1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

s NIH Public Access
I‘E@" Author Manuscript

Rrens®

Published in final edited form as:
Interact Compurt. 2012 March 1; 24(2): 55-68. doi:10.1016/j.intcom.2012.01.003.

Querying Event Sequences by Exact Match or Similarity Search:
Design and Empirical Evaluation

Krist Wongsuphasawat®P.¢* Catherine Plaisant®¢, Meirav Taieb-Maimon&d, and Ben
Shneidermanab.c

Catherine Plaisant: plaisant@cs.umd.edu; Meirav Taieb-Maimon: meiravta@bgu.ac.il; Ben Shneiderman:
ben@cs.umd.edu

aHuman-Computer Interaction Lab
bDepartment of Computer Science
CUniversity of Maryland, College Park, MD, USA

dBen-Gurion University of the Negev, Beer-Sheva, Israel

Abstract

Specifying event sequence queries is challenging even for skilled computer professionals familiar
with SQL. Most graphical user interfaces for database search use an exact match approach, which
is often effective, but near misses may also be of interest. We describe a new similarity search
interface, in which users specify a query by simply placing events on a blank timeline and retrieve
a similarity-ranked list of results. Behind this user interface is a new similarity measure for event
sequences which the users can customize by four decision criteria, enabling them to adjust the
impact of missing, extra, or swapped events or the impact of time shifts. We describe a use case
with Electronic Health Records based on our ongoing collaboration with hospital physicians. A
controlled experiment with 18 participants compared exact match and similarity search interfaces.
We report on the advantages and disadvantages of each interface and suggest a hybrid interface
combining the best of both.

Keywords

Temporal Categorical Data; Event Sequence; Temporal Query Interface; Similarity Search;
Similarity Measure; Similan

1. Introduction

Life can often be described as a series of time-stamped event sequences. If decision-makers
have sufficiently powerful tools to query these event sequences, they can discover important
patterns. Health organizations have Electronic Health Record (EHR) databases containing
millions of records of patient histories, which document heart attacks, hospital admissions,

© 2012 Elsevier B.V. All rights reserved.

"Corresponding author: kristw@cs.umd.edu (Krist Wongsuphasawat).

URL: http://www.cs.umd.edu/~kristw (Krist Wongsuphasawat), http://www.cs.umd.edu/hcil/members/cplaisant (Catherine Plaisant),
http://www.cs.umd.edu/~ben (Ben Shneiderman)

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://www.cs.umd.edu/~kristw
http://www.cs.umd.edu/hcil/members/cplaisant
http://www.cs.umd.edu/~ben

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wongsuphasawat et al. Page 2

medication orders, treatments, lab results, etc. Transportation management systems keep
records of traffic incidents in which each record includes a sequence of incident
management events, such as incident notification or arrival time of each unit on the scene.
Academic institutions keep detailed records of the educational advancement of their
students, such as completing classes, thesis defense or graduation. Three examples of event
sequences are shown below.

Patient#01 — (6:11 am, Arrive hospital), (6:15 am, Emergency Room), (9:05 am,
ICU), ...

Incident#243 — (8:05 pm, Incident Notification), (8:10 pm, Police arrived), ...
Student#46311621 — (28 Aug’07, Enter PhD program), (30 Apr’10, Proposal), ...

Querying these event sequences to answer specific questions or look for patterns is an
important activity, such as finding patients who were transferred from an “Emergency
room” to the “ICU (Intensive Care Unit)” and “Die”, incidents in which the police “arrived”
2 hours after “incident notification” or a PhD student who “proposed” a dissertation topic
twice before “graduated”. While this paper focuses on the medical domain because our case
study was done with physicians, the techniques were designed for event sequences, and thus
widely applicable to event sequences in other fields, such as incident management, academic
records analysis, manufacturing process review, log analysis, or the study of human
activities.

1.1. Example of Event Sequence Analysis

Our physician partners in the Emergency Department at the Washington Hospital Center are
analyzing sequences of patient transfers for quality assurance. One of their interests are the
monitoring of bounce backs, which occurred when a patient’s level of care was decreased
then increased back again urgently, such as: 1) Patients who were transferred from the ICU
to the Floor (normal bed) and then back to the ICU 2) Patients who arrived at the emergency
room then were transferred to the Floor and then back to the ICU. Time constraints are also
associated with these sequences (e.g. the bounce backs should occur within a certain number
of hours).

The bounce back patients correspond to a quality metric for the hospital and are difficult to
monitor. The physicians have been using MS Excel to find these bounce back patients. They
exported data from the database and wrote formulas to express the queries. An interview
with the physician who performed these tasks revealed frustration with the approach because
of its complexity and time-consuming aspects (it took many hours to create the formulas).
We also asked about the possibility of performing these queries using SQL. He explained
that SQL was even harder for him and he was not quite sure how to start (even though he
had earned a computer science undergraduate degree in addition to his medical degree.)

1.2. Motivation for Similarity Search for Event Sequences

Specifying temporal queries in SQL is difficult even for computer professionals specializing
in such queries. We gave 6 computing students who had completed a database course, the
schema of a simple dataset and asked them to write a SQL query to find patients who were
admitted to the hospital, transferred to Floor, and then to ICU (no time constraints were to
be specified). Even with this simplified query, only one participant succeeded after 30
minutes, adding evidence that SQL strategies are challenging to use for temporal event
sequences.

Researchers have made progress in representing temporal abstractions and executing
complex temporal queries (Snodgrass, 1987, 1995; Clifford and Croker, 1987), but there is

Interact Comput. Author manuscript; available in PMC 2013 March 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wongsuphasawat et al. Page 3

little research that focuses on making it easy for end users such as medical researchers,
traffic engineers, or educators to specify the queries and examine results interactively and
visually.

To the best of our knowledge, existing visual temporal query tools have used an exact match
approach, in which each query is interpreted as “every record in the result MUST follow
these constraints”. As a result, the tool returns only the records that strictly follow every
constraint in the query. This approach works well when the users are fairly certain about
their query (e.g. “find all patients admitted to the emergency room within a week after
leaving the hospital.”)

However, exploratory search (Tukey, 1977; White and Roth, 2009), in which users are
uncertain about what they are looking for, is gaining more attention. When using the exact
match, broad queries return too many results that are not relevant. Narrow queries miss
records that may be “just off” (e.g. 7.5 days instead of 7 days as specified in the query). A
more flexible query method could help the exploratory searchers.

1.3. Similarity Search for Event Sequences

A similarity search approach has been used in other systems to query other types of data,
such as images or text. In this approach, users can sketch an example of what they are
seeking and get similar results. The users then receive a ranked list of results, sorted by
similarity to the query. The key to this approach is the similarity measure, which is used to
calculate the similarity score between the query and every record, so all records then can be
sorted by similarity to the query.

Our preliminary work (Wongsuphasawat and Shneiderman, 2009) designed a similarity
measure for event sequences called the Match and Mismatch (M&M) measure. We also
introduced a simple query interface called Similan, that employed the M&M measure and
allowed users to select an existing record in the database as a query and search for similar
records. This prototype was seen as promising by medical researchers.

However, Similan’s usefulness is limited for several reasons: it only allows the users to
select an existing record from the database as a query (not to specify an example of their
choice), the visualization can be misleading and frustrating to users in some situations, and
the similarity measure is not flexible enough to support different definitions of similarity for
different tasks.

Therefore, to address these limitations, we developed a new version of the similarity
measure and the user interface, which are both presented in this paper. We present Similan2,
a query interface which allows the users to draw an example of a time-stamped event
sequence by placing events on a blank timeline and search for records that are similar to
their example using the M&M measure v.2, a new version. The M&M measure v.2 is
designed to be faster than the first version and customizable by four decision criteria,
responding to users’ need for richer and more flexible definitions of similarity. Similan2
allows the users to customize the parameters in the M&M measure v.2 via the user interface
and also changes how events are visualized on the timeline.

