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Abstract
Genomic alterations have been linked to the development and progression of cancer. The
technique of comparative genomic hybridization (CGH) yields data consisting of fluorescence
intensity ratios of test and reference DNA samples. The intensity ratios provide information about
the number of copies in DNA. Practical issues such as the contamination of tumor cells in tissue
specimens and normalization errors necessitate the use of statistics for learning about the genomic
alterations from array CGH data. As increasing amounts of array CGH data become available,
there is a growing need for automated algorithms for characterizing genomic profiles. Specifically,
there is a need for algorithms that can identify gains and losses in the number of copies based on
statistical considerations, rather than merely detect trends in the data.

We adopt a Bayesian approach, relying on the hidden Markov model to account for the inherent
dependence in the intensity ratios. Posterior inferences are made about gains and losses in copy
number. Localized amplifications (associated with oncogene mutations) and deletions (associated
with mutations of tumor suppressors) are identified using posterior probabilities. Global trends
such as extended regions of altered copy number are detected. Because the posterior distribution is
analytically intractable, we implement a Metropolis-within-Gibbs algorithm for efficient
simulation-based inference. Publicly available data on pancreatic adenocarcinoma, glioblastoma
multiforme, and breast cancer are analyzed, and comparisons are made with some widely used
algorithms to illustrate the reliability and success of the technique.
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1. INTRODUCTION
The Genomics of Cancer

The normal DNA of human females has two copies of the genomic code because there are
23 matched pairs of chromosomes. Human males have 22 matched pairs of nonsex (or
autosomal) chromosomes and an unmatched pair of sex chromosomes. Hence, the copy
number of normal male DNA is two for the autosomal chromosomes. The ends of the
chromosomes are called the telomeres. The telomere corresponding to the short arm of a
chromosome is called the p telomere, whereas the one corresponding to the long arm is
called the q telomere.
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Human cells can be classified into somatic (or body) cells and germ cells. Barring a few
exceptions like red blood cells, muscle cells, and brain cells, the life cycle of somatic cells
consists of a period of growth followed by cell division through mitosis. The cells must
satisfy certain “quality control checks” before they can progress to a subsequent stage of the
cycle. These checks ensure that the cells develop normally, that defects are repaired, and that
DNA is correctly copied during mitosis. Two kinds of genes play very important roles in the
regulation procedure: proto-oncogenes and tumor suppressors. Proto-oncogenes encourage
the body cells to grow and divide, pushing them through the quality control check points.
Tumor suppressors tend to hold the cells back, inhibiting mitosis when there are cell defects
and signaling the cells to die when their lifespans have ended or when there are cell defects
that cannot be repaired. Further details about the relevant biology for this problem are given
in Pasternak (1999).

Occasionally, proto-oncogenes may mutate into oncogenes. The mutations are propagated to
new cells through mitosis. Oncogenes duplicate themselves through several stages of mitosis
so that cells end up with multiple copies of oncogenes. Oncogenes have a dominant effect
on the cell function, causing the cells to divide at a rapid rate and resulting in the
development of tumors. Tumors may also develop due to mutations in tumor suppressors
that cause them to become nonfunctional and allow the proto-oncogenes to play a dominant
role. Tumor-suppressor mutations eventually result in the loss of one or both copies of the
gene. A deletion is the loss of both copies in a genomic region.

A single mutation is usually not enough to trigger cancer. A number of complex biological
events occur before a person acquires the phenotype of cancer. An example, but not a
necessary condition, is the ability of tumor cells to metastasize, making the tumor malignant.
Not all the cells in a tumor specimen necessarily exhibit the same kind of genomic
alteration. Additionally, there is a lot of variation among individuals. As the disease
progresses, there are larger scale changes in tumor DNA because of the breakdown of
quality control in cell division.

Copy number changes, or alterations in the number of copies in tumor DNA, are, therefore,
closely associated with the development and progression of cancer. A number of methods
are currently available to detect genomic changes. Karyotyping views the chromosomes
through a microscope during the metaphase stage of the cell cycle. This technique covers the
entire genome but has low resolution because only changes spanning large regions of the
DNA, such as missing chromosomes, monosomies (loss of single copies), and trisomies
(gain of additional copies of chromosomes), can be detected by this method. At the other
end of the spectrum, molecular genetic studies are capable of single-base-pair resolution.
Because the genome consists of approximately 3 billion bases, this technique cannot be used
in the absence of prior knowledge to identify the DNA regions associated with a disease.
Researchers must rely on other methods to first identify candidate loci involved in the
disease pathogenesis.

Array CGH
Comparative genomic hybridization (CGH) has emerged as a powerful technique because it
combines relatively high resolution of a few million bases with the ability to span the entire
genome in a single experiment (Kallioniemi et al. 1992). Fragmented DNA from a test
sample is labeled with fluorochrome (typically Cy3) and is mixed with normal DNA that is
identically fragmented but labeled using a different fluorochrome (typically Cy5). The
normal and tumor DNA fragments are simultaneously hybridized to a normal metaphase
spread. Image analysis yields data consisting of fluorescence intensity ratios along the
genomes of the test and reference DNA samples. The more recently developed array CGH
techniques (Solinas-Toldo et al. 1997; Pinkel et al. 1998; Snijders et al. 2001; Pinkel and
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Albertson 2005) hybridize the DNA fragments or “clones” to mapped array fragments rather
than metaphase chromosomes. CGH arrays that rely on BAC (bacterial artificial
chromosome) clones have a resolution of the order of 1 Mb (1 million base pairs).
Oligonucleotide and cDNA arrays (Pollack et al. 1999; Brennan et al. 2004) provide a
higher resolution of 50–100 kb (1 kb = 1,000 base pairs). As with all hybridization-based
techniques, the fluorescence intensity ratios have to be normalized as part of a preprocessing
step to correct for nonbiological sources of error such as intensity fluctuations, background
noise, and fabrication artifacts (Brown, Goodwin, and Sorger 2001; McLachlan, Do, and
Ambroise 2004). Refer to Khojasteh, Lam, Ward, and MacAulay (2005) for a comparison of
different normalization methods for array CGH data.

Array CGH intensity ratios (equivalently, their transformation on the log2 scale) provide
much useful information about genome-wide changes in copy number. Imagine an idealized
situation where all the cells in a tumor specimen have identical genomic alterations and are
uncontaminated by cells from surrounding normal tissue. In the absence of normalization or
measurement errors, the normal (or copy-neutral) clones would correspond to a log2 ratio of
0 because the normal and tumor DNA fragments both have two copies. The log-intensity
ratios of single-copy losses would be exactly log2 1/2 = −1 and those of single-copy gains
would be log2 3/2 = .58. Multiple-copy gains or amplifications, often associated with
oncogenes, would correspond to data belonging to the sequence log2 4/2, log2 5/2, ….
Losses of both copies or deletions, often associated with tumor-suppressor mutations, would
correspond to a value of −∞. In this hypothetical situation, the genomic alterations can be
easily deduced from the data without statistical techniques.

