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Abstract
The continual reassessment method (CRM) is a commonly used dose-finding design for phase I
clinical trials. Practical applications of this method have been restricted by two limitations: (1) the
requirement that the toxicity outcome needs to be observed shortly after the initiation of the
treatment; and (2) the potential sensitivity to the prespecified toxicity probability at each dose. To
overcome these limitations, we naturally treat the unobserved toxicity outcomes as missing data,
and use the expectation-maximization (EM) algorithm to estimate the dose toxicity probabilities
based on the incomplete data to direct dose assignment. To enhance the robustness of the design,
we propose prespecifying multiple sets of toxicity probabilities, each set corresponding to an
individual CRM model. We carry out these multiple CRMs in parallel, across which model
selection and model averaging procedures are used to make more robust inference. We evaluate
the operating characteristics of the proposed robust EM-CRM designs through simulation studies
and show that the proposed methods satisfactorily resolve both limitations of the CRM. Besides
improving the MTD selection percentage, the new designs dramatically shorten the duration of the
trial, and are robust to the prespecification of the toxicity probabilities.
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1. INTRODUCTION
The primary scientific goal of a phase I oncology trial is to identify the maximum tolerated
dose (MTD) of a new drug, which is the highest dose with an acceptable risk of toxicity. Of
many phase I dose-finding methods described by Chevret (2006), the continual reassessment
method (CRM) proposed by O’Quigley, Pepe, and Fisher (1990) is a particularly popular
design used to identify the MTD. The CRM continuously updates the estimates of the true
toxicity probabilities of the considered doses based on a single-parameter model and the
prespec-ified toxicity probabilities. Under some regularity conditions, the CRM is consistent
in the sense that the MTD identified by the CRM generally converges to the true MTD, even
when the working model is misspecified (Shen and O’Quigley 1996). Although the CRM
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was originally proposed in the Bayesian paradigm, O’Quigley and Shen (1996) showed that
the CRM possesses similar theoretical properties and operating charac-teristics under the
classical maximum likelihood theory.

The CRM has been modified to improve its practical imple-mentation and properties, in
particular, by treating patients in cohorts and limiting each dose escalation by one dose level
(Goodman, Zahurak, and Piantadosi 1995; Piantadosi, Fisher, and Grossman 1998). More
refinements of the CRM include: using a preliminary up-and-down design in order to reach
the neighborhood of the target dose (Møller 1995); terminating the trial early based on the
width of the 95% posterior probability interval of the MTD (Heyd and Carlin 1999);
weighing the like-lihood with the censoring time to accommodate late-onset toxi-cities
(Cheung and Chappell 2000); monitoring a posterior den-sity function of toxicity to limit
overdose (Ishizuka and Ohashi 2001); using decision theory to optimize certain objective
function (Leung and Wang 2002); modeling bivariate competing outcomes (Braun 2002);
and using a two-group CRM for ordered groups (O’Quigley and Paoletti 2003).

In spite of the success of the CRM, two major issues limit its applications in practice. First,
the CRM requires that the toxi-city outcome must be observed quickly such that, by the time
of the next dose assignment, the currently treated patients must have complete information
on toxicity. However, late-onset tox-icities are common in phase I studies. For example, in
radio-therapy trials, dose-limiting toxicities (DLTs) often occur long after the treatment is
finished (Coia, Myerson, and Tepper 1995; Cooper et al. 1995). In the presence of such late-
onset toxicities, a direct application of the CRM may underestimate the toxicity
probabilities, which would cause an undesirably large number of patients to be treated at
overly toxic doses. While a safer approach would be to suspend the accrual and wait for
each pa-tient’s outcome to be observed, this strategy may result in an infeasibly long trial. In
addition, frequently suspending the ac-crual is not practical, wastes resources, and also
causes tremen-dous administrative inconvenience. Second, the CRM requires the
prespecification of toxicity probabilities for the doses inves-tigated in the trial. These prior
toxicity probabilities are known as the “skeleton” of the CRM. Because the true dose-
toxicity profile of the agent under investigation is often largely unknown a priori, the
specification of the skeleton can be quite subjective. Different skeletons may lead to rather
different design proper-ties, and unfortunately there is little information to justify which
skeleton is more appropriate in practice.