1.4. Motivation for a Controlled Experiment

Using the Multi-dimensional In-depth Long-term Case Study methodology (Shneiderman
and Plaisant, 2006), We worked with a physician by assisting him through the analysis of his
data using two query tools: Life-Lines2 (Wang et al., 2008, 2009) (an exact match user
interface from our research group) and Similan2 (similarity search). The physician reported
that he was able to specify his queries easily in much shorter time than with the spreadsheet,

Interact Comput. Author manuscript; available in PMC 2013 March 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wongsuphasawat et al. Page 4

and that he discovered additional patients who he had missed using his earlier work with
Excel. He clearly stated that visualizing the results gave him a better understanding of the
data, which could not have been achieved from his spreadsheet or an SQL query.

He also hinted at advantages and disadvantages of both visual approaches. For example he
felt that similarity search made it easier to specify the pattern but that looking at the results
ranked by similarity was difficult and sometimes frustrating as he was not always confident
that the similarity measure was adequately computed to fit his needs. (The computation is
explained in details later in this paper.) Those contrasting benefits led us to design the
controlled experiment to see if we could confirm those impressions and better understand
which query method is better suited for different tasks.

In summary, this paper provides the following contributions.

1. Similan2, a similarity query interface for event sequences, which allows users to
draw an example of what they are looking for directly.

2. the M&M measure v.2, a similarity measure for event sequences, which can be
customized according to users’ need.

3. acontrolled experiment to compare the features of the exact match and similarity
search interfaces using LifeLines2 and Similan2, respectively. We summarize the
advantages and disadvantages of each interface and discuss possible directions for
combining them.

The rest of this paper is organized as follows: Section 2 reviews the background and related
work, Section 3 describes the user interfaces and similarity measure, Section 4 explains the
experimental design, Section 5 reports the results from the experiment, and Section 6
concludes with a suggestion of a hybrid interface.

2. Background and Related Work

2.1. Query Languages

A traditional approach to query temporal data was to use database query languages.
According to Chomicki (1994) and Tansel and Tin (1997), many research projects were
conducted on designing temporal databases and extending standard query languages into
temporal query languages. Some of the well-known languages were TQuel (Snodgrass,
1987), TSQL2 (Snodgrass, 1995) and Historical Relational Data Model (HRDM) (Clifford
and Croker, 1987). However, these temporal query languages were built on top of their
specific data models and users had difficulty in learning their unique syntaxes, concepts, and
limitations. They also supported only exact match.

2.2. Query-by-Example Languages

To provide a high-level language that offered a more convenient way to query a relational
database (RDB), the query-by-example languages were introduced. According to Ozsoyoglu
and Wang (1993), the early idea of query-by-example was a language that users entered
what they expected to see in a database result table into a form that looked like a result table
instead of writing lengthy queries, making it simpler for the users to specify a query. The
first was Zloof’s Query-by-Example (Zloof, 1975), which was refined by others (Chang and
Fu, 1980; Klug, 1981; Zloof, 1982; Jacobs and Walczak, 1983; Ozsoyoglu et al., 1989;
Tansel et al., 1989).

Time-by-Example (Tansel et al., 1989) followed the Query-by-Example idea and adopted
subqueries concepts from Aggregates-by-Example (Klug, 1981) and Summary-Table-by-
Example (Ozsoyoglu et al., 1989) to serve historical relational database (HRDB). HRDB

Interact Comput. Author manuscript; available in PMC 2013 March 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wongsuphasawat et al. Page 5

was an extension of RDB that stored the changes of attribute values over time. For example,
a patient entity had an attribute called room, which was changed every time each patient was
moved to a new room. HRDB could keep track of the room values and Time-by-Example
provided a way to query those values. For instance, the users could ask queries such as list
all rooms a patient was in or which patient was in an ICU room between January and
March?

However, Time-by-Example supported only exact match, operated only on top of HRDM
and still required the users to learn their languages for specifying conditions in complex
queries, e.g. “($sal. T overlaps $dept. T overlaps $msal.T overlaps $m.T) and $sal.v >
$msal.v”.

2.3. Query by Graphical User Interfaces (GUIs)

2.3.1. Exact Match Approach—As the graphical user interfaces (GUIs) were becoming
more common, many GUIs were developed for temporal data (Aigner and Miksch, 2006;
Shahar et al., 2006; Klimov et al., 2009, 2010). Several GUIs used the exact match
approach, in which users specify exact constraints to construct the queries. These constraints
are often specified via controls, such as sliders or drop-down lists. The tool then returns only
the records that follow every constraint in the query. Karam (1994) presented a visualization
called xtg, which allowed users to explore temporal data and do simple searches for events.
Hibino and Rundensteiner (1995, 1997) proposed a visual query language and user interface
for exploring temporal relationships using slider filters with results displayed in a graph-like
visualization. PatternFinder (Fails et al., 2006) allowed users to specify the attributes of
events and time spans to produce pattern queries that are difficult to express with other
formalisms. LifeLines2 (Wang et al., 2008, 2009) used an alignment, ranking and filtering
(ARF) framework to query for temporal categorical records. ActiviTree (Vrotsou et al.,
2009) provided a tree-like user interface with suggestions about interesting patterns to query
for sequences of events. QueryMarvel (Jin and Szekely, 2009) utilized and extended the
semantic elements and rules of comic strips to construct queries. Instead of following the
exact match approach, Similan2 followed the similarity search approach (Section 2.3.2), and
applied the concept for querying event sequences.

2.3.2. Similarity Search Approach—Many GUIs followed the similarity search
approach, in which users could draw an example of what they expect to see as a result of a
query. The result from a query was a list of records, sorted by similarity to the given
example. Kato et al. (1992) presented QVE that accepted a sketch drawn by users to retrieve
similar images or time series from the database. IFQ (In Frame Query) (Li et al., 1997) was
a visual user interface that supported direct manipulation (Shneiderman, 1983) allowing
users to combine semantic expressions, conceptual definitions, sketch, and image examples
to pose queries. Spatial-Query-by-Sketch allowed users to formulate a spatial query by
drawing on a touch screen and translated this sketch into a symbolic representation that can
be processed against a geographic database. Bonhomme et al. (1999) and Bonhomme and
Aufaure (2002) discussed the limitations of previous query-by-sketch approaches and
extended the Lvis language, which was developed for spatial data, to temporal data. The new
language used visual metaphors, such as balloons and anchors, to express spatial and
temporal criteria. QuerySketch (Wattenberg, 2001) allowed users to sketch a graph freehand,
then view stocks whose price histories matched the sketch. Watai et al. (2007) proposed a
web page retrieval system that enables a user to search web pages using the user’s freehand
sketch. WireVis(Chang et al., 2007) introduced techniques to extracted bank accounts that
showed similar transaction patterns. To the best of our knowledge, existing event sequence
query tools have used an exact match approach. These systems demonstrated the similarity

Interact Comput. Author manuscript; available in PMC 2013 March 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wongsuphasawat et al. Page 6

search concept in other types of data and inspired us to develop a similarity search tool for
event sequences.

Timesearcher (Hochheiser and Shneiderman, 2004) visualized multiple timelines as line
charts on the same plane, using horizontal and vertical axis to represent time and value,
respectively. Users drew timeboxes, rectangular widgets that could be used to specify query
constraints, on the timeline to query for all time series that passed through those timeboxes.
In Time-searcher, users could draw an example (timeboxes) to specify the query, but the
timeboxes were converted into exact rules, e.g. January < time < March and 100 < value <
200, when processing the query in the background. Similan2 allowed the users to draw an
example, but did not convert the example into any exact rule. Instead, it compared the
example with each record directly and sorted the result by similarity to the example.

2.4. Similarity Measure

Pattern matching computes a boolean result indicating whether an event sequence matches
the specified pattern, or it does not. In contrast, similarity measure calculates a real number
measurement that expresses how similar is an event sequence to the specified pattern.

2.4.1. Numerical Time Series—Many similarity measures had been proposed for
comparison between series of numerical values measured over time, such as stock price.
Event sequences, in contrast, are series of categorical values measured over time. Hence,
these approaches were not directly applicable to event sequences because they were
designed to capture the difference between numerical values, not categorical.

Nevertheless, there were some common concepts that worth mentioning here. The first
concept was lock-step measures, which compared the i-th point of one time series to the i-th
point of another, such as the well-known Euclidean distance. However, since the mapping
between the points of two time series was fixed, these measures were sensitive to noise and
misalignments in time. The M&M measure was different from lock-step measures because it
did not fix the mapping of i-th events together.