For comparison with the preceding idealized scenario, Figure 1 plots the normalized log2
ratios of breast cancer specimen S0034 analyzed by Snijders et al. (2001). The data are
available from table J at http://www.nature.com/ng/journal/v29/n3/suppinfo/ng754_S1.html.
Although relatively clean by array CGH standards, the data highlight some of the issues that
necessitate the use of statistical methods. For example, even after accounting for
measurement error, the log2 ratios differ considerably from the theoretical values. In
particular, the numbers are typically shrunk toward 0. This is caused by several factors,
including contamination of the tumor sample with normal cells. There is a more subtle effect
of the 0 varying slightly from chromosome to chromosome. There is also an obvious
dependence among the intensity ratios of neighboring clones.

As increasing amounts of array CGH data become available, there is a need for automated
algorithms for characterizing the genomic profiles. A number of well-known methods strive
to fulfill this need. For example, Pollack et al. (2002) proposed a threshold method for
identifying clones having extreme value of emissions. Cheng, Kimmel, Neiman, and Zhao
(2003) discussed a regression-based test for altered copy numbers. Hodgson et al. (2001)
used a normal mixture of three components to model the observed emissions. Olshen,
Venkatraman, Lucito, and Wigler (2004) developed a variation of binary segmentation to
identify chromosomal segments with altered copy numbers. Fridlyand, Snijders, Pinkel,
Albertson, and Jain (2004) applied an unsupervised hidden Markov model. Wang, Kim,
Pollack, Balasubramanian, and Tibshirani (2005) built hierarchical clustering-style trees
along each chromosome and selected interesting clusters by controlling the false discovery
rate. Jong et al. (2003) proposed a break-point model to segment the clones. Eilers and de
Menezes (2005) applied a quantile smoothing method, whereas Huang, Wu, Lizardi, and
Zhao (2005) used penalized least squares regression and Hsu et al. (2005) applied wavelets.
Hupe, Stransky, Thiery, Radvanyi, and Barillot (2004) relied on a likelihood function with
adaptively determined weights using a smoothed version of the data. Picard, Robin,
Lavielle, Vaisse, and Daudin (2005) used a penalized likelihood function. Myers, Dunham,
Kung, and Troyanskaya (2004) applied an edge filter to detect the segments. Lingjaerde,
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Baumbusch, Liestol, Glad, and Borresen-Dale (2005) performed smoothing using the signs
of neighboring data values and inspecting the width and magnitude of the segments to detect
regions of copy number change.

A recent article by Lai, Johnson, Kucherlapati, and Park (2005) made comparisons of some
of the preceding algorithms using real and simulated data. In evaluating the algorithms, Lai
and co-authors commented that “a particularly helpful feature for future implementations of
some algorithms would be to estimate the statistical significance of the detected copy
number changes and then rank them accordingly.” They pointed out that only two
algorithms (those of Wang et al. 2005 and Lingjaerde et al. 2005) could actually detect copy
number changes based on statistical significance. Both methods rely on false discovery
rates.

In Section 2 we develop a statistical framework for detecting copy number gains and losses,
identifying localized amplifications and deletions, and partitioning tumor DNA into regions
of relatively stable copy number. We rely on the hidden Markov model (HMM) to account
for the dependence between neighboring clones. We adopt a Bayesian approach, assuming
informative priors for the model parameters that are flexible enough to allow Bayesian
learning. Because the posterior distribution is analytically intractable, Section 3 develops a
framework for simulation-based posterior inference. In Section 4 we demonstrate the
success of the technique using publicly available data. Section 4.4 compares the proposed
Bayesian HMM with some of the existing algorithms using the framework of Lai et al.
(2005).

Unlike the HMM of Fridlyand et al. (2004), which is purely a segmentation method, the
likelihood function of Section 2.1 allows the use of objective decision rules based on
posterior probabilities to detect copy number alterations. Unlike most of the existing array
CGH methods, the biologist is not required to subjectively decide, after the algorithm’s
output has been obtained, plausible thresholds for identifying changes in the number of
DNA copies. The proposed framework allows the use of the simple classification scheme of
Section 3.1, which is motivated by biological considerations and which makes the algorithm
output easy to interpret. Section 5 uses simulation studies to compare our Bayesian HMM
with alternative techniques for analyzing array CGH data.

2. BAYESIAN HIDDEN MARKOV MODEL
2.1 Likelihood Function

Because the propensity for genomic alterations varies across the chromosomes, we allow
each chromosome to have a distinct set of parameters. For a given chromosome, let L1, …,
Ln represent the mapped clones or DNA fragments arranged from the p telomere to the q
telomere. Let Yk denote the normalized log2 ratio observed at clone Lk.

As mentioned earlier, the aim of the analysis is to learn about genome-wide changes in copy
number from the data. A key innovation that directly achieves this goal is a latent variable
called the copy number state sk associated with each clone Lk, where k = 1, …, n. The
variable sk takes values in the set {1, 2, 3, 4}. The value sk = 1 represents a copy number
loss at Lk that could be either a single-copy loss or a deletion; sk = 2 represents the copy-
neutral state; sk = 3 represents a single-copy gain; sk = 4 represents an amplification (i.e.,
multiple copy gain) at Lk. The parameters of interest that summarize the copy number
changes on the chromosome are s1, …, sn.

For j = 1, …, 4, we define μj as the expected log2 ratio of all clones Lk for which sk = j. For
example, the expected log2 ratio of single-copy gains is μ3. The theoretical value of μ3 is .58,
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but, as mentioned earlier, the actual value could be different for many reasons (e.g.,
contamination of tumor samples with normal tissue). Although the μj ’s are unknown
parameters, the biological interpretation associated with the state space of sk allows us to
assume the ordering: μ1 < μ2 < μ3 < μ4. Conditional on the copy number states, the

normalized log2 ratios are assumed to be distributed as , where k = 1, …,
n.