A phase I clinical trial was recently initiated to investi-ate a novel drug combination of a
mitotic inhibitor and an immunomodulatory agent for treating prostate cancer. Fixing the
dose of the immunomodulatory agent, the mitotic inhibitor was to be investigated at six dose
levels. The goal of the study was to find the MTD of the mitotic inhibitor that can be
givenwith the immunomodulatory agent to treat prostate cancer. The CRM was considered
as a candidate design for the trial, however, the implementation of the CRM was
complicated by the aforementioned two difficulties. Toxicities were not expected to be
observed immediately following the treatment. Clinical investigators decided that three
months would be a reasonable follow-up period to assess toxicities. Given the estimated ac-
crual rate of three patients per month, when a new cohort of three patients was ready for
treatment, some of the currently treated patients might still have not completed assessment
and thus their toxicity outcomes would be missing. In addition, when we elicited the
skeleton of the CRM, several investigators expressed quite different opinions on the prior
toxicity proba-bilities at these six doses. As the true dose-toxicity curve of the drug was
unknown a priori, it was not clear which set of prior toxicity probabilities should be used to
carry out the CRM design.
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Our goal is to address the two limitations of the CRM in order to further expand its
application. To address the missing toxic-ity issue, we treat the unobserved toxicity
outcomes as missing data (more strictly speaking, as censored observations due to
incomplete follow up), and apply the missing data technique and theory to the CRM
methodology. In particular, the expectation-maximization (EM) algorithm is used to handle
the missing tox-icity outcomes when the toxicity outcomes cannot be observed quickly. To
overcome the sensitivity of the CRM to the prespec-ification of the skeleton, we propose
conducting the CRM design using multiple skeletons. We view the CRM model under each
skeleton as a separate model, based on which the inference and dose escalation decisions are
made through model selection and model averaging approaches. The proposed design
includes the CRM as an important special case when there is no missing data and only a
single skeleton is used.

The remainder of the article is organized as follows. In Section 2, we briefly review the
original CRM methodology and propose a robust EM-CRM to address the issues of missing
toxicity outcomes and the sensitivity associated with the skele-ton specification. In Section
3, we present simulation studies to compare the operating characteristics of the new designs
with those of the original CRM. In Section 4, we describe the sensitivity analysis we
conducted to further investigate the properties of the EM-CRM in terms of the accrual rates,
event-time distributions, and multiple skeletons. We illustrate the proposed design using the
prostate cancer trial in Section 5, and conclude with a brief discussion in Section 6.

2. METHODS
2.1 Continual Reassessment Method

In a phase I dose-finding trial, patients enter the study sequentially and are followed for a
fixed period of time (0, T) to assess the toxicity of the drug. During this evaluation window
(0, T), a binary variable Y = 1 if the patient has experienced the dose-limiting toxicity
(DLT), and otherwise Y 0. Typi-cally, the length of the assessment period T is chosen = so
that if a drug-related DLT occurs, it would occur within (0, T). Depending on the nature of
the disease and the treatment agent, the assessment period T varies from days to months.
Patients with Y = 0 can be regarded as “cured” or “insusceptible” in the sense that they will
not experience the event of interest (i.e., DLT) even if we continue to follow them after T.

The CRM assumes a prior dose-toxicity curve, and then continuously updates this curve
based on the observed toxicity outcomes in the trial. Using the updated dose-toxicity curve,
a new cohort of patients is assigned to the dose with an estimated toxi-city probability
closest to the prespecified target ϕ. Suppose that a set of J doses are under investigation for
the new drug, and let (p1, …, pJ) be the prespecified toxicity probabilities (skele-ton) at
those doses, satisfying a monotonic dose-toxicity order p1 < … < pJ. The CRM starts with
treating the first cohort of patients at the lowest dose. To direct the dose escalation for an
incoming cohort, the CRM links the dose level d with the associated toxicity probability πd
via a working dose-toxicity model, such as

(1)

where α is an unknown parameter.

Suppose that n patients have entered the trial, and let yi and di denote the toxicity outcome
and the received dose level for the ith subject, respectively. Then, the likelihood function for
the observed toxicity outcomes y = {yi, i = 1, …, n} is given by
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(2)

The unknown parameter α can be estimated by Bayesian or frequentist methods. The
original formulation of the CRM by O’Quigley, Pepe, and Fisher (1990) takes a Bayesian
approach that assigns a prior distribution to α, and then estimates α and πd(α) by their
posterior means. Alternatively, the classical fre-quentist maximum likelihood method can be
used to obtain α, the maximum likelihood estimator (MLE) of α. O’Quigley and Shen
(1996) showed that these two inferential approaches yield fairly similar operating
characteristics, especially in terms of the MTD selection.

After obtaining the MLEs of the toxicity probabilities at all of the doses considered, that is,
, the recommended dose level for the next cohort of patientsis the one that has a

toxicity probability closest to the target ϕ. That is, a new cohort of patients is assigned to
dose level d* such that

The trial continues until the exhaustion of the total sample size, and then the dose with an
estimated toxicity probability closest to ϕ is selected as the MTD.

2.2 EM–CRM
A practical limitation of the CRM is that the DLT needs to be ascertainable quickly after the
initiation of the treatment. As illustrated by Figure 1, if the patient interarrival time, say φ, is
shorter than the assessment period T, say T = 3φ, then by the time a dose is to be assigned to
the newly accrued cohort of patients (at time φ), some of the patients who have entered the
trial (i.e., patients 2 and 3) have been only partially followed and their toxicity outcomes
have not yet been observed. More precisely, for subject i, let ti denote the time to toxicity,
and let ui(ui≤ T) denote the actual follow-up time at the moment of dose assignment for a
newly arrived cohort. If subject i will not experience toxicity (i.e., Yi= 0), we set ti= ∞. It
then follows that

(3)

That is, the toxicity outcome is missing for patients who have not yet experienced toxicity
(ti> ui) and have not been fully followed up to T (ui< T). From the time-to-toxicity
perspective, these missing outcomes can also be regarded as censored observations. In the
trial conduct, the amount of missing data depends on the ratio of the assessment period T
and the interarrival time φ, the A/I ratio. A larger value of the A/I ratio often leads to more
missing data, as this indicates that a higher percentage of patients have not completed the
toxicity assessment when a new cohort arrives. We assume that the arrival time of a new
cohort does not depend on ti, that is, censoring is noninformative.

