingly, our analysis revealed the presence of P2X
receptor homologs in the three basal fungi (AmaP2X,
SpuP2X, and BdeP2X) (Fig. 1; Electronic supplementary
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material). These three fungal P2X receptor homologs
display strong sequence similarity with animal P2X
receptors, primarily in the two transmembrane segments,

for example, the YxxxK motif conserved in vertebrate P2X
receptors (Fig. 2). Fungal P2X receptor homologs also show
sequence divergence, possibly reflecting lineage-specific
adaptation [16]. For instance, as shown in Fig. 2, basal
fungal P2X receptor homologs contain a Glu residue in the
second transmembrane segment [16], which is conserved as
an Asp residue in vertebrate P2X receptors [11].

The identification of P2X receptor homologs in the basal
fungi demonstrates that the loss of P2X receptors in fungi had
occurred in recent fungal lineages. Interestingly, selective
evolutionary loss of P2X receptors might have also occurred
independently in the nematode and arthropod lineages, based
on recent characterization of a P2X receptor from the
tardigrade Hypsibius dujardini and the identification of P2X
receptor-like sequences from the nematode Xiphinema index
and the chelicerate Boophilus microplus [17].

Animals and fungi diverged from a common unicellular
ancestor of Opisthokonta about one billion years ago [14,
18]. Animal P2X receptors function at the plasma mem-
brane by binding to extracellular ATP [3]. In contrast, P2X
receptors in the dictyostelid social amoeba D. discoideum
[11] and the green alga O. tauri [12] are thought to play a
role in intracellular purinergic signaling, which suggests
ancestral P2X receptors emerged to serve functional roles
on intracellular organelle membranes. Therefore, functional
characterization of these fungal P2X receptor homologs
will reveal whether P2X receptor-mediated signaling at the
plasma membrane predates the divergence of animals and
fungi or it had occurred specifically in the lineage leading
to animals.

We also detected the presence of P2X receptor homologs in
the amoeboid holozoan Capsaspora owczarzaki (CowP2X),
a unicellular relative branching close to animals and
choanoflagellates. In addition, a P2X receptor homolog is
also identified in the sea sponge Amphimedon queenslandica
(AquP2X) (Fig. 1; Electronic supplementary material).

In conclusion, the identification of new P2X receptor
homologs in basal fungi and primitive species in the animal
lineage [16] sheds novel evolutionary and mechanistic
insights into the purinergic signaling and provides new

Fig. 1 Phylogenetic analysis of P2X receptor homologs in select
animal species and unicellular relatives of animals and three basal
fungi. The phylogenetic tree was constructed by the maximum
likelihood approach, with the P2X receptor in D. discoideum
(DdiP2X) [11] as an outgroup. Bootstrap values of more than 40 are
shown at the nodes. Abbreviations for species: Ama A. macrogynus,
Aqu A. queenslandica, Bdi B. dendrobatidis, Cow C. owczarzaki, Ddi
D. discoideum, Dpu Daphnia pulex, Dre Danio rerio, Gga Gallus
gallus, Hsa Homo sapiens, Mbr M. brevicollis, Mga Meleagris
gallopavo, Mmu Mus musculus, Sma Schistosoma mansoni, Spu S.
punctatus, Stpu Strongylocentrotus purpuratus, Sro Salpingoeca
rosetta

Fig. 2 Sequence alignment of regions surrounding the second
transmembrane segments of select P2X receptor sequences. The
horizontal black bar indicates the position of TMS2. Functionally
important regions and residues, a Lys residue (K308 equivalent in rat

P2X2 receptor), an Asp residue (conserved in the TMS2 of most P2X
receptors), and the conserved YxxxK motif, are indicated by a filled
circle, an asterisk symbol, and a gray bar, respectively. For species
abbreviations, see Fig. 1 caption
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molecular tools to explore P2X receptor signaling in fungal
biology.
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