We model the dependence of the neighboring clones using a hidden Markov model (Rabiner
1989; MacDonald and Zucchini 1997; Durbin, Eddy, Krogh, and Michison 1998). For any m
indices for which 1 ≤ k1 ≤ · · · ≤ km ≤ n, a Markov model for the copy number states
assumes that Pr[skm| s1, …, skm−1] = Pr[skm| skm−1]. The hidden Markov model assumes that
the conditional probabilities of neighboring clones is Pr[sk+1 | sk ] = asksk+1, where A =
((aij )) is the matrix of stationary transition probabilities. We assume that the elements of A
are strictly positive. The hidden Markov process is then aperiodic and irreducible, and its
four states are positive recurrent. Transition matrix A has a unique stationary distribution,
denoted by πA = (πA(1), πA(2), πA(3), πA(4)), where πA(i) is strictly positive for state i = 1,
…, 4 (Karlin and Taylor 1975). We also assume that s1, the copy number state of the first
clone, is distributed as πA. Together with the hidden Markov assumption, this uniquely
determines the joint likelihood of a given sequence s1, …, sn. The chromosome-specific
hyperparameters are, therefore, the transition probability matrix A, means {μ1, μ2, μ3, μ4},
and error variances { }.

2.2 Priors
The Bayesian approach assumes priors for all unknown parameters. Because the copy
number states defined in Section 2.1 have a well-defined meaning, this facilitates the use of
informative priors based on our knowledge of array CGH data. For example, we know that
the mean μ1 of copy number losses cannot be a positive number, although individual log2
ratios that correspond to copy number losses could be. Independent priors are assumed for
the chromosome-specific parameters. This results in independent posteriors for all the
chromosomes. The marginal posterior [s1, …, sn | Y1, …, Yn] is of interest. As with many
Bayesian applications, the marginal posterior cannot be analytically computed, and so
simulation-based techniques are necessary. While analyzing HMMs, a key issue is label
switching (refer to Scott 2002 for a discussion). This is an identifiability issue where the
likelihood is invariant under arbitrary permutations of the state space labels, resulting in
inefficient exploration of the posterior by simulation. The likelihood of Section 2.1 avoids
this problem by assuming order constraints. Specifically, the constraint μ1 < μ2 < μ3 < μ4 is
violated on permutating the labels.

Let X ~ F · I (c < X < d) imply that X has the distribution F restricted to the interval (c, d)
with the density suitably rescaled to make it a random variable. For the mean μ1

corresponding to copy number losses, we assume the prior  where
ε > 0. We comment later on the choice of ε. For the copy-neutral state, we assume

. For single-copy gains, we assume ,
and for multiple-copy gains, we assume . These
informative priors were chosen as follows. For μ2 and μ3, the means of the untruncated
distributions are set equal to the theoretical values for pure samples. For μ1 (μ4), the
untruncated distribution is centered at the theoretical value for a loss (gain) of one copy. The
lower endpoint of the support of μ4 is chosen to be 3σ3 units away from μ3 so that a small
fraction of single-copy gains are erroneously classified as multiple-copy gains. The results
are not sensitive to choices of τ1, τ2, and τ3 belonging to the interval [.5, 2]. Setting τ4 ≤ 2
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guarantees sufficiently high prior probability to large values of μ4 associated with high-level
amplifications. We set τ1 = τ2 = τ3 = 1 and τ4 = 2 in Sections 4 and 5.

Unlike a threshold-based approach for detecting changes in copy number, the constant ε
determines the boundaries for the means μj rather than for the log2 ratios. These boundaries
are not the same as threshold levels for detecting gains and losses. In fact, our assumptions
allow positive log-intensity ratios for copy number losses, especially with large
measurement errors, although μ1 itself cannot exceed −ε. In our analyses of actual array
CGH data, we have found the results to be robust to choices of ε in the range [.05, .15]. This
is shown in Section 5.2. For all our analyses, we set ε = .1.

For the measurement error precisions, we assume the priors 

for j = 1, 2, 3, and . For the states j = 1, 2, 3, the assumption  is
equivalent to σj < .41. This assumption is mild because typical array CGH data suggest
much lower within-group variability for the states 1, 2, and 3. The support of  is not
bounded below because state 4 is an aggregation of multiple-copy gains, which usually
results in a higher within-group variability (i.e., smaller precision).

We assume independent Dirichlet priors on ℜ4 for the rows of the stochastic matrix A,
because this distribution has the set of all probability 4-tuples as its support. That is, with ai

denoting the ith row of matrix A, we assume that , where i = 1, …,
4 and the constants {θij } are positive. As shown in Section 5.2, the results are not affected
by the choices of θij that are small in comparison to n. We fixed the θij ’s equal to 1 in
Sections 4 and 5.

The preceding priors are found to work consistently well for array CGH data. They are
flexible enough to allow Bayesian learning and information sharing across the clones. We
find in Sections 4 and 5 that the posterior inference is reliable and sensitive to the
characteristics of the data.

3. CHARACTERIZING ARRAY CGH PROFILES
We rely on simulation-based methods for inference because the posterior distribution cannot
be investigated by mathematical analysis or numerical integration. An efficient Metropolis-
within-Gibbs algorithm for generating posterior samples of the parameters is given in the
Appendix. The algorithm generates the parameters in blocks conditional on the remaining
parameters and the data. The transition matrix A is generated using an independent-proposal
Metropolis–Hastings algorithm. The copy number states are simulated by a stochastic
version of the forward–backward algorithm (Chib 1996; Robert, Ryden, and Titterington
1999) that mixes faster than a Gibbs sampler (refer to Scott 2002). The remaining model
parameters are generated by Gibbs sampling. The algorithm has been implemented using R
and will soon be publicly available.

3.1 Classification Scheme
The generated copy number states represent draws from the marginal posterior of interest,
[s1, …, sn | Y1, …, Yn]. For each Markov chain Monte Carlo (MCMC) draw, the generated
states are inspected and, possibly nonexclusively, classified as focal aberrations, transition
points, amplifications, outliers, and whole chromosomal changes. In the following
discussion, altered state refers to a copy number state that is different from 2.

1. Focal aberrations (Fridlyand et al. 2004). Focal aberrations represent localized
regions of altered copy number: (i) a single clone not belonging to a telomere
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having an altered state different from its neighbors; (ii) two clones belonging to a
telomere sharing a common altered state, different from that of the adjacent clone
to the telomere; or (iii) two or more adjacent clones mapped within 5 Mb (or any
threshold representing a small region of the genome) and having a common altered
state different from their neighbors. Focal aberrations are used to detect transition
points and outliers (defined later).