The missingness of toxicity outcomes poses difficulties when conducting a CRM trial
design. One possibility is to simply discard the missing data and make the dose-escalation
decision based only on the observed data. However, this approach is not efficient, and of
greater consequence, often leads to overly aggressive dose escalation because patients who
will not experience toxicity are more likely to have missing data. For example, in Figure 1,
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patient 3 does not experience toxicity during the assessment period and is more likely to
have a missing toxicity outcome (i.e., at time φ and time 2φ) than patients 2 and 3 who have
experienced toxicity. Because the probability of missingness for Yi depends on the value of
Yi itself, such missing data are nonignorable and bring a new challenge to the trial design.
Statistical analysis of nonignorable missing data is often plagued by the nonidentifiability
problem due to the fact that the observed data contain no information about the nonignorable
missing data mechanism. However, the missing data we consider here are a special case of
nonignorable missing data with a known missing data mechanism as defined by (3). This
feature eliminates the nonidentifiablity problem and renders statistical modeling using the
EM algorithm (see Little and Rubin 2002, chap. 15.3).

In this article, we naturally treat the unobserved toxicity outcomes as missing data and
address the problem using the EM algorithm (Dempster, Laird, and Rubin 1977). The EM
alg rithm is a general iterative procedure for maximum likelihood estimation with
incomplete data. Each iteration of the EM algorithm consists of an E (expectation) step and
an M (maximization) step. The E step finds the conditional expectation of the missing data
given the observed data and current parameter estimates, and then substitutes these
expectations for the missing data. The M step maximizes the likelihood of the filled-in data
to obtain the MLEs of the parameters. Let y = (yobs, ymis), where yobs and ymis denote the
observed and missing data, respectively. For patients susceptible to the DLT (i.e., Yi = 1), let
τ1 < τ2 < … < τK represent distinct observed event times. Let mk denote the number of DLTs
occurred at τk, and ck denote the number of censored observations in the interval τk, τk+1), for
k = 1, …, K with τK+1≡ T. We denote the set of [mk event times by Mk, the set of ck censored
observations by Ck, and use λ = (λ1, …, λK) to denote the unknown discrete hazards C at the
τk’s with λk = pr(t=τk|t ≥ τk). Under the CRM model, the log-likelihood of the complete data
is a linear function of Yi. Thus, at the rth iteration of the EM algorithm, given the current
parameter estimates α(r) and λ(r), the E step at the (r+1)th iteration essentially substitutes the
missing value of Yi directly with its expectation in the form of

(4)

In clinical practice, patients who do not experience toxicity during the assessment window
(0, T) are typically considered “safe” or “insusceptible.” Thus, the patient population can be
viewed as a mixture of subjects who would experience toxicity and those who would not,
which is given in the denominator of (4) and characterized by the mixture cure rate model
(Berkson and Gage 1952). After the E step, we obtain the filled-in complete data ŷ = {ŷi},
where ŷi = yi if yi is observed, and yi=E(Yi|ti > ui, α(r), λ(r)) if yi is missing. Then in the M
step, we calculate the MLE of α and λ as the updated estimate α(r+1) and λ(r+1). It can be

shown that , k 1, …, K, an estimate analogous to Kaplan–
Meier estimator (Kaplan and Meier 1958); and α(r+1) is obtained maximizing the likelihood
(2) with yi replaced by ŷi.
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The EM algorithm does not directly produce the variance estimate of , for which we take
the approach of Louis (1982). We factorize the observed-data information  as
follows:

(5)

where I(α|y) = −∂2 log L(y|α)/∂α2 is the observed information based on the complete data y,
and D(α ymis) = ∂ log L(ymis|α)/∂α denotes the score function from the missing data ymis. As
shown in the Appendix, the first term on the right-hand side of (5) is given by

and the second term is given by

Thus, an estimate of the variance of  is given by , and the 95%
confidence interval of the toxicity probability πd can be constructed as

. The variance estimate of  involves the unknown survival
function pr(ti > ui|Yi = 1), which can be replaced by its Kaplan–Meier type estimator
obtained from the EM algorithm. The variance of  is used only when ˆ to stop the trial
early all the considered doses are overly toxic, and the simulation study shows that this
approximated variance provides very good operating characteristics.