The second concept, elastic measures, allowed comparison of one-to-many points (e.g.,
Dynamic time warping (DTW) (Berndt and Clifford, 1994) and one-to-many/one-to-none
points (e.g., Longest Common Substring (LCSS)). The sequences were stretched or
compressed non-linearly in the time dimension to provide a better match with another time
series. Unlike elastic measures, the M&M measure did not allow one-to-many mapping.

2.4.2. String and Biological Sequences—Edit distance is the number of operations
required to transform one string into another string. The lower the number is, the more
similar the strings are. Hamming distance (Hamming, 1950), Levenshtein distance
(Levenshtein, 1966) or Jaro-Winkler distance (Winkler, 1999) are some examples. The best
known such distance is the LCSS distance (André-Jonsson and Badal, 1997). A more
completed survey can be seen from (Navarro, 2001).

One neighbor area is biological sequence searching. There exist many algorithms for
comparing biological sequence information, such as the aminoacid sequences of different
proteins or the nucleotides of DNA sequences. BLAST (Altschul et al., 1990), FASTA
(Pearson and Lipman, 1988) and the TEIRESIAS algorithm (Rigoutsos and Floratos, 1998)
were some examples.

Mongeau and Sankoff (1990) defined a similarity measure specifically for comparing
musical pieces based on number of transformations required to transform one into another.
They allowed one-to-many mapping called consolidation/fragmentation, which is similar to

Interact Comput. Author manuscript; available in PMC 2013 March 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wongsuphasawat et al. Page 7

time warping. Gomez-Alonso and Valls (2008) proposed a similarity measure for sequences
of categorical data (without time) based on edit distance.

These approaches considered the difference in ordering and existence, but did not consider
the time that events occurred. Event sequences might occur at non-uniform intervals, which
made the timing become important. Also, more than one events could occur at the same time
while two characters or amino acids could not occur at the same position in the string or
biological sequence.

2.4.3. Event Sequences—Mannila and Ronkainen (1997) introduced a similarity
measure for event sequences based on three edit operations: insert, delete and move. The
move operation was included to incorporate the occurrence time of the events. This approach
allowed only monotonic mapping, which means that the matched events in the target and
candidate sequences must be in similar order, and did not offer a user interface. Sherkat and
Rafiei (2006) binned the timeline into intervals and compared events within each interval.

The Match & Mismatch (M&M) measure v.1 (Wongsuphasawat and Shneiderman, 2009)
calculated a similarity score from two types of difference: time difference of matched events
and number of mismatches. It supported matching that may not preserve the order of event
sequence (non-monatonic). This paper continues the work on the M&M measure. A few
projects were also developed in parallel with the work in this paper. Timed String Edit
Distance (Dobrisek et al., 2009) inserted timed null symbols into event sequences before
matching. It allowed matching between events with different event types and measured two
types of difference: time difference and event type difference (symbol dissimilarity).
Vrotsou (2010) and Vrotsou and Forsell (2011) identified nine measures to cover several
aspects of similarity. This approach also considered multiple occurrences of the target
sequence in the candidate sequence. Obweger et al. (2010) defined single-event similarity by
comparing event attributes. Their event sequence similarity then combined single-event
similarities, order of events and time that the events occurred with weights and more
options. However, their computation time to find the best match is exponential while others
are polynomial.

Some methods extracted “fingerprints” from event sequences and compared the fingerprints
instead of comparing the event sequences directly. Mannila and Moen (1999) detected
similar event types by comparing their context. They converted each context (event
sequence around the selected event type) into feature vectors and developed methods for
comparing these vectors. Mannila and Seppénen (2001) mapped event sequences into points
in k-dimensional Euclidean space using a random function and searched for similar event
sequences from their k-dimensional projections.

The growth of measures for event sequence similarity demonstrates the importance of these
search capabilities in many domains beyond our medical interests, such as human activity
event streams, business transactions, or legal actions.

3. Systems Description

This section describes the user interfaces in more detail. Section 3.1 and 3.2 explain the
main features of the exact match interface (Lifelines2) and the similarity search interface
(Similan2), respectively. LifeLines2 is a former work which is described here only for the
purpose of the controlled experiment while Similan2 is presented in this paper for the first
time. Similan2 allows the users to draw an example of event sequence on a blank timeline to
query for similar event sequences using the new M&M measure v.2, which was designed to

Interact Comput. Author manuscript; available in PMC 2013 March 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wongsuphasawat et al. Page 8

address the limitations of the M&M measure in the preliminary work. The M&M measure v.
2 is explained in Section 3.4.

3.1. Exact Match Interface: LifeLines2

LifeLines2 (Figure 1) is a Java application, utilizing the Piccolo 2D graphics framework
(Bederson et al., 2004). In LifeLines2, each record is vertically stacked on an alternating
background color and identified by its ID on the left. Events appear as triangle icons on the
timeline, colored by their type (e.g. Admission or Exit.) Placing the cursor over an event
pops-up a tooltip providing more details. The control panel on the right side includes filters
and other controls. The visibility and color of each event type (category) can be set in the
control panel.

Users can select an event type to align all the records. For example, Figure 1 shows records
aligned by the Admit event. When the alignment is performed, time is recomputed to be
relative to the alignment event.

Users can apply the sequence filter to query records that contain a particular sequence, e.g.
finding patients who were admitted, then transferred to a special room and exited. The first
step is to select a sequence filter from the “filter by” drop-down list, then several drop-down
lists that contain categories will appear. Users then set the values of the 1st, 2nd and 3rd
drop-down lists to Admit, Special and Exit, respectively. The records that pass this filter will
be selected and highlighted in yellow. A click on “Keep selected” removes the other records.

To query for records that have events occurring at particular intervals, users have to first
display the distribution of selected events (with the distribution control) then select intervals
on the distribution display. For example, to find patients who were admitted, then
transferred to the ICU room on the first day of their stay and transferred to the intermediate
ICU room on the fourth day, users have to align all the records by Admit, show the
distribution of ICU using the “Show Distribution of” control, then select the 1st day on the
distribution of ICU events at the bottom of the screen and click on “Keep selected” then
show the distribution of Intermediate and draw a selection box from the 1st to the fourth day
and “Keep selected”. (See Figure 1.) A similar process can be used for consecutive interval
specification using different alignments and filtering.

3.2. Similarity Search Interface: Similan2

Similan2 (Figure 3), is an Adobe Air Application using the Adobe Flex 3 Framework. The
designs of LifeLines2 and Similan2 have evolved in parallel.

Its ancestor, Similan (Figure 2), developed in C#, only allows the users to select an existing
record from the database as a query (not to specify an example of their choice). Also,
according to the feedback from the usability study, the binned timeline visualization in
Similan sometimes confused the users and could be misleading in some situations.

Therefore, Similan2 adopted the basic display of the records from Life-lines2: each record is
stacked on the main panel, events are colored triangle icons, and users can customize the
visibility and colors of each event type (category). Users can also align all the records by a
selected event type (e.g. align by admission to the hospital in Figure 3). Similan2 also
employed an improved similarity measure (M&M measure v.2), which will be explained in
Section 3.4.

In Similan2, the panel on the top is called the query panel, where users can specify their
queries. On the right side is the control panel, which provides controls for users to customize

Interact Comput. Author manuscript; available in PMC 2013 March 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wongsuphasawat et al. Page 9

the search parameters. The largest area on the screen is the main panel, where all records in
the data are listed.

To perform a query users first create or select an existing record. For example, to find
patients who were admitted, transferred to the ICU room on the first day and then to the
intermediate room on the fourth day, users can start by aligning all records by Admit. Then
users click on the edit button on the query panel to open a popup window, and drag and drop
events on the empty timeline (i.e. they can select Admit from the list of categories shown in
the popup and click on Add. The cursor will change into a magic wand and they can drop the
event on the line). Figure 2 shows the patterns they created Admit, ICU and Intermediate at
time 0, on the first day and fourth day, respectively. (See Figure 3.) The only type of time
constraint that is currently supported by Similan2 is specifying when each event occurred.