2. Transition points. Transition points can be regarded as a property of the n − 1
interclonal spaces on the chromosome. An interclonal space is a transition point if
it borders on two large regions associated with different copy number states. In
contrast, focal aberrations represent small regions of altered copy number. A
transition point is an interclonal space for which both of these conditions hold: (i) It
is not adjacent to a telomere; and (ii) after excluding all focal aberrations on the
chromosome, the neighboring clones on both sides of the interclonal space have
different copy number states. Transition points differ from “segments” defined by
the CBS (circular binary segmentation) algorithm of Olshen et al. (2004), an
outstanding algorithm (refer to Lai et al. 2005) for analyzing array CGH data. The
CBS algorithm segments clones regardless of their spacing on the chromosome. A
transition point, on the other hand, is associated with large-scale regions of gains
and losses and is declared only when the width of the altered region exceeds 5 Mb.
For example, five contiguous clones that are highly amplified would generally be
identified as a segment by the CBS algorithm (although there are examples in Sec.
4 where the procedure ignores obvious amplifications and deletions to control the
false-positive rate). In contrast, if these five clones are located within 5 Mb, the
proposed classification scheme labels them as focal aberrations rather than identify
them as a separate region.

3. High-level amplifications. A clone for which sk = 4.

4. Outliers. An outlier is a focal aberration satisfying (i) sk = 1 and (Yk − μ1)/σ1 < −2,
or (ii) sk = 3 and (Yk − μ3)/σ3 > 2. The first type of outliers could be associated with
mutations on tumor suppressors and are labeled as deletions. The second type of
outliers may be associated with oncogene mutations.

5. Whole chromosomal changes. The entire chromosome is identified as gained or lost
if all the clones except the focal aberrations have altered copy number states.

3.2 Posterior Inference
For a given clone, the classification scheme of Section 3.1 results in a Bernoulli variable for
each MCMC iterate and type of genomic alteration. For example, the kth clone is classified
as a focal aberration (“1”) for some MCMC draws and as “0” for the remaining draws. The
probability that this Bernoulli variable equals 1 is the posterior probability that clone Lk is a
focal aberration. For a sufficiently large number of MCMC samples, the average of these
binary outcomes is a simulation-consistent estimate of the posterior probability. Therefore,
we declare clone Lk to be a focal aberration if this posterior probability exceeds .5. A similar
method is used to identify deletions. Whole chromosomal changes correspond to a common
Bernoulli outcome for all n clones. A chromosomal alteration is declared if the posterior
probability of a chromosome-wide alteration exceeds .5.

High-level amplifications could be detected by a similar method. However, a more efficient
method is available as a byproduct of the forward–backward algorithm, which computes the
conditional probability that sk = 4 given the hyperparameters and the data. Averaging these
conditional probabilities over the MCMC sample gives a simulation-consistent estimate of
the posterior probability that clone Lk is a high-level amplification.
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We have noticed a potential problem with identifying transition points based on the marginal
posterior probabilities of the interclonal gaps. We recommend detecting the change points
based on the configuration of change points having the highest joint posterior probability.
Formally, let us write the configuration of change points as ν(s) = (g1, …, gn−1), where gj
equals 1 if the j th interclonal gap is a change point, and equals 0 otherwise. Notice that the
mapping from s to ν(s) is many–one. The posterior distribution of ν(s) is maximized to
compute ν*, the configuration having the highest posterior probability. A simulation-
consistent estimate of ν* is computed using the MCMC sample and is used to detect the
transition points.

Summary tables and plots that are of direct interest to the biologist can now be constructed.
Large-scale and localized regions of copy number change identified by the Bayesian HMM
algorithm can be important tools for identifying candidate genes associated with cancer.

4. ILLUSTRATIONS
4.1 Pancreatic Adenocarcinoma Data

Pancreatic adenocarcinoma is among the most lethal of cancers. The disease is characterized
by a high level of genomic instability from the earliest stages of the disease (Gisselsson et al.
2000, 2001; van Heek et al. 2002). Genomic changes identified in the progression of the
disease include early-stage mutations in the oncogene KRAS and later-stage losses of the
tumor suppressors p16INK4A, p53, and SMAD4 (Bardeesy and DePinho 2002). Using a
variety of techniques ranging from karyotype analyses, CGH, and loss of heterozygosity
mapping, frequent gains and losses have been mapped to regions on chromosomes 3–13, 17,
18, 21, and 22 (Johansson et al. 1992; Solinas-Toldo et al. 1997; Mahlamaki et al. 1997,
2002; Seymour et al. 1994; among many others).

Aguirre et al. (2004) studied the array CGH profiles of 24 pancreatic adenocarcinoma cell
lines and 13 primary tumor specimens. In that article the profiles were individually analyzed
using the CBS algorithm of Olshen et al. (2004), which segments the data and computes the
within-segment means but does not detect gains or losses. The CBS algorithm was first run
on the unnormalized log2 ratios to obtain the distribution of the within-segment means. The
tallest mode of the distribution was subtracted from the data to compute the normalized log2
ratios, which are available at http://genomic.dfci.harvard.edu/array_cgh.htm. Setting
thresholds in an ad hoc manner, Aguirre et al. (2004) declared normalized log2 ratios greater
than .13 in magnitude as copy number changes (gains or losses), greater than .52 as high-
level amplifications, and less than −.58 as deletions. They also defined objective criteria for
comparing the copy number alterations of the 37 array CGH profiles. These criteria were
applied to identify 54 frequently altered minimal common regions (MCRs) associated with
pancreatic adenocarcinoma. In a subsequent study, candidate genes located within the MCRs
were confirmed by the analysis of expression profiles.

We applied the Bayesian HMM algorithm to analyze these data and made comparisons with
the CBS procedure. The complete set of results are presented in the supplementary
materials. Throughout, the Bayesian HMM is found to perform reliably and compare
favorably with the CBS procedure. We discuss a few examples here. Our primary reference
for the MCRs associated with pancreatic cancer is Aguirre et al. (2004).

The upper left panel of Figure 2 displays the result for chromosome 8 of specimen 30. The
bold horizontal lines represent the within-segment means computed by the CBS algorithm.
The vertical lines correspond to the transition points identified by the Bayesian HMM. We
find that both algorithms picked up the overall trend in the data. However, while the end
user (often a biologist with relatively little statistical training) decides whether or not the
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CBS algorithm’s within-segment means correspond to copy number changes, the Bayesian
HMM automatically identified the first region as primarily copy neutral and the second
region as consisting of mainly single-copy gains.