2.3 Robust EM–CRM
Another issue associated with the CRM is the arbitrariness in the prespecification of the
toxicity probabilities (p1, …, pJ). Due to a lack of toxicity information on a new drug, the
uncertainty associated with the specification of the toxicity probabilities is fairly large.
Different physicians often have quite different opinions on the toxicity probabilities. Even
with only one physician, typically a range of toxicity probabilities are given for each dose.
For example, the toxicity probability at dose level one may range between 0.1 to 0.3, and
that at dose level two between 0.25 to 0.4 and so on. If the pd’s deviate far from the true
dose-toxicity curve, this may lead to poor operating characteristics and a high probability of
selecting the wrong dose as the MTD. To enhance the robustness of the trial design, we
propose simultaneously prespecifying multiple, say S, sets of toxicity probabilities, that is,
{p11, …, p1J}, …, {pS1, …, pS1}, each set leading to an independent CRM model of form
(1). During the trial conduct, we fit each of the S CRM models to the observed data. In order
to make inference across the multiple models and direct the dose escalation, two different
approaches, model selection and model averaging, can be adopted. In the Bayesian
paradigm, Yin and Yuan (2009) proposed using the Bayesian model averaging estimate to
draw inference across multiple CRMs. To calculate the Bayesian model averaging estimate,
the commonly used improper noninformative priors cannot be used (Raftery, Madigan, and
Hoeting 1997), and proper priors need to be elicited for the unknown parameters of the
CRM models, which could be a challenging task for practitioners. In addition, the resulting
estimates may be sensitive to the priors, especially at the beginning of the trial with a very
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small sample size. We focus herein on the frequentist approach, which avoids specifying
prior distributions.

Model selection is a process of identifying the best-fitting model among candidate models.
Conditional on the observed data, different CRM models usually yield different estimates of
the toxicity probabilities ( ). Some of them may be to the true values, while others
may not, depending on how well the models fit the cumulating data. In the model selection
approach, at each time of decision making on dose assignment, we select the best model
according to a suitable model selection criterion. Based on the estimates of the toxicity
probabilities from the best-fitting model, we assign an appropriate dose to the new cohort of
patients. A variety of model selection criteria have been proposed in the literature (see
Burnham and Anderson 2002). Here we consider two commonly used information criteria:
namley, the Akaike information criterion (AIC, Akaike 1973) and the Bayesian information
criterion (BIC),

where L is the likelihood function, r is the number of model parameters and n is the number
of observations. In our case, as all of the CRM models under consideration have the same r
and n, the AIC and BIC are equivalent. Essentially, we select the model with the highest
likelihood as the basis for inference and dose escalation. Dose finding is a sequential
process. As the trial proceeds, more data are accumulated, and theselected model may vary
from one decision-making time to an-other. Model selection provides an intuitive and
straightforward way to make inference from several competing models. However, because
the inference is solely based on the selected sin-gle model, the model selection approach
ignores the uncertainty associated with the selection process, which often leads to narrow
confidence intervals (Raftery, Madigan, and Hoeting 1997; Hjort and Claeskens 2003).

Model averaging has been proposed to account for the additional uncertainty introduced by
different models. Unlike model selection, the model averaging approach explicitly
acknowledges the uncertainty of models and makes inference based on all the competing
models rather than a selected single model. Model averaging has been investigated from
both Bayesian and frequentist perspectives. For a comprehensive review of Bayesian model
averaging, see Hoeting et al. (1999). From the traditional frequentist perspective, Hjort and
Claeskens (2003) laid down a unified likelihood-based framework for frequen-tist model
averaging. Denoting S as the number of competing models under consideration, Hjort and
Claeskens (2003) investigated a general class of model averaging estimators of the form

(6)

where the weight ws is a measure of the relative influence of model s, and  is the estimate
of parameter α under model s. We use a special case of (6), the so-called smoothed AIC
estimator (Buckland, Burnham, and Augustin 1997; Hjort and Claeskens 2003), as an
estimate of the toxicity probability across the multiple CRM models:

Yuan and Yin Page 7

J Am Stat Assoc. Author manuscript; available in PMC 2012 February 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where  is the MLE of the toxicity probability at dose level d obtained by the EM
algorithm under the sth CRM model, and

According to the goodness of fit, the smoothed AIC estimator assigns a larger weight to a
better fitting model, and limits the influence of the poorly fitting model. In our case, the
smoothed AIC estimator also has an intuitive Bayesian interpretation. Because all of the
CRM models under consideration have the same number of parameters, ws is exactly the
ratio of the likelihood for model s versus the sum of likelihoods of all the candidate models.
In addition, it easy to see that

Therefore, ws is also an approximation to the posterior probability of model s being correct
(Schwarz 1978), and consequently  provides an approximation of the Bayesian model
averaging estimator, in which the estimate from each model is weighted by the posterior
model probability.

To estimate the variance of , Buckland, Burnham, and Augustin (1997) suggested using the
bootstrap method (Efron 1979), which, however, is problematic in our case due to a small
sample size. At the early stage of a trial, only a small number of patients have been accrued.
By the time the next dose assignment decision is to be made, most of the patients either have
toxicity outcome Y missing or Y = 0, and very few patients have observed toxicities with Y =
1. Consequently, when bootstrapping such sparse data, many bootstrap samples have no
observation with Y = 1, rendering estimation impossible. To circumvent this problem, we
apply the resampling method by perturbing the objective function repeatedly with a
nonnegative random variable (Jin, Ying, and Wei 2001) while keeping the data intact.
Statistical inferences can then be made based on the empirical distribution of a large
collection of perturbed estimators obtained from the perturbed objective functions. We
incorporate the perturbation resampling method into the EM algorithm for incomplete data
as follows:

1. Generate n random variates, (v1, …, vn), from the exponential distribution with
mean one, Exp(1).

2. For each of the CRM models:

i. At the E step, S calculate and substitute the missing value of Y with the
expected value given by (4).

ii. At the M step, maximize the following perturbed log-likelihood function
of α,
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and update the estimate of λk as .

iii. Repeat the E and M steps until the algorithm converges to obtain the
perturbed toxicity probability estimate .