Users can also select any existing record as a query by dragging that record from the main
panel and dropping it into the query panel. This is useful for finding patients who exhibit a
pattern of events similar to a particular known patient. A time scope can be drawn on the top
of the timeline (See red line in Figure 3). In our example query, drawing a scope from the
time zero to the end of the fourth day will exclude all other events outside of the scope from
the search. If no scope is specified, the entire timeline will selected by default. The unit for
time differences (e.g. hours or days) can be selected from a drop-down list. Event categories
that should be excluded from the search can be unchecked in the control panel.

After clicking on Search, the records are sorted by their similarity score (with records with
the highest scores on the top). Each record has a score indicator, a rectangle with four
sections of different color (See Figure 3.), inspired by Value Charts (Carenini and Loyd,
2004), a visualization to support decision-makers in inspecting linear models. The length of
a score indicator represents total score. It is divided into four colored parts which represent
the four decision criteria. The length of each part corresponds to the weight * score. Placing
a cursor over the score indicator brings up an explanation tooltip.

Users can see a detailed comparison of the query and any other record by dragging that
record into the comparison panel in the bottom. Lines are drawn between pairs of events
matched by the M&M measure v.2. Moving the cursor over a link displays a tooltip showing
the event type, time of both events and time difference.

By default, the search uses default weights, which means that all criteria are equally
important. However, users may have different meanings for similarity in mind. Similan2
allows users to adjust the weight of all criteria in the “Weight” tab in the control panel. (See
Figure 4.) The weight for each decision criterion can be adjusted with the slider controls, as
well as the weight of each event type for each decision criteria, A click on “Apply Weight”
refreshes the similarity measures and the order of the records on the display. For example, if
the value of time intervals is not important in this task (e.g. finding patients who were
admitted, transferred to the special room and exited) the user can set a low weight for
“Avoid Time Difference” to reduce its importance. Because the definition of weights can be
complex, Similan2 includes sets of preset weight combinations for users to choose from. For
instance, one preset is called “Sequence”, which uses a low weight for “Avoid Time
Difference” and a high weight for “Avoid Missing Events”.

3.3. The Match and Mismatch (M&M) measure v.1

Many methods for computing a similarity measure between time series have been proposed.
However, modifying them to suit event sequences remains an open problem. We presented a
similarity measure for event sequences called the Match and Mismatch (M&M) measure
(Wongsuphasawat and Shneiderman, 2009) and used it in Similan. Based on the idea that

Interact Comput. Author manuscript; available in PMC 2013 March 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wongsuphasawat et al. Page 10

similar records should have the same events and the same events should occur almost at the
same time, the M&M measure uses the time difference and number of missing and extra
events as the definition of similarity. The original M&M measure consists of two steps:
matching and scoring.

1) Matching—The first step is to match the events in the query with events in the
compared records. The simplest case is when the events are identical between records. The
problem becomes more complex when the set of events in the query does not exactly match
those in another record. Since there can be many possible ways to match the events between
the two records, the matching has to be carefully chosen. The matching problem can be
reduced to a problem called the assignment problem (Kuhn, 1955), which is described as
follows:

“There are a number of agents and a number of tasks. Any agent can be assigned to
perform any task, incurring some cost that may vary depending on the agent-task
assignment. It is required to perform all tasks by assigning exactly one agent to
each task in such a way that the total cost of the assignment is minimized.”

Let the events from one record become agents and the events from another records become
tasks, The matching problem now becomes the assignment problem. The original M&M
measure then uses the Hungarian Algorithm (Kuhn, 1955; Munkres, 1957) to solve the
assignment problem.

2) Scoring—After the matching is completed, the scores can be computed. Scoring is
based on a combination of the number of mismatches and time difference. In the original
M&M measure, the time difference is converted into a match score while the number of
mismatches (number of events which occur in the query but do not occur in the compared
record, or vice versa) is converted into a mismatch score. Match and mismatch scores are
combined into total score, ranging from 0.01 to 1.00 using a weighted sum. A higher score
represents higher similarity. The weight is a customizable parameter that can be adjusted by
the users.

3.4. The Match and Mismatch (M&M) measure v.2

In this paper, we propose the M&M measure v.2, which improves on the original version in
two ways: First, the matching problem is reduced to a simpler problem than the assignment
problem. Therefore, the matching algorithm can be improved by using dynamic
programming instead of the Hungarian Algorithm. Second, the M&M measure v.2 considers
more types of differences. It splits the number of mismatches into number of missing events
and number of extra events and also includes number of swaps. Moreover, it increases the
flexibility by adding more customizable parameters. The M&M measure v.2 still consists of
two steps: matching and scoring.

1) Matching—The M&M measure does not allow matching between events in different
categories and allows only one-to-one matching. For example, event A can only match with
event A and cannot match with event B or C. (See Figure 5.) Therefore, the matching can be
reduced into a simpler problem by separating the matching for each event type.

The notation below is used to describe an event sequence record, which is a list of
timestamped events (t, ¢). The i-th event in the record is denoted by x; or (tj, c;).

X={(t,¢)|t € Time and ¢ € Categories}

Interact Comput. Author manuscript; available in PMC 2013 March 1.

@

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wongsuphasawat et al. Page 11

The M&M measure v.2 splits each record in to several lists, one list for each event type. For
example, these two records X and Y

X={(t1,“A”), (12, “A”), (13, “B")}
Y={(u1,“A”), (u2,“B”), (u3, “B”)}
“A”,“B” € Categories

are split into Xa, Xg and Y, Yg, respectively.

X, ={(11,"A"), (1, “A™)} X,={(13,“B")} @
Y, ={(u1,"A")} Y=z, “BY), (u3,“B™)}

The problem of “matching events between two records” is then reduced to “matching events
between two lists that contain only events in the same event type” multiple times, which is
simpler. (See Figure 5.) For example, matching X and Y is reduced to matching Xa with Ya,
and Xg with Yg. A faster algorithm based on dynamic programming can be used instead of
the Hungarian algorithm to find the matching between X and Y4 that produces the
minimum time difference.

Dynamic Programming Matching: Figure 6 shows a dynamic programming table. The
value in each cell (cell(i, j)) is the minimum cost of matching subsequences X[1..i] and Y
[1..j]. X must be longer or has equal length with Y. Cross symbols mark the cells that cannot
be used because the matches would yield non-perfect matchings for Y. For example,
matching y» with x; will cause y; to have no match.

The M&M matching v.2 algorithm (Algorithm 1) starts from the top-left cell and fills the
cells from left to right, row by row. For each cell, the cell value is equal to the minimum
between:

1. Cost of matching xj to yj (d(x;, ¥;) = [xj.time~y;.time[) plus minimum cost of
matching the prefixes (upper-left cell: cell(i —1, j —1))

2. Minimum cost of matching y; to some x before x; (left cell: cell(i—1, j))

which can be represented by this formula:

d(x;, yj)+celli—1,j-1)

cell(i, j):min{ cell(i - 1. j) ®3)

If choice 1 is selected, that cell maintains a link to its upper-left cell. If choice 2 is selected,
that cell maintains a link to its left cell. After filling the entire table, the minimum matching
cost is the value of the bottom-right-cell. The matching that produces the minimum cost can
be retrieved by backtracking the link, beginning from the bottom-right cell.

Time Complexity: If the number of events in Xa and Yp are na and mpa, and na > mp, the
time to match the events between X and Y5 with dynamic programming is

O((n, —m,)*m,) @

Using the matching v.1 based on the Hungarian algorithm, the time complexity of matching
events between X and Y is

Interact Comput. Author manuscript; available in PMC 2013 March 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wongsuphasawat et al. Page 12

O((max(n,,m,)+max(n,, my)+max(n.,m.)+ .. .)3) (5)

Using the matching v.2, the time complexity is reduced to:

O((n, —m,)=m,+(n, —my) =my+(n. —m) *m.+...) (6)

2) Scoring—Once the matching is completed. The scores can be derived from the
matching. The first version of the M&M measure considers only two types of difference:
time difference and number of mismatches (missing or extra events). In this second version,
we decided to split the number of mismatches into number of missing and extra events
because these two numbers can have different significance. For example, users may not care
about extra events but want to avoid missing events, or vice versa. We also included the
number of swaps because sometimes the users want the events in order but sometime the
order is not significant. Therefore, the M&M measure v.2 considers four types of difference
and allows users to customize each type of difference in more details for each event type.
The four types of differences are listed as follows:

1. A match event is an event that occurs in both the query and the compared record.
The time difference (TD) is a sum of time differences within each pair of matched
events. The time difference is kept separately for each event type. Users also can
specify what time unit they want to use for the time difference.