In the upper right panel of Figure 2, the CBS procedure declared the first set of high-
intensity ratios on chromosome 12 of specimen 6 as two separate segments. This is because
the CBS procedure identifies trends in the data. The Bayesian HMM, on the other hand, is
motivated from the perspective of copy number change. It declared these clones as high-
level amplifications and, therefore, as a single region. The next set of clones having lower
log2 ratios were identified as focal aberrations because they are localized changes less than 2
Mb in width. The two amplified regions detected by the Bayesian HMM correspond to the
two minimal common regions (MCRs) on chromosome 12 associated with copy number
gains (see table 1 of Aguirre et al. 2004). The first MCR contains the KRAS2 gene, point
mutations of which occur in more than 75% of pancreatic cancer cases (Almoguera et al.
1988). The CBS algorithm failed to detect the second MCR. This MCR has been
biologically verified by Aguirre et al. (2004) using quantitative polymerase chain reaction
(PCR) techniques.

The bottom left panel of Figure 2 displays the profile for chromosome 17 of specimen 13.
The region from 17p13.3 to 17q11.1 (10.36–12.8 Mb) contains the tumor suppressors p53
and MKK4. Mutations on the gene p53 are found in at least 50% of pancreatic
adenocarcinoma cases (Caldas et al. 1994). The single probe corresponding to this region
was easily detected by the Bayesian HMM as a deletion. In contrast, the CBS algorithm
effectively declared the entire chromosome as copy neutral.

The bottom right panel presents the array CGH profile of chromosome 18 of specimen 2.
The Bayesian HMM algorithm detected an outlier associated with a copy number loss
around 48 Mb. The outlier corresponds to the SMAD4 tumor suppressor gene located at
18q21, a mutation on which is associated with pancreatic cancer (Bardeesy and DePinho
2002). Aguirre and co-authors mentioned that the CBS procedure completely missed the
well-established association with the SMAD4 gene, even though it was clearly visible in
several specimens of the dataset.

The CBS procedure often ignores obvious single-probe aberrations to control the false
discovery rate. Such errors can be misleading, because subsequent gene validation involves
experimental techniques that are much more expensive than CGH. For this reason, single-
probe aberrations that are frequently observed across tumor specimens provide one of the
most cost-effective avenues for further research about the underlying causes of cancer.
There are many other instances of the differences between the CBS and Bayesian HMM
algorithms. For example, the MCR from 68.27 to 68.85 Mb on chromosome 12 maps to
highly amplified clones in 34 out of 37 specimens (see the supplementary materials). In
every case, the Bayesian HMM declared them as high-level amplifications, but the CBS
procedure detected only the amplification in specimen 8. The Bayesian HMM also
outperformed the CBS algorithm in detecting the mutation on gene FEZ1 in specimen 26
and on the genes OZF and AKT2 in specimen 6.

The results demonstrate that the Bayesian HMM is effective in detecting not only global
trends but also highly localized changes in copy number. This feature is important in
identifying genes associated with cancer (e.g., SMAD4 in the foregoing example) on which
the point mutations do not become large-scale genomic changes as the disease progresses.
Compared with other algorithms for analyzing array CGH data, the Bayesian HMM has
potential as a diagnostic tool during the early stages of disease, when genomic alterations
remain localized to relatively smaller regions of the genome.
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4.2 Corriel Cell Lines
The Corriel cell line is widely regarded a “gold standard” dataset and analyzed in Snijders et
al. (2001). The data, normalized to the genome-wide median log2 ratio, are available in
tables E–H at http://www.nature.com/ng/journal/v29/n3/suppinfo/ng754_S1.html. A table of
known karyotypes is presented in table I on the same website. We compared these
cytogenically mapped alterations with the profiles produced by our algorithm and verified
that the results match in all the specimens. For example, for cell line GM05296, table I
reports a trisomy at 10q21–10q24 and a monosomy at 11p12–11p13. The array CGH profile
for chromosomes 10 and 11 of cell line GM05296 are displayed in Figure 3. The regions of
gain and loss identified by the Bayesian HMM match the karyotypes presented in table I.
We omit the results for the other cell lines for brevity.

4.3 Breast Cancer Data
A useful feature of the Bayesian approach is that posterior probability plots can be created
for the different kinds of genomic alterations. These plots provide a “bird’s eye view” of the
copy number alterations. They are useful in identifying genomic regions associated with the
disease. The procedure can be easily automated for a large number of genomic profiles. To
illustrate, we analyzed the breast cancer data given in Snijders et al. (2001). The data were
normalized by centering to the genome-wide median log2 ratios. The posterior probability
plot for specimen S1514 is displayed in Figure 4. There are several high-level amplifications
on chromosome 20 and deletions on chromosomes 13 and 14. Consistent with Figure 4, a
region of high-level amplifications is seen on the array CGH profile of chromosome 20 in
Figure 5.

4.4 Comparisons With Some Existing Methods
Using the glioblastoma multiforme data of Bredel el al. (2005), Lai et al. (2005) evaluated
11 array CGH algorithms based on segment detection as well as smoothing. The data were
normalized using the Limma package (Smyth 2004) and are available at
http://www.chip.org/~ppark/Supplements/Bioinformatics05b.html. Graphical summaries of
the results are presented in that article as figures 3 and 4. Sample GBM31 (fig. 3 of Lai et al.
2005) exhibits a low signal-to-noise ratio. There is a large region of losses on chromosome
13. Lai and co-authors found that the algorithms CGHseg of Picard et al. (2005), GLAD of
Hupe et al. (2004), CBS of Olshen et al. (2004), and GA of Jong et al. (2003) segmented
chromosome 13 into two regions and detected the region of copy number loss. Smoothing-
based methods like lowess, the quantreg algorithm of Eilers and de Menezes (2005), and the
wavelet algorithm of Hsu et al. (2005) were sensitive to local trends but were less effective
in detecting global trends. The HMM algorithm of Fridlyand et al. (2004) did not find any
segments.

We followed an identical evaluation procedure to compare the Bayesian HMM with the
aforementioned methods. Figure 6 displays the result for sample GBM31. The partitioned
regions are the same as those identified by the CGHseg, CBS, GLAD, and GA algorithms.
Local changes in the number of copies, identical to those collectively detected by the GLAD
and CGH-seg algorithms, are marked as high-level amplifications (▲) and deletions (▼).

The second dataset investigated in Lai et al. (2005) is a fragment of chromosome 7 from
sample GBM29 (refer to fig. 4 of that article). The data show some high log2 intensity ratios
around the EGFR locus. The algorithms CGHseg, quantreg, GLAD, wavelet, and GA
separated the data into three distinct amplification regions. The algorithms CBS, CLAC
(Wang et al. 2005), and ACE (Lingjaerde et al. 2005) detected two distinct regions instead
of three. ChARM (Myers et al. 2004) grouped all the high log2 intensity ratios into a single
region. The HMM algorithm of Fridlyand et al. (2004) did not detect the amplifications.
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Figure 7 displays the results for the Bayesian HMM algorithm. The high log2 ratios are
identified as high-level amplifications (▲). Unlike the algorithms investigated in Lai et al.
(2005), the single clone having a highly negative value is detected by the algorithm and
marked as a deletion. The amplifications are identified as focal aberrations, rather than as
separate regions, because both clusters are less than 5 Mb in width.