3.
Calculate the perturbed smoothed AIC estimator , where  is
calculated as ws based on the perturbed likelihood.

After repeating the perturbing procedure a large number of times, say 1000, the sampling

distribution of  can be approximated by the empirical distribution of . In particular, the
90% confidence interval for  is given by the corresponding 5th and 95th sample quantiles

of .

2.4 Dose-Finding Algorithm
Let ϕ denote the physician-specified toxicity target, and assume that patients are treated in
cohorts, for example, with a cohort size of three. For safety, we restrict dose escalation or
de-escalation by one dose level of change at a time. The dose-finding algorithm in the robust
EM-CRM is described below:

1. Patients in the first cohort are treated at the lowest dose level.

2. At the current dose level dcurr, based on the cumulated data, we obtain the estimates
for the toxicity probabilities,  (d = 1, …, J), using the EM-algorithm coupled with
the model selection or model averaging procedure. We then find dose level d* that
has a toxicity probability closest to ϕ, that is,

If dcurr > d*, we de-escalate the dose level to dcurr − 1; if dcurr < d*, we escalate the
dose level to dcurr + 1; otherwise, the dose stays at the same level, dcurr, for the next
cohort of patients.

3. Once the maximum sample size is reached, the dose that has the toxicity
probability closest to ϕ is selected as the MTD.

In the likelihood framework, we must have heterogeneity among the responses in order to
estimate the parameter in the CRM (O’Quigley and Shen 1996). We begin the trial by
treating the first cohort at the lowest dose. We fully follow each cohort of patients and
continue escalating the dose until the first DLT occurs. Then, we switch to our EM-CRM
dose-finding algorithm. We also impose a stopping rule for safety as follows. Let (l1, u1)
denote the 90% confidence interval for the toxicity probability of the lowest dose; at any
stage of the trial, if l1 > ϕ, the trial is terminated.
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3. SIMULATION STUDIES
We investigated the operating characteristics of the proposed robust EM-CRM design
through simulation studies. We considered six dose levels and assumed that toxicity
monotonically increased with respect to the dose. A maximum number of 36 patients were
treated sequentially in a cohort size of 3, with the first cohort of patients treated at the lowest
dose level. The assessment period was T = 3 months and the interarrival time be-tween
patent cohorts was φ = 1 month. For patients who would experience toxicity in the
assessment period [0, 3], we assumed the times to toxicity from a truncated Weibull
distribution with the shape parameter of 2, the scale parameter of 0.51 and a supporting
range of [0, 3], approximately that is, t ~ Weibullt∈[0, 3] (2, 0.51). Under this distribution,
40% events were observed after one month of follow up. The target toxicity probability was
ϕ = 30%. Under the robust EM-CRM, each cohort was treated immediately upon arrival.
Three skeletons were elicited to represent three different prior opinions on the toxicity
probabilities:

(7)

As shown in Figure 2, the first skeleton stands for a conservative prior guess with the MTD
located at the highest dose level; the second represents a typical prior with the MTD located
at the middle of the dose levels; and the third is an aggressive prior with the MTD located at
the low dose level. For convenience, we use EM-CRMSEL and EM-CRMAVG to denote the
robust EM-CRM with model selection and model averaging, respectively. We compared the
proposed designs with the standard CRM, in which we suspended patient accrual until all of
the toxicity outcomes in the trial were completely observed prior to the next dose
assignment. As such a CRM design is based on complete data, it represents the optimum
case and provides a benchmark for comparison. We refer to the individual CRMs using each
of these three skeletons as CRM 1, CRM 2, and CRM 3, respectively, and define EM-CRM
1, EM-CRM 2, and EM-CRM 3 similarly for the CRM coupled with the EM algorithm with
a single skeleton. We considered eight toxicity scenarios as listed in Table 1, and carried out
10,000 simulated trials for each case.

Under each scenario in Table 1, the first row represents the true toxicity probabilities; rows
2 through 5 show the dose selection probability and the average number of patients treated at
each dose separately for CRM 1 and EM-CRM 1, followed by those of CRM 2, EM-CRM 2,
CRM 3, and EM-CRM 3; and the last four rows correspond to the EM-CRMSEL and EM-
CRMAVG. We also present the number of patients who experienced toxicity, the total
number of patients treated, and the trial duration averaged across 10,000 simulated trials.