2. A missing event is an event that occurs in a query record but does not occur in a
compared record. The number of missing events (NM) is counted for each event

type.

3. Anextraevent is an event that does not occur in a query record but occurs in a
compared record. The number of extra events (NE) is counted for each event type.

4. A swapping event occurs when the order of the events is reversed. The number of
swapping events (NS) is counted for each pair of event categories. For example, in
Figure 7, the query has A followed by B then C but record#5 has A followed by A
then C then B. If you draw a line from query’s C to record#5’s C and do the same
for B, it will create one crossing. So, the number of swaps between B and C
(NSg ¢) is 1 while NSp g and NSp ¢ are both 0.

Since the time difference may be not equally important for all categories, the total time
difference (XTD) is a weighted sum of time difference from each event type. Users can
adjust what is important by setting these weights (Zw'P = 1).

Z TD=w"? «TD,+w!? « TD,+ ...)

Likewise, the total number of missing events (X NM), total number of extra events (X NE)
and total number of swapping (£ NS) are calculated from weighted sums.

> NE=w* « NE, +w* « NE,+... ®)

ZNM:WLVM *NM_1+WLVM * NMy+... 9)

Interact Comput. Author manuscript; available in PMC 2013 March 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wongsuphasawat et al. Page 13
D INS=w\S NS, 4wl s NS+ (10)

Four Decision Criteria: The 4 types of differences are normalized into a value ranging
from 0.01-0.99 and called penalties. The total time difference (XTD), total number of
missing events (ENM), number of extra events (ENE) and total number of swappings (£NS)
are normalized into TD penalty, NM penalty, NE penalty and NS penalty, respectively. The 4
penalties are converted into these 4 decision criteria:

1. Avoid Time Difference (AT) = 1 — TD penalty
2. Avoid Missing Events (AM) = 1 — NM penalty
3. Avoid Extra Events (AE) = 1 — NE penalty
4

Avoid Swapping Events (AS) = 1 — NS penalty

Total Score: The total score is a weighted sum of the four decision criteria. The users can
adjust the weights (Wat, Wam, WaE, Wags) to set the significance of each decision criteria (Xw
=1).

T=w,, «xAT+w,, * AM+w,

)
AT

o * AE+w, « AS (11)

The total score (T) is from 0.01 to 0.99. The higher score represents higher similarity. We
selected the weighted sum model to combine the score because of its simplicity and ease of
presentation to the users.

4. Evaluation

We conducted a controlled experiment comparing 2 interfaces: LifeLines2, an exact match
interface, and Similan2, a similarity search interface. Our goal was not to determine which
tool was superior (as they are clearly at different stages of refinement and represent different
design concepts), but to understand which query method was best suited for different tasks.
Another goal was to observe the difficulties that users encountered while using the interfaces
to perform given tasks. Both interfaces were simplified by hiding certain controls to focus
on the query features we wanted to compare.

4.1. Research questions
The evaluation was conducted to answer these research questions:

1. Are there statistically significant differences in performance time and performance
accuracy between the two interfaces while performing different tasks?

2. Are there statistically significant differences in performance time and performance
accuracy between the different tasks while using each interface?

3. Isthere a statistically significant difference between the subjective ratings given by
the users to the two interfaces?

4.2. Participants

Eighteen graduate and senior undergraduate students participated in the study. We recruited
computer science students who are assumed to have high level of comfort with computers
but no knowledge of either interface. The participants included 13 men and 5 women, 20 to
30 years of age. Participant received $20 for their 90-minute participation. To provide the

Interact Comput. Author manuscript; available in PMC 2013 March 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wongsuphasawat et al. Page 14

motivation to perform the tasks quickly and accurately, an additional nominal sum was
promised to the fastest user with the fewest errors of each interface.

4.3. Apparatus

The participants were required to perform the given tasks with the two interfaces:
LifeLines2 and Similan. The two software interfaces were running on an Apple Machook
Pro 15” with Windows XP operating system. The participants controlled the computer using
a standard mouse.

4.3.1. Tasks—The tasks were designed based on real scenarios provided by physicians and
simplified to make them suitable for the time limit and participants who had never used the
interfaces before. Participants were requested to find patients in the database who satisfied
the given description. To avoid the effect of alignment choice, all tasks contained an obvious
sentinel event (e.g. Admit). We considered these factors when designing the tasks:

1. Query type: Either a sequence description was provided or an existing record was
used as a query.

2. Time constraint: Present or not

3. Uncertainty: Yes or No, e.g. the number of events may be precise or not, the time
constraint may be flexible or not.

The tasks that were used in the experiment are listed below:
Task type 1 — Description without time constraint, no uncertainty

1: “Find at least one patient who was admitted, transferred to Floor
then to ICU.”

1.2: “Count all patients who fit task 1 description”

Task 1 was designed to observe how quickly the participants can use
the interface to specify the query while task 1.2 focused on result
interpretation and counting.

Task type 2— Description with time constraints, no uncertainty

2: “Find at least one patient who was admitted and transferred to
Intermediate on the second day then to ICU on the third day.”

2.2: “Count all patients who passed task 2 description.”
Task type 3— Description with uncertainty, without time constraint

3: “Find a patient who best matches the following conditions:
Admitted and then transferred to special room approximately 2 times
and transferred to ICU room after that. If you cannot find any patient
with exactly 2 transfers to the special room, 1-3 transfers are
acceptable.”

3.2: “Count all patients who passed task 3 description.”
Task type 4— Description with uncertainty and time constraint:

“Find a patient who best matches the following conditions: Admitted,
transferred to Floor on the first day, ICU approximately at the end of
the third day. The best answer is the patient who was transferred to
ICU closest to the given time as possible.”

Task type 5— EXxisting record provided as query:

Interact Comput. Author manuscript; available in PMC 2013 March 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wongsuphasawat et al. Page 15

4.4, Design

“Find a patient who was transferred with the most similar pattern with
patient no. xx during the first 72 hours after being admitted. Having
everything the same is the best but extra events are acceptable.”

4.3.2. Data—We used a modified version of the deidentified patient transfer data provided
by our partners. The data contained information about when patients were admitted (Admit),
transferred to Intensive Care Unit (ICU), transferred to Intermediate Care Unit
(Intermediate), transferred to a normal room (Floor), and exited (Exit).

4.3.3. Questionnaire—A 7-item, 7-point Likert-scale questionnaire was devised by the
experimenter to measure the learn ability and ease or difficulty of using the interfaces while
performing the different tasks, and the level of confidence of the answers they provided for
the different tasks. The highest (positive, such as “very easy” or “very confident™) score that
could be attained on the measure was 7; the lowest (negative, such as “very hard” or “not
confident™) score was 1. Thus, higher scores reflected more positive attitudes toward the
interfaces.

Q1 Isiteasy or hard to learn how to use?

Q2 Is it easy or hard to specify the query with sequence only?

Q3 Isiteasy or hard to specify the query with time constraint?

Q4 Isiteasy or hard to specify the query with uncertainty?

Q5 Isiteasy or hard to specify the query in the last task?

Q6 How confident is your answer for finding at least one, best answer tasks?

Q7 How confident is your answer for counting tasks?

The independent variables were: Interface type (2 treatments): exact match and similarity
search, Task (8 treatments)

The dependent variables were: The time to complete each task, error rate for each task, and
subjective ratings on a 7-point Likert scale.

The controlled variables were: Computer, mouse and window size. We used equivalent
datasets for each interface.

To control learning effects, the presentation order of the LifeLines2 and Similan2 interfaces
was counterbalanced. To avoid the situations that the users would always find repeating the
tasks on the second system easier, since they already know the answer, we also used two
sets of questions and datasets, one for each interface. The questions in the two sets are
different but have same difficulty level, for example: “Find at least one patient who was
admitted, transferred to Floor then to ICU.” and “Find at least one patient who was admitted,
transferred to Floor then to IMC.” Half of the participants started with LifeLines2 while
another half started with Similan2.