We find that the Bayesian HMM algorithm combines the strength of the smoothing-based
algorithms in detecting local features with the strength of the segmentation-based methods
in detecting global trends. The reliability of the procedure is especially impressive with
noisy data.

5. SIMULATION STUDIES
5.1 Comparison With Non-Bayesian HMM and CBS Algorithms

The frequentist analysis matching the foregoing Bayesian procedure estimates the
hyperparameters of the likelihood using the Baum–Welch expectation-maximization (EM)
algorithm, iteratively incrementing the likelihood until relative changes in the
hyperparameters become sufficiently small. Conditional on the estimated hyperparameters,
the Viterbi algorithm then computes the a posteriori most likely sequence of states s1, …, sn.
Notice that this technique is different from the non-Bayesian HMM of Fridlyand et al.
(2004). In particular, the latter method does not assign biological meanings to the latent
states and cannot directly detect changes in copy number.

To find the global maximum in the 20-dimensional hyper-parameter space, the EM
algorithm has to be run from several starting points. For typical array CGH data, each run
often requires hundreds of iterations to converge. Because of this, the computational costs
associated with the frequentist and Bayesian analyses are often comparable. When R is used
as the computing platform, the CBS algorithm is considerably faster than either method.
However, all three approaches are computationally feasible and have negligible costs
compared to the many months of experimental effort required to process the tumor
specimens.

The non-Bayesian array CGH profiles for the Section 4.1 data are presented in the
supplementary materials. A detailed comparison with the Bayesian profiles reveals that the
two procedures often gave similar results. However, there are many profiles for which the
answers are noticeably different. Examples of such chromosome–specimen pairs include (5,
2), (5, 7), (12, 10), (7, 13), (15, 13), (5, 19), (18, 31), and (19, 34). Two of the profiles are
displayed in Figure 8. The non-Bayesian hyperparameter estimates correspond to a greater
value of the likelihood function than the Bayes estimates in all these examples. However,
the Bayesian profiles look more reasonable when we compare the smallest log2 ratios that
are labeled as amplifications by the two methods.

We performed a simulation study of the differences between the methods. For each of the
aforementioned chromosome–specimen pairs, we obtained signal-to-noise ratios that were
typical of array CGH data by setting the hyperparameters equal to their estimated values.
Using the model described in Section 2.1, we then generated the underlying copy number
states and log ratios for n = 200 clones. The Bayesian and non-Bayesian HMMs were
applied to infer the latent copy number states. The procedure was independently replicated
100 times. Table 1 displays the percentage of correctly labeled copy number states for the
two methods. The Bayesian HMM outperforms the non-Bayesian HMM in all the cases.

Using eight randomly selected chromosome–specimen pairs, but an otherwise identical
simulation strategy, Table 2 compares the CBS algorithm with the Bayesian and non-

Guha et al. Page 11

J Am Stat Assoc. Author manuscript; available in PMC 2012 February 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Bayesian HMMs. The method used by Aguirre et al. (2004) was applied to declare copy
number gains and losses for the CBS algorithm. The Bayesian HMM outperforms the CBS
algorithm, often substantially, in seven cases. The difference is inconclusive in one case. In
six out of eight cases, the Bayesian HMM outperforms the non-Bayesian HMM, with the
difference being inconclusive in one case. These results provide significant evidence in
favor of the Bayesian HMM. We would like to emphasize here that the simulated data were
generated from the Section 2.1 model, a strategy that is likely to favor the HMM-based
methods. There may be alternative simulation procedures where the reliability of the CBS
algorithm is greater than the proposed Bayesian HMM.

The proposed Bayesian HMM is found to benefit from the informative priors of Section 2.2.
Prior knowledge about array CGH helps the procedure distinguish between competing sets
of hyperparameter values that are almost equally plausible under the likelihood but not
under the posterior. For example, consider the frequently encountered situation where very
few log2 ratios are assigned to one or more copy number states. In such a situation, the
likelihood alone may be unable to distinguish between the matching non-Bayesian HMM
and a model having fewer than four states. This results in likelihood-based estimates where
one or more of the μj ’s are approximately equal. Because of the well-defined meanings
assigned to the four states of the HMM, the sequence of copy number states assigned by the
non-Bayesian model often seem incorrect in such cases. The Bayesian approach is more
robust in such situations. The informative priors prevent even states having very few probes
and log2 ratios having a considerable amount of overlap due to high measurement error from
being classified as a common state. For some data, a model having fewer states than four
may be better fitting than the proposed model. However, the states might not have a simple
biological interpretation in terms of copy number change. The detection of copy number
gains and losses, which is one of the main goals of the analysis, may also be less
straightforward.

Several examples in Section 4.1 suggest that our Bayesian HMM is better than the CBS
algorithm in detecting amplifications that are localized to a small number of probes. This
advantage is of practical importance, because single-probe amplifications frequently
occurring across specimens are often the focus of future, more expensive gene validation
studies. To investigate the difference by a controlled simulation, we independently generated
25 datasets using the following procedure: (i) Fifty out of n = 200 clones were randomly
chosen to be amplifications having a mean signal of 2 on the log2 scale. (ii) The remaining
clones were assumed to be copy neutral with a mean signal of 0. (iii) The data were
generated by adding Gaussian noise with a standard deviation of .1 to these means.

The high signal-to-noise ratio (SNR) of 20 is atypical of array CGH data. The percentage of
amplified probes (25%) is also very high. However, in spite of these features that simplify
the detection of copy number change, the CBS algorithm failed to detect any amplification.
The Bayesian HMM, on the other hand, correctly identified all the amplifications.
Moreover, the false discovery rate of our Bayesian HMM was 0 for all the datasets and the
average true discovery rate exceeded 99%.

5.2 Prior Sensitivity
The preceding analyses assumed that ε = .1 for the supports of the μj ’s (refer to Sec. 2.2)
and that θij = 1 for the priors of the transition matrix rows, where i = 1, …, 4 and j = 1, …, 4.
To alleviate concerns that the results are sensitive to the choice of ε, we generated 100
datasets with n = 500 clones each. For each dataset, the true means μ1, …, μ4 were
uniformly generated from narrow intervals centered, respectively, at −.5, 0, .5, and 1. The
standard deviations σj were uniformly generated in the interval [.2, .25], which is typical of
noisy array CGH data. The true transition matrices were simulated as follows. For row 2
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corresponding to the copy-neutral state, the off-diagonal elements were uniformly generated
in the intervals [.01, .02]; for the remaining rows, the off-diagonal elements were uniformly
generated in the intervals [.02, .05]. These nine elements uniquely determined the row-
stochastic transition matrix. For k = 1, …, 500, the copy number states sk were then
generated and the data were obtained by adding Gaussian noise to the means μsk.