In scenario 1, the MTD is at dose level 4, and the three CRMs using different skeletons
yielded quite different MTD selection percentages. CRM 2 and CRM 3 performed similarly
with selection percentages of the target dose of 68.2% and 67.0%, respectively. CRM 1,
however, performed substantially worse with a selection percentage of only 49.2%,
demonstrating that the CRM is quite sensitive to the prespecified skeleton. If skeleton 1 had
been recommended by physicians to carry out the CRM trial design, there is an almost 45%
of chance that dose 3 or 5 would have been selected as the MTD. Compared to the CRMs,
the performance of the EM-CRMs was very competitive. The selection probability and the
number of toxicity under the EM-CRMs were only slightly lower than the CRMs. For
example, using skeleton 2 or 3, the differences of the selection probabilities between the two
designs were less than 2%. The major advantage of the EM-CRM over the CRM is that the
trial duration is dramatically shortened: the average trial duration under the EM-CRM was
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less than 21 months in contrast to 37 months under the CRM. These results suggest that the
EM algorithm satisfactorily addresses the problem of the late-onset toxicity without
sacrificing the MTD selection probability and patient safety. Nevertheless, the EM-CRM
also demonstrated a similar degree of sensitivity to the skeleton as the CRM. Forexample,
under the EM-CRM, the selection probability of the MTD using skeleton 1 was 22.6% lower
than that using skeleton 2. The robust EM-CRMs satisfactorily resolved the sensitivity of the
EM-CRM. In particular, both the EM-CRMSEL and EM-CRMAVG correctly recommended
the MTD more than 64% of the time. The average trial duration of the EM-CRMSEL and
EM-CRMAVG was approximately 21 months, which was immensely shorter than those of
the CRMs. The average numbers of toxicities under the EM-CRMSEL and EM-CRMAVG
were quite close to those under other designs.

In scenario 2, with the MTD at the fifth dose level, CRM 1 behaved the worst, selecting the
MTD less than 40%; CRM 3 performed the best, selecting the MTD close to 60%; EM-
CRMs performed similarly to the CRMs in terms of the MTD selection, but yielded
substantially shorter trial durations. The selection percentages of the MTD using the
proposed EM-CRMSEL and EM-CRMAVG were approximately 55%, which were much
better than CRM 1 and comparable to CRM 2 and CRM 3. Furthermore, the proposed
designs shortened the duration of the trial from 37 to 22 months. In scenario 3, with the sixth
dose as the MTD, CRM 3 had the lowest MTD selection percentage (less than 30%),
whereas the proposed EM-CRMSEL and EM-CRMAVG recommended the MTD 47.7% and
39.8% of the time, respectively. In scenario 4, all of the selection percentages using different
designs were close, but the trial durations of the proposed designs were only half of those
using the CRMs. Scenario 5 is similar to scenario 1 with the fourth dose as the MTD, but
represents a more difficult case because the toxicity probabilities are closer to each other and
thus harder to distinguish. Under that scenario, the MTD selection percentages of the
proposed designs were slightly lower than those of the best-performing CRMs 2 and 3, but
substantially better than that of CRM 1. Similar results can also be observed in scenario 6, in
which the MTD is at the third dose level. Scenario 7 is designed to simulate the case in
which there is a sudden jump in the toxicity probabilities from the fourth to the fifth dose
level. Under that scenario, CRM 3 performed the best with an MTD selection percentage of
70%, and CRM 1 performed the worst with an MTD selection percentage of 46.2%. Using
model selection or model averaging, the proposed designs limited the influence of skeleton 1
and yielded an MTD selection percentage similar to those of CRMs 2 and 3. In scenario 8,
even the first dose is overly toxic; all of the designs were able to terminate the trial early due
to the safety rule we implemented. In conclusion, the simulation studies demonstrated that
our proposed designs are robust, and can immensely shorten the trial duration without
sacrificing trial performance.

4. SENSITIVITY ANALYSIS
In practice, the amount of missing data is controlled by two factors: the assessment and
interarrival time ratio (A/I ratio = T/φ) and the distribution of the time to toxicity. When the
A/I ratio is high, the new cohort arrives rapidly and the trial requires more frequent decision
making on dose assignment. Consequently, at each moment of decision making, the cohorts
that have already entered the trial are only followed for a short period of time, thus resulting
in a high percentage of missing toxicity outcomes. On the other hand, given a fixed A/I
ratio, if the distribution of the time to toxicity is skewed toward the end of the assessment
period, we also tend to have more missing data because the toxicity outcome is less likely to
be observed during the early stage of the follow up.

In our sensitivity analysis, we considered two A/I ratios (i.e., 3:1 and 5:1) and three different
distributions for the time to toxicity: Weibull[0,3] (0.9, 1.7), and two scaled beta distributions
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3 × Beta(3.08, 2) and 3 × Beta(5.16, 2). The parameters in thethree distributions were
chosen in such a way that by the middle of the assessment period, there were approximately
91%, 30%, and 10% of toxicity outcomes observed, respectively. Thus, the Weibull
distribution represents a case that toxicity can be observed relatively quickly, that is, early-
onset toxicity, while the two Beta distributions represent cases of more severely late-onset
toxicity because it is more likely that toxicity would occur at the later stage of the follow up.
As shown in Table 2, we simulated scenario 1 and presented the results by using EM-CRM
2 due to its superior performance. When the A/I ratio increased and the time-to-toxicity
distribution was severely skewed to the right, the selection percentage of the MTD slightly
deceased, and the increase in the number of observed toxicities was also minor. Therefore,
the proposed designs are not particularly sensitive to the A/I ratio or the time-to-toxicity
distribution.