4.5. Procedure

Participants were given training which included a brief description of the data and ten-
minutes tutorials of how to the first interface. Then, the participants had to complete two
training tasks. When the participants could answer the training questions correctly, they
were considered ready to perform the study tasks. Next, the participants were asked to

Interact Comput. Author manuscript; available in PMC 2013 March 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wongsuphasawat et al. Page 16

5. Results

perform eight tasks using the first interface. After that, the experimenter followed the same
procedure (tutorial, training tasks, study tasks) for the second interface.

Upon completion of the tasks, the participants were asked to complete the 7-point Likert
scale questionnaire.

At the end of the experiment, we debriefed the participants to learn about their experience
while using the interfaces for the different tasks and their suggestions for improving the
interfaces.

5.1. Performance Time

To examine the effects of the type of interface and the task on time to perform tasks 1-5, we
conducted a two-way ANOVA with repeated measures. The time to perform the task was
the dependent variable and the type of interface and the task were within participants
independent variables. The results of the analysis showed that the main effect of the task
was significant (F(4, 68) = 15.15, p<.001). The two-way interaction (interface x task) was
also significant (F(4, 68) = 6.63, p<.001). The main effect of the interface was not found to
be significant (F(1, 17) = 1.60, p=.22).

Figure 8 shows the performance time as a function of the interface and the task. It can be
seen that for tasks 1-3, the performance times using the two interfaces are very similar and
increase for the tasks with time constraint (2) and uncertainty (3) (MSD of 26.83+10.90 s,
39.58+23.92 s and 58.67+33.60 s, respectively). However, the average performance times of
tasks 4 and 5 are shorter using the similarity search interface (M+SD of 51.73+13.21 s and
37.74+18.63 s, respectively) than while using the exact match interface (M+SD of
68.33+£31.18 s and 72.05+34.41 s, respectively). It can also be observed that the variances in
the performance time of tasks 2-5 are larger while using the exact match.

A post-hoc Duncan test showed that the performance times of tasks 4 and 5 are significantly
shorter while using the similarity search interface (p<.05). When using the exact match,
there were significant differences in performance time between two homogenous groups:
tasks 1-2 versus tasks 3-5 (p<.001). When using the similarity search, the main significant
differences in performance time were between task 3 to tasks 1 and 5 (p<.05).

Similar analytic procedures were followed in the analysis of the effects of the interface type
and the task on time to perform the counting tasks (1.2, 2.2 and 3.2). The results of the
analysis showed that the only effect that was found to be significant was the main effect of
the interface (F(1, 17) = 23.65, p<.001). The average performance time while interacting
with the exact match was significantly shorter than with the similarity search (M£SD of
2.32+3.75 s and 15.20+25.10 s, respectively) The main effect of the task (F(2, 34) = 2.05,
p=.14) and the interaction effect (F(2, 34) = 2.03, p=.15) were not found to be significant.

5.2. Error Rates

To compare the error rates between the two interfaces while performing the different tasks,
we performed a McNemar’s test, which is a non-parametric test that is used to compare two
population proportions that are related or correlated to each other. Since the error rates of
tasks 1-3 were zero for both interfaces, we conducted this analysis only for tasks 4 and 5 (4
and 2 incorrect answers using the exact match, respectively and no error while using the
similarity search). The results of the analysis showed that there was no significant difference
between the two interfaces in the error rates of task 4 (x2(1)=3.06, p=.08) and 5 (y2(1)=1.13,
p=.29).

Interact Comput. Author manuscript; available in PMC 2013 March 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wongsuphasawat et al. Page 17

5.3. Subjective Ratings

To compare the difference between the subjective ratings given by the participants to the
two interfaces, we conducted a paired-sample t-test for each question. The results of the
analysis are presented in Table 1. The results showed that there was no significant difference
for the ease of learning how to use the two interfaces (Q1). The participants reported the
exact match to be significantly easier to use than the similarity search for the task with
sequence only (task 1) (Q2). However, for the tasks with only time constraint (task 2) (Q3)
or only uncertainty constraint (task 3) (Q4), they reported the similarity search to be
significantly easier to use than the exact match. They also reported the similarity search to
be significantly easier to use than the exact match in the task that required them to find a
patient which is the most similar to the given patient (Q5). There was no significant
difference between the confidence levels of the answers for the tasks which required finding
at least one, best answer (tasks 1-5) (Q6). However, the participants were significantly more
confident while using the exact match than the similarity search to find the answers for the
counting tasks (tasks 1.2, 2.2 and 3.2) (Q7).

5.4. Debriefing

When asked about what they liked in LifeLines2, the participants said that it is easy for
finding a sequence (“Easy to find sequence”, “Very easy to query with sequence” “Very
intuitive to specify sequence”) and counting (“Show only matched records make it easy to
count”, “It gives confidence.”)

However, when asked about what they did not like in LifeLines2, they explained that it is
difficult for uncertain and more complex tasks because they had to change the query and
sometimes, more than one filter is needed. (“It doesn’t find the similar case when it can’t
find the case | want”, “Difficult for complex tasks or tasks with uncertainty”, “Hard to find
approximate best match”, “Harder in LifeLines2 because | had to change the query [for the
uncertain task]”, “In order to find a patient, sometimes more than one filter is needed.”)

When asked about what they liked in Similan2, the participants said that it is more flexible
and easier to find similar patients. (“Very easy to find the similar pattern.”, “Similan is more
flexible.”, “The similarity measure makes it FAR easier to find the best matches.”,
“Excellent in finding ‘at least one’ type results when formulating the query is harder [in
LifeLines2] due to ambiguity.”) They also said that it is easier to specify the time constraints
in a query and that specifying how the answers should look like makes the search process
more transparent. (“Query with time constraint is very easy.”, “Time constraint searches are

easier to input.”, “the search process is more transparent.”, “Drag and drop triangles gave
me better control of how the specific sequences should look like.™)

However, when asked about what they did not like in Similan2, the participants expressed
difficulty in using it for the counting tasks because it is difficult to separate between the
exact match results and the similar results. (“No easy way to count” “not sure [whether] the
top rows are the only answers™) Also, sometimes it is unclear where to place the events on
the timeline. (“In Similan2, it is not immediately obvious where to place the icon for the

‘second day’.”) Two participants also mentioned that similarity search responded slightly
slower than exact match.

Common suggestions for improvement included: “LifeLines2 should have a list of previous
actions and undo button”, “A counter in Similan for all patients that had a match of X score
or better could be helpful.”, “Have individual weight for events in the query in Similan, so
the users can specify if some events are more important than others.”, “Have more weight
presets to choose from.”

Interact Comput. Author manuscript; available in PMC 2013 March 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wongsuphasawat et al. Page 18

6. Conclusions and Future Work

Event sequence data are continuously being gathered by various organizations. Querying for
time-stamped event sequences in those data sets to answer questions or look for patterns is a
very common and important activity. Most existing temporal query GUIs use an exact match
approach, which returns only records that match the query. However, in exploratory search,
users are often uncertain about what they are looking for. Too narrow queries may eliminate
results which are on the borderline of the constraints. On the other hand, the similarity
search approach allows users to sketch an example of what they are seeking and find similar
results, which provides more flexibility.

This paper makes these contributions:

1. We presented Similan2, an interface to specify an event sequence example and
search for records that are similar to the example, following the similarity search
approach.

2. We introduced the M&M measure v.2 which is faster and can be customized by
four decision criteria, increasing its performance and flexibility from the first
version.

3. We conducted a controlled experiment that assessed the benefits of exact match and
similarity search interfaces for five tasks, leading to future directions for improving
event sequences query interfaces that combine the benefits of both interfaces.

Our experiment showed that exact match had advantages in finding exact results. Users
preferred to use it to find a simple sequence without time constraint or uncertainty more than
the similarity search. The exact match also gave more confidence to the users in tasks that
involve counting. However, users felt that it was more complex to use for tasks with time
constraints or uncertainty (probably because it required many steps to add each constraint to
construct a query).

On the other hand, similarity search had advantages in the flexibility and intuitiveness of
specifying the query for tasks with time constraints or uncertainty, or tasks that ask for
records that are similar to a given record. Users felt that it is easier to specify the time
constraints in a query and that specifying how the answers should look like makes the search
process more transparent because they could see the big picture of their query. However,
similarity search was more difficult for tasks that involve counting. The participants
requested a better way to support counting tasks.