For ε belonging to a grid of points in the interval [.05, .15], the Bayesian HMM was used to
analyze each simulated dataset. The posterior expectations of the means μj, the true
discovery rates, and the false discovery rates were found to be robust to the choice of ε.
Figure 9 plots the estimates of μ1, …, μ4 for three randomly chosen datasets as ε varies. The
flatness of the lines provides evidence of the lack of sensitivity to ε ∈ [.05, .15]. The results
were also found to be robust to {θij }i,j that were small compared to n.

6. CONCLUSIONS
We propose a Bayesian hierarchical approach relying on a hidden Markov model for
analyzing array CGH data. The informative priors allow Bayesian learning from the data.
One of the strengths of the fully automated approach is the ability to detect copy number
changes like gains, losses, amplifications, outliers, and transition points based on the
posterior. Summaries of the array CGH profiles are generated. The profiles can then be
compared across individuals to identify the genomic alterations involved in the disease
pathogenesis. Recent research (Freeman et al. 2006) suggests that such comparisons must
adjust for copy number variation in “normal” human DNA outside of cancer.

The examples of Section 4 demonstrate the reliability of our Bayesian HMM. The sensitivity
of the algorithm to individual probes often allows us to find candidate genes that are missed
by other algorithms. The performance of the algorithm is impressive not only for the “gold-
standard” Corriel cell lines but also for the glioblastoma dataset of Bredel el al. (2005)
having high measurement error. Combined with the results presented in Lai et al. (2005), the
latter analysis reveals a very favorable comparison with outstanding algorithms like those of
Pi-card et al. (2005) and Olshen et al. (2004). Section 5 compares our Bayesian HMM and
alternative algorithms using controlled simulations. The results confirm the accuracy of the
approach.

A strength of our Bayesian HMM is that it relies on essentially no tuning parameters. Unlike
many other algorithms (see Lai et al. 2005), the user is only required to input the normalized
log2 ratios. This is a convenient feature for the end user with little or no statistical training.
In all our analyses, we have used the default parameterizations specified in Section 2.2.
Certain features of the Bayesian HMM may be changed to produce a different result.
Possible features include the constant ε in the prior specification of the means μj and the
constants θij in the transition matrix priors in Section 2.2. However, the simulation study in
Section 5.2 and our own experience with the algorithm indicate that the results are robust to
variations in these quantities. The informative priors for the means μj substantially influence
the results, as we find in Section 5.1 on comparing our Bayesian HMM with the matching
non-Bayesian model. However, the order constraints on the μj ’s and the biological
meanings assigned to sk ∈ {1, 2, 3, 4} allow the specification of priors that work
consistently well across different datasets. For this reason, we recommend using the default
parameterizations of our Bayesian HMM for most array CGH applications.
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APPENDIX: AN MCMC ALGORITHM
The following algorithm is independently run for each chromosome to generate an MCMC
sample for the chromosomal parameters. We group the model parameters into four blocks,
namely, B1 = A, B2 = (s1, …, sn), B3 = (μ1, μ3, μ4), and . The starting values of
the parameters are generated from the priors. The algorithm iteratively generates each of the

four blocks conditional on the remaining blocks and the data. Let  denote
the values of the blocks at the (v − 1)st iteration. In the next iteration, the blocks are
generated as follows.

Updating Block B1

The transition matrix is generated using a Metropolis–Hastings step because the normalizing
constant of the full conditional cannot be computed in closed form. This step makes
independent proposals from a distribution that closely approximates the full conditional of
the transition matrix. The proposal is accepted or rejected with a probability that
compensates for the approximation. Typically, most of the Metropolis–Hastings proposals
are accepted. Using the copy number states generated at iteration v − 1, we compute the

number of transitions from state i to state j, denoted by , where
i, j = 1, …, 4. We generate a proposal C for the transition matrix from the distributions

, where row i = 1, …, 4 and B−1 denotes the
blocks, {B2, B3, B4}. The proposal ignores the marginal distribution of state s1 and so it
differs from the full conditional of the transition matrix. To compensate for this, we accept
the proposal (in other words, set A(v) = C) with probability β, where

, and otherwise reject the proposal (in other words, set A(v)

= A(v−1)). As defined earlier, πD(s) denotes the probability of state s under the stationary
distribution of a given transition matrix D.
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Updating Block B2

The copy number states are generated by a stochastic version of the forward–backward
algorithm. We compute the distribution [sn | B−2, Y1, …, Yn] at the beginning of the
backward step. We generate sn from this distribution. The backward step is continued to
compute and generate a draw from the distribution [sn−1 | sn, B−2, Y1, …, Yn]. The sequence
of computing and generating a draw from [sk | sk+1, B−2, Y1, …, Yn] is iterated for k = n − 2
down to k = 1. This produces a sample from the joint distribution [s1, …, sn | B−2, Y1, …,
Yn].

Updating Block B3

For s = 1, …, 4, let δ0s be the center of the untruncated normal distribution in the prior

specification of μs. Compute the sums , averages ,

precisions , and weighted means

. For s = 1, …, 4, generate
, where the intervals Is denote the support of the μs (see prior

specification).

Updating Block B4

For j = 1, …, 4, compute  and . Generate
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Figure 1.
Normalized copy number ratios of a comparison of DNA from cell strain S0034 (Snijders et
al. 2001) with normal DNA. The BACs are ordered by position in the genome beginning at
1p and ending at Xq. The vertical bars indicate borders between chromosomes.
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Figure 2.
Array CGH profiles of some pancreatic cancer specimens. In each panel, the clonal distance
(in Mb) from the p telomere has been plotted on the x axis. High-level amplifications and
outliers are, respectively, indicated by ▲ and ▼. The broken vertical lines represent
transition points. For comparison, the bold horizontal lines display the segment means
computed by the CBS algorithm. See Section 4.1 for further discussion.