Patient heterogeneity is another important factor influencing the practical performance of the
trial design. We considered two types of heterogeneity in our sensitivity analysis. The first
type concerns population heterogeneity. We assumed that the target patient population is an
equal-proportion mixture of three sub-populations characterized by different time-to-toxicity
distributions, namely, Weibull[0,3](3, 0.17), Weibull[0, 3](1, 1.5], and Weibull[0,3](0.75, 2).
The second] type of heterogeneity we considered concerns the time-to-toxicity distribution.
Specifically, we assumed that the time-to-toxicity profile varies across different dose levels
with higher doses inducing toxicity sooner (see Figure 3). For convenience, we refer to these
two types of heterogeneity as population and (time-to-toxicity) distribution heterogeneity,
respectively. We simulated scenarios 1 and 2 under the two types of heterogeneity. The
results in Table 3 show that our designs are not sensitive to heterogeneous patient
populations. The MTD selection probabilities using the EM-CRM, EM-CRMSEL, and EM-
CRMAVG are very similar to those in the absence of heterogeneity as listed in Table 1 (see
scenarios 1 and 2), and the differences are typically less than 2%. The numbers of toxicities
are also quite close and stable regardless of the presence of the heterogeneity.

We also evaluated the performance of the proposed robust EM-CRM when using different
numbers of skeletons. Under scenario 2, we increased the number of skeletons from one up
to six, by successively adding one skeleton at a time in the original order. In addition to the
three skeletons we previously considered, the fourth to sixth skeletons were (0.20, 0.30,
0.40, 0.50, 0.60, 0.70), (0.05, 0.14, 0.30, 0.40, 0.46, 0.55), and (0.08, 0.10, 0.15, 0.20, 0.30,
0.50), respectively. Table 4 shows the selection percentage and the number of patients
treated at each dose when using two, four, five, and six skeletons. Recall that, using only the
first skeleton in scenario 2, EM-CRM 1 yielded the lowest MTD selection percentage of
36.9%. By adding one more skeleton, the performance of the robust EM-CRM design was
substantially improved, increasing the MTD selection percentage more than 10%. While
adding more skeletons still improved the performance of the proposed designs, the
improvement became less obvious after three skeletons, and started to diminish as the sixth
skeleton was added. By employing the model selection and model averaging procedures, the
robust EM-CRM automatically leans toward the best-performing CRM, and limits the
influence of the poorly performing CRM. Thus, as long as the set of skeletons contains one
good-performing skeleton, the proposed design should perform well. In practice, we
recommend using three skeletons in the trial design, and these skeletons should be chosen in
a way to cover a reasonable range of toxicity shapes. That is, when selecting three skeletons,
as recommended, one should exercise care not to have equivalent profiles chosen. Given two
skeletons {pi1, …, piJ} and {pk, …, pkJ}, they have equivalent profiles if one skeleton can be
expressed as a power transformation of the other, that is, , j=1,…, J, where c is a
constant, or equivalently,
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Therefore, a natural measure of the “distance” or “dissimilarity” between skeletons i and k is
the variability of the ratio of the log-probabilities var(logpij/logpkj). A larger value of this
variance indicates a higher level of dissimilarity between the two skeletons. When
var(logpij/logpkj) = 0, the two skeletons are equivalent. As an example, in our simulation
study, the distance between skeletons 1 and 2 is 0.08, and the distance between skeletons 1
and 3 is 0.42.

The two proposed robust EM-CRMs have similar operating characteristics, but the EM-
CRMSEL is less computationally intensive than the EM-CRMAVG as the latter involves a
resampling procedure when calculating the variances of the estimated toxicity probabilities.
For this reason, the EM-CRMSEL design may be preferred for general practical use.

5. EXAMPLE
We illustrated the proposed EM-CRMSEL design using the prostate cancer clinical trial. The
target toxicity probability was 30%, and a total of 36 patients were treated sequentially in
cohorts of size 3. We used the three skeletons given in (7). The dose assignment for each
cohort is exhibited in Figure 4. The trial started by treating the first cohort at dose level 1.
As no DLT was observed for the first cohort at the end of three months, we escalated the
dose and treated the second cohort at dose level 2. After one DLT was observed around
month 5, the EM-CRMSEL was evoked to direct the dose assignment thereafter. Based on
the observed data, the EM-CRMSEL chose dose level 3 as the most appropriate dose to treat
the third cohort. By month 6, no toxicity had been observed in the third cohort, and thus we
escalated the dose and treated the fourth cohort at dose level 4. However, before assigning a
dose to the fifth cohort at month 7, a total of two DLTs were observed in the third and fourth
cohorts. These late-onset toxicities led us to de-escalate the dose and assign dose level 3 to
the fifth cohort. Because no toxicity was observed in the fifth cohort, we escalated the dose
back to level 4 for the sixth cohort, and then escalated the dose again to level 5 to treat the
seventh and eighth cohorts. After two DLTs were observed at dose level 5 by month 11, we
de-escalated the dose, and the last four remaining cohorts were treated at dose level 4. At the
end of the trial, the dose at level 4 was selected as the MTD.