Further work is needed to address these two points:

First, the exact match and similarity search interfaces each have their advantages. How can
we combine the best features from these two interfaces to create a new interface that can
support queries with uncertainty and time constraints as well as simpler and counting tasks?
Based on the results of the experiment and our observations during the longitudinal study
with our partners, we list several ideas for hybrid query interfaces that should be explored in
the future:

1. Draw an example. Specifying the query by placing event glyphs on a timeline
seems closer to users’ natural problem-solving strategy and the visual
representation of the query also helps users compare results with the query to notice
and correct errors.

2. Sort results by similarity to the query but do not return all records and allow users
to see more if necessary. Showing all records, even those that do not fit the query,

Interact Comput. Author manuscript; available in PMC 2013 March 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wongsuphasawat et al. Page 19

confuses users and reduces confidence in the results. However, users may want to
see more results at certain times. One possible strategy is to show only exact results
first (i.e. like exact match) and have “more” button to show the rest or the next n
records. Another strategy is to add a borderline that separates the exact results from
the near matches. This may increase confidence and still be useful for exploratory
search.

3. Allow users to specify what is flexible and what is not. Even in a query with
uncertainty, users may have some parts of the query that they are certain about, e.g.
patients must be admitted to the ICU (i.e. do not even bother showing me records
with no ICU event). These certain rules can be applied strictly to narrow down the
result set without sacrificing the flexibility of the other parts of the query.

4. Weights. Whether users would be able to translate more complex data analysis
goals into proper weight settings remains an open issue. One idea to prevent
manual weight adjustment is to provide presets of weights that capture common
definitions of similarity.

5. Avoid too many alternative ways to perform the same task. This can lead to
confusion. In the experiment, we found many users used more filters than
necessary.

Second, while this paper focuses on medical examples, all design principles are based on
event sequences, which are not specific to the medical domain. Therefore, we believe that
these concepts are applicable to event sequences in other domains, such as traffic incidents
logs, student records, researchers’ publication list, U.S. bill status, web logs, usability logs,
criminal investigations, and many more topics. Part of our future work will include more
user studies that show applications of these concepts to other domains.

We believe that querying event sequences will become an increasingly common and
important task. The growing effort on query languages and similarity measures is helpful,
but this paper advances research by developing interfaces and evaluating them in a rigorous
way with five tasks.

Acknowledgments

We appreciate support from the National Institutes of Health (NIH) grant CA147489 and Washington Hospital
Center, and collaboration from our physician partners at the Washington Hospital Center, especially Dr. Phuong
Ho, Dr. Mark Smith and David Roseman, and would like to thank Dr. Vibha Sazawal, Dr. Jen Golbeck, Dr. Taowei
David Wang and Sureyya Tarkan for their thoughtful comments, and all participants in the studies for their
participations.

References

Aigner W, Miksch S. CareVis: integrated visualization of computerized protocols and temporal patient
data. Artificial Intelligence in Medicine. 2006; 37:203-18. [PubMed: 16781851]

Altschul S, Gish W, Miller W, Myers E, Lipman D. Basic local alignment search tool. Journal of
Molecular Biology. 1990; 215:403-410. [PubMed: 2231712]

André-Jonsson, H.; Badal, DZ. Using signature files for querying time-series data. 1997.

Bederson B, Grosjean J, Meyer J. Toolkit design for interactive structured graphics. IEEE Trans
Software Engineering. 2004; 30:535-546.

Berndt, DJ.; Clifford, J. Using dynamic time warping to find patterns in time series. AAAI-94
Workshop on Knowledge Discovery in Databases; 1994. p. 229-248.

Bonhomme, C.; Aufaure, MA. Mixing icons, geometric shapes and temporal axis to propose a visual
tool for querying spatio-temporal databases. Proc. Working Conf. on Advanced Visual Interfaces
(AVI1); ACM:; 2002. p. 282-289.

Interact Comput. Author manuscript; available in PMC 2013 March 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wongsuphasawat et al. Page 20

Bonhomme, C.; Trpied, C.; Aufaure, MA.; Laurini, R. A visual language for querying spatio-temporal
databases. Proc. ACM International Symp. on Advances in Geographic Information Systems (GIS);
ACM; 1999. p. 34-39.

Carenini, G.; Loyd, J. Value Charts: analyzing linear models expressing preferences and evaluations.
Proc. Working Conf. on Advanced Visual Interfaces (AVI); ACM; 2004. p. 150-157.

Chang N, Fu K. Query-by-Pictorial-Example. IEEE Trans Software Engineering. 1980; 6:519-524.

Chang, R.; Ghoniem, M.; Kosara, R.; Ribarsky, W.; Yang, J.; Suma, E.; Ziemkiewicz, C.; Kern, D.;

Sudjianto, A. WireVis: Visualization of Categorical, Time-Varying Data From Financial
Transactions. Proc. IEEE Symp. on Visual Analytics Science and Technology (VAST); IEEE;
2007. p. 155-162.

Chomicki, J. Temporal query languages: A survey. Proc. International Conf. on Temporal Logic;

Springer; 1994. p. 506-534.
Clifford, J.; Croker, A. The Historical Relational Data Model (HRDM) and Algebra Based on
Lifespans. Proc. IEEE International Conf. on Data Engineering (ICDE); IEEE; 1987. p. 528-537.

Dobrisek S, Zibert J, Pavesi¢ N, Mihelic F. An edit-distance model for the approximate matching of
timed strings. IEEE Trans pattern analysis and machine intelligence. 2009; 31:736-41.

Fails, J.; Karlson, A.; Shahamat, L.; Shneiderman, B. A Visual Interface for Multivariate Temporal
Data: Finding Patterns of Events across Multiple Histories. Proc. IEEE Symp. on Visual Analytics
Science and Technology (VAST); IEEE; 2006. p. 167-174.

Gomez-Alonso, C.; Valls, A. A Similarity Measure for Sequences of Categorical Data Based on the
Ordering of Common Elements. In: Torra, V.; Narukawa, Y., editors. Modeling Decisions for
Artificial Intelligence. Vol. 1. Springer; 2008. p. 134-145.chapter 13

Hamming RW. Error Detecting and Error Correcting Codes. The Bell System Technical Journal. 1950;
29:147-160.

Hibino, S.; Rundensteiner, E. A visual query language for identifying temporal trends in video data.
Proc. International Workshop on Multi-Media Database Management Systems; IEEE; 1995. p.
74-81.

Hibino, S.; Rundensteiner, EA. User interface evaluation of a direct manipulation temporal visual
query language. Proc. ACM International Conf. on Multimedia (MULTIMEDIA); ACM; 1997. p.
99-107.

Hochheiser H, Shneiderman B. Dynamic query tools for time series data sets: Timebox widgets for
interactive exploration. Information Visualization. 2004; 3:1-18.

Jacobs, B.; Walczak, C. IEEE Trans Software Engineering SE-9. 1983. A Generalized Query-by-
Example Data Manipulation Language Based on Database Logic; p. 40-57.

Jin, J.; Szekely, P. QueryMarvel: A visual query language for temporal patterns using comic strips.
Proc. IEEE Symp. on Visual Languages and Human-Centric Computing (VL/HCC); IEEE; 2009.
p. 207-214.

Karam, G. Visualization using timelines. Proc. ACM SIGSOFT International Symp. on Software
Testing and Analysis; ACM; 1994. p. 125-137.

Kato, T.; Kurita, T.; Otsu, N.; Hirata, K. A sketch retrieval method for full color image database-query
by visual example. Proc. IAPR International Conf. on Pattern Recognition; IEEE; 1992. p.
530-533.

Klimov D, Shahar Y, Taieb-Maimon M. Intelligent selection and retrieval of multiple time-oriented
records. Journal of Intelligent Information Systems. 2009; 35:261-300.

Klimov D, Shahar Y, Taieb-Maimon M. Intelligent visualization and exploration of time-oriented data
of multiple patients. Artificial Intelligence in Medicine. 2010; 49:11-31. [PubMed: 20303245]
Klug, AC. Abe: a query language for constructing aggregates-by-example, in: Proc. LBL Workshop on

Statistical Database Management (SSDBM); Lawrence Berkeley Lab; 1981. p. 190-205.