Guha et al. Page 19

J Am Stat Assoc. Author manuscript; available in PMC 2012 February 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Array CGH profile of chromosomes 10 and 11 of Corriel cell strain GM05296. The x axis
displays the clonal distance (in Mb) from the p telomere. The broken vertical lines represent
transition points.
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Figure 4.
Posterior probabilities of genomic alterations for specimen S1514. The solid line represents
high-level amplifications, whereas the dashed line corresponds to deletions. The numbers on
the horizontal axis represent the q telomere of the chromosomes. The BACs are ordered by
position in the genome beginning at 1p and ending at Xq.
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Figure 5.
Array CGH profile of chromosome 20 of S1514. The x axis represents clonal distance (in
Mb) from the p telomere. The broken vertical lines represent transition points. High-level
amplifications are shown using ▲.
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Figure 6.
Array CGH profile of chromosome 13 of GBM31. The clonal distance (in Mb) from the p
telomere is plotted on the x axis. High-level amplifications and outliers are, respectively,
indicated using ▲ and ▼. The broken vertical line represents a transition point.
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Figure 7.
Partial array CGH profile of chromosome 7 of GBM29. The clonal distance (in Mb) from
the p telomere is plotted on the x axis. High-level amplifications and outliers are,
respectively, indicated using ▲ and ▼.
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Figure 8.
Examples from Section 4.1 where the Bayesian and non-Bayesian array CGH profiles are
different. The upper panels correspond to chromosome 5 of sample 7, and the lower panels
correspond to chromosome 19 of sample 34. The clonal distance (in Mb) from the p
telomere has been plotted on the x axis. High-level amplifications and outliers are indicated
using ▲ and ▼, respectively. The broken vertical lines represents transition points.
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Figure 9.
Estimated means Ê[μj |Y] for three independently generated datasets (shown by solid,
dashed, and dotted lines) plotted against ε.

Guha et al. Page 26

J Am Stat Assoc. Author manuscript; available in PMC 2012 February 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Guha et al. Page 27

Ta
bl

e 
1

Es
tim

at
ed

 p
er

ce
nt

ag
es

 o
f c

or
re

ct
ly

 d
is

co
ve

re
d 

co
py

 n
um

be
r s

ta
te

s f
or

 th
e 

B
ay

es
ia

n 
an

d 
no

n-
B

ay
es

ia
n 

m
et

ho
ds

, a
lo

ng
 w

ith
 th

e 
es

tim
at

ed
 st

an
da

rd
 e

rr
or

s

So
ur

ce
B

ay
es

ia
n 

H
M

M
N

on
-B

ay
es

ia
n 

H
M

M

C
hr

om
os

om
e

Sp
ec

im
en

%
 a

cc
ur

ac
y

SE
%

 a
cc

ur
ac

y
SE

5
2

94
.8

1
.7

89
86

.8
9

1.
68

5

5
7

91
.9

9
1.

18
8

81
.4

4
1.

94
2

12
10

95
.2

2
.3

90
89

.0
8

1.
37

8

7
13

92
.4

1
1.

01
9

80
.0

9
2.

33
3

15
13

92
.4

2
1.

32
2

82
.5

5
1.

64
9

5
19

88
.0

2
2.

18
9

73
.0

9
2.

87
3

18
31

84
.9

5
2.

51
2

71
.1

7
2.

44
8

19
34

88
.1

3
2.

00
0

72
.1

0
2.

12
4

N
O

TE
: T

he
 e

st
im

at
es

 w
er

e 
ba

se
d 

on
 1

00
 in

de
pe

nd
en

tly
 g

en
er

at
ed

 d
at

as
et

s. 
Th

e 
fir

st
 tw

o 
co

lu
m

ns
 sp

ec
ify

 th
e 

ch
ro

m
os

om
e 

an
d 

sp
ec

im
en

 n
um

be
rs

 o
f t

he
 S

ec
tio

n 
4.

1 
da

ta
se

t w
ho

se
 e

st
im

at
ed

hy
pe

rp
ar

am
et

er
s w

er
e 

us
ed

 to
 g

en
er

at
e 

th
e 

da
ta

. S
ee

 th
e 

te
xt

 fo
r a

n 
ex

pl
an

at
io

n.

J Am Stat Assoc. Author manuscript; available in PMC 2012 February 26.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Guha et al. Page 28

Ta
bl

e 
2

Es
tim

at
ed

 p
er

ce
nt

ag
es

 o
f c

or
re

ct
ly

 d
is

co
ve

re
d 

co
py

 n
um

be
r s

ta
te

s f
or

 th
e 

B
ay

es
ia

n 
an

d 
no

n-
B

ay
es

ia
n 

m
et

ho
ds

, a
lo

ng
 w

ith
 th

e 
es

tim
at

ed
 st

an
da

rd
 e

rr
or

s

So
ur

ce
B

ay
es

ia
n 

H
M

M
N

on
-B

ay
es

ia
n 

H
M

M
C

B
S

C
hr

om
os

om
e

Sp
ec

im
en

%
 a

cc
ur

ac
y

SE
%

 a
cc

ur
ac

y
SE

%
 a

cc
ur

ac
y

SE

13
33

94
.3

8
1.

20
3

72
.0

1
2.

63
4

67
.7

2
3.

51
2

19
4

88
.2

0
1.

12
9

87
.9

4
.5

34
75

.3
6

1.
72

6

14
1

87
.3

5
1.

89
3

76
.4

7
1.

83
4

86
.7

0
.4

26

12
17

80
.8

4
1.

73
6

76
.1

1
1.

45
3

44
.1

2
1.

79
1

1
24

40
.6

4
2.

51
2

54
.3

1
1.

46
0

35
.3

7
2.

47
0

3
35

96
.0

3
.2

39
72

.0
6

2.
50

9
92

.4
3

.4
88

23
12

74
.3

1
3.

41
7

65
.2

2.
42

0
58

.0
8

3.
31

1

15
34

90
.7

9
2.

16
4

68
.3

2.
79

8
55

.2
2

4.
17

5

N
O

TE
: T

he
 e

st
im

at
es

 w
er

e 
ba

se
d 

on
 1

00
 in

de
pe

nd
en

tly
 g

en
er

at
ed

 d
at

a 
se

ts
. T

he
 fi

rs
t t

w
o 

co
lu

m
ns

 sp
ec

ify
 th

e 
ch

ro
m

os
om

e 
an

d 
sp

ec
im

en
 n

um
be

rs
 o

f t
he

 S
ec

tio
n 

4.
1 

da
ta

se
t w

ho
se

 e
st

im
at

ed
hy

pe
rp

ar
am

et
er

s w
er

e 
us

ed
 to

 g
en

er
at

e 
th

e 
da

ta
. S

ee
 th

e 
te

xt
 fo

r a
n 

ex
pl

an
at

io
n.

J Am Stat Assoc. Author manuscript; available in PMC 2012 February 26.