Figure 5 shows the model selected after enrolling each cohort during the trial conduct.
Before the ninth cohort entered the trial, model 2 (i.e., the CRM model with the second
skeleton) mostly had the lowest AIC and was selected as the best model to determine the
dose escalation. At the later stage of the trial, model 3 became the best-fitting model and
directed the dose assignment. Throughout the trial, model 1 always had the highest AIC and
thus was never selected, suggesting that the first skeleton may deviate far from the true
toxicity profile of the drug. Had the investigators recommended the first skeleton to carry
out the CRM trial design, the performance of the design could be compromised. By
specifying multiple skeletons and coupling with the model selection procedure, our
approach avoids such an undesirable case, and thus improves the robustness of the design.

6. CONCLUSION
We have proposed two versions of robust EM-CRM designs to meet the practical needs
when toxicity outcomes cannot be observed quickly enough, and to improve the robustness
of the CRM. Unlike the original CRM, the proposed designs do not require the toxicity

Yuan and Yin Page 13

J Am Stat Assoc. Author manuscript; available in PMC 2012 February 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



outcome to be ascertainable shortly after the initiation of the treatment. In the new designs,
unobserved toxicity outcomes are naturally treated as missing data, and the EM algorithm
and missing data theory can be used to make inference and dose escalation decisions based
on the incomplete data. By allowing a fast and continuous accrual, the proposed designs
substantially shorten the duration of the trial if the toxicity is of late onset. To address the
sensitivity of the CRM to the specification of prior toxicity probabilities, the new designs
specify multiple sets of prior toxicity probabilities, and apply the model selection or
averaging procedure to multiple CRM models. The selection of the MTD under the
proposed designs is competitive with the best-performing CRM in the set of CRM models
under consideration, and can be substantially superior to that of a CRM in which the
skeleton happens to be very far off the true toxicity profile. In our designs, simultaneously
specifying multiple skeletons reduces the chance that all of the sets of toxicity probabilities
are misspecified. This dramatically improves the robustness of the CRM. In practice, the
investigator often gives a range of toxicity probabilities for each dose, say, [pd,min, pd,max]
for dose level d. We can naturally construct three skeletons by grouping the pd,min’s,
pd,max’s and the averages (pd,min + pd,max)/2 across all the dose levels, respectively. The
proposed robust EM-CRM design includes the standard CRM as a special case when the
toxicity is ascertainable shortly after the treatment is administered and only one skeleton is
specified.

The proposed methods focus on finding one single MTD in a homogenous patient
population. However, the patient population may be heterogeneous and composed of several
subgroups with differential MTDs. Our dose-finding approach may not be suitable or robust
for heterogeneous populations. One way to accommodate such a heterogeneous case is to
tighten the eligibility criteria for phase I trials to make patients more homo-geneous.
Another way is to include patient characteristics as covariates in the CRM model and search
for multiple MTDs. However, given small sample sizes of phase I trials with a relatively low
percentage of toxicity events, the estimation under the expanded model may be rather
challenging.

Acknowledgments
The authors thank Dr. Xiudong Lei at the University of Texas MD Anderson Cancer Center for her help in the
simulation studies. We gratefully acknowledge the editor, the associate editor, and two anonymous referees for their
insightful and constructive comments which substantially improved the article. The research is partially supported
by NCI grant R01CA154591-01A1, United States, and a grant from the Research Grants Council of Hong Kong.

APPENDIX
Under the CRM model (1), the log-likelihood for the ith observation is

The corresponding score function is given by

and the second derivative of the log-likelihood is,
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the first term on the right-hand Therefore, given y = {yi, i 1, …, n} side of (5) is given by

Because E[D(α|yi)]=0, hand it follows that the second term on the rightside of (5) is given by

Note that yi is a Bernoulli random variable; we have

Thus
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Figure 1.
Illustration of missing toxicity outcomes. For each patient, the horizontal line segment
represents the follow up, at the end of which toxicity is indicated by asterisk. At time φ, the
toxicity outcomes of patients 2 and 3 are missing (i.e., Y1 = 1, but Y2 and Y3 are missing); at
time 2φ, the toxicity outcome of patient 3 is missing (i.e., Y1 = Y2 = 1, but Y3 is missing);
and at time 3φ, Y1 = Y2 = 1, and Y3 = 0.
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Figure 2.
Profiles of three skeletons in the simulation study. The dotted line indicates the target
toxicity probability of 30%.
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Figure 3.
Hazards of the time to toxicity at different dose levels in the sensitivity analysis. The
number attached to each hazard curve represents the corresponding dose level.
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Figure 4.
Dose assignment with each horizontal line segment representing the follow up for a cohort.
Toxicities are indicated by asterisk and numbers on the left side of the line segments are
dose levels assigned to the cohorts.
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Figure 5.
Model selection using the EM-CRMSEL design.
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