Kuhn HW. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly.
1955; 2:83-97.

Levenshtein V1. Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics
Doklady. 1966; 10:707-710.

Interact Comput. Author manuscript; available in PMC 2013 March 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wongsuphasawat et al. Page 21

Li, WS.; Candan, KS.; Hirata, K.; Hara, Y. IFQ: a visual query interface and query generator for
object-based media retrieval. Proc. IEEE International Conf. on Multimedia Computing and
Systems; IEEE; 1997. p. 353-361.

Mannila, H.; Moen, P. Similarity between Event Types in Sequences. Proc. International Conf. on
Data Warehousing and Knowledge Discovery (DaWakK); Springer; 1999. p. 271-280.

Mannila, H.; Ronkainen, P. Similarity of Event Sequence. Proc. International Workshop on Temporal
Representation and Reasoning (TIME); 1997. p. 136-139.

Mannila, H.; Seppénen, J. Finding similar situations in sequences of events via random projections.
Proc. SIAM International Conf. on Data Mining; Citeseer. 2001. p. 1-16.

Mongeau M, Sankoff D. Comparison of Musical Sequences. Computer and the Humanities. 1990;
24:161-175.

Munkres J. Algorithms for the assignment and transportation problems. Journal of the Society for
Industrial and Applied Mathematics. 1957; 5:32-38.

Navarro G. A guided tour to approximate string matching. ACM Computing Surveys. 2001; 33:31-88.

Obweger, H.; Suntinger, M.; Schiefer, J.; Raidl, G. Similarity searching in sequences of complex
events. Proc. International Conf. on Research Challenges in Information Science (RCIS); IEEE;
2010. p. 631-640.

Ozsoyoglu G, Matos V, Ozsoyoglu M. Query processing techniques in the summary-table-by-example
database query language. ACM Trans Database Systems. 1989; 14:526-573.

Ozsoyoglu G, Wang H. Example-based graphical database query languages. Computer. 1993; 26:25—
38.

Pearson, WR.; Lipman, DJ. Improved tools for biological sequence comparison. Proc. National
Academy of Sciences of the United States of America; 1988. p. 2444-2448.

Rigoutsos I, Floratos a. Combinatorial pattern discovery in biological sequences: The TEIRESIAS
algorithm. Bioinformatics. 1998; 14:55-67. [PubMed: 9520502]

Shahar Y, Goren-Bar D, Boaz D, Tahan G. Distributed, intelligent, interactive visualization and
exploration of time-oriented clinical data and their abstractions. Artificial Intelligence in Medicine.
2006; 38:115-35. [PubMed: 16343873]

Sherkat, R.; Rafiei, D. Efficiently evaluating order preserving similarity queries over historical market-
basket data. Proc. International Conf. on Data Engineering (ICDE); 2006. p. 19-30.

Shneiderman B. Direct Manipulation: A Step Beyond Programming Languages. Computer. 1983;
16:57-69.

Shneiderman, B.; Plaisant, C. Strategies for evaluating information visualization tools. Proc. AVI
workshop on Beyond time and errors novel evaluation methods for information visualization
(BELIV); ACM; 2006. p. 1-7.

Snodgrass R. The temporal query language TQuel. ACM Trans Database Systems. 1987; 12:247-298.

Snodgrass, RT. The TSQL2 temporal query language. Kluwer Academic Publishers; 1995.

Tansel A, Arkun M, Ozsoyoglu G. Time-by-example query language for historical databases. IEEE
Trans Software Engineering. 1989; 15:464-478.

Tansel A, Tin E. The expressive power of temporal relational query languages. IEEE Trans
Knowledge and Data Engineering. 1997; 9:120-134.

Tukey, JW. Exploratory Data Analysis. Addison-Wesley; 1977.

Vrotsou, K. PhD thesis. Linkoping University; 2010. Everyday mining Exploring sequences in event-
based data.

Vrotsou, K.; Forsell, C. Interacting with Information Symp on Human Interface. Springer; 2011. A
Qualitative Study of Similarity Measures in Event-Based Data, in: Proc. Human Interface and the
Management of Information; p. 170-179.

Vrotsou K, Johansson J, Cooper M. ActiviTree: interactive visual exploration of sequences in event-
based data using graph similarity. IEEE Trans Visualization and Computer Graphics. 2009;
15:945-52.

Wang, TD.; Plaisant, C.; Quinn, AJ.; Stanchak, R.; Murphy, S.; Shneiderman, B. Aligning temporal
data by sentinel events: discovering patterns in electronic health records. Proc. Annual SIGCHI
Conf. on Human Factors in Computing Systems (CHI); ACM; 2008. p. 457-466.

Interact Comput. Author manuscript; available in PMC 2013 March 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wongsuphasawat et al. Page 22

Wang TD, Plaisant C, Shneiderman B, Spring N, Roseman D, Marchand G, Mukherjee V, Smith M.
Temporal Summaries: Supporting Temporal Categorical Searching, Aggregation and Comparison.
IEEE Trans Visualization and Computer Graphics. 2009; 15:1049-1056.

Watai, Y.; Yamasaki, T.; Aizawa, K. View-Based Web Page Retrieval using Interactive Sketch Query.
Proc. IEEE International Conf. on Image Processing; IEEE; 2007. p. 357-360.

Wattenberg, M. Sketching a graph to query a time-series database. Proc. Annual SIGCHI Conf. on
Human Factors in Computing Systems (CHI) - Extended Abstracts; ACM; 2001. p. 381-382.

White, RW.; Roth, RA. Synthesis Lectures on Information Concepts, Retrieval, and Services. 2009.
Exploratory Search: Beyond the Query-Response Paradigm; p. 1-98.

Winkler, WE. Technical Report. Statistical Research Division, U.S. Census Bureau; 1999. The state of
record linkage and current research problems.

Wongsuphasawat, K.; Shneiderman, B. Finding comparable temporal categorical records: A similarity
measure with an interactive visualization. Proc. IEEE Symp. on Visual Analytics Science and
Technology (VAST); IEEE; 2009. p. 27-34.

Zloof M. Office-by-Example: A business language that unifies data and word processing and
electronic mail. IBM Systems Journal. 1982; 21:272-304.

Zloof, MM. Query by example. Proc. National Computer Conf. and Exposition (AFIPS); ACM; 1975.
p. 431-438.

Interact Comput. Author manuscript; available in PMC 2013 March 1.

Wongsuphasawat et al. Page 23

Interact Comput. Author manuscript; available in PMC 2013 March 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wongsuphasawat et al. Page 24

Figure 1.

Exact match interface (LifeLines2) showing the results of a query for patients who were
admitted to the hospital then transferred to the Intensive Care Unit (ICU) within a day, then
to an Intermediate ICU room on the fourth day. The user has specified the sequence filter on
the right selecting Admit, ICU and Intermediate in the menus, and aligned the results by the
time of admission. The distribution panel in the bottom of the screen shows the distribution
of Intermediate, which gives an overview of the distribution and has allowed users to select
the time range of interest (e.g. on the fourth day) by drawing a selection box on the
distribution bar chart.

Interact Comput. Author manuscript; available in PMC 2013 March 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wongsuphasawat et al. Page 25

Figure 2.

A screenshot of Similan, the predecessor of Similan2. Users can start by double-clicking to
select a target record from the main panel. Similan will calculate a score that indicates how
similar to the target record each record is and show scores in the color-coded grid on the left.
The score color-coding bars on the right show how the scores are color-coded. The users
then can sort the records according to these scores. The main panel also allows users to
visually compare a target with a set of records. The timeline is binned (by year, in this
screenshot). If the users want to make a more detailed comparison, they can click on a
record to show the relationship between that record and the target record in the comparison
panel on the top. The plot panel at the bottom shows the distribution of records. In this
example, the user is searching for students who are similar to Student 01. The user sets
Student 01 as the target and sorts all records by total score. Student 18 has the highest total
score of 0.92 so this suggests that Student 18 is the most similar student. Student 41 and
Student 18 both have one missing paper submission but Student 41 has a lower match score
so Student 18 has higher total score.

Interact Comput. Author manuscript; available in PMC 2013 March 1.

1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnue\ Joyiny Vd-HIN

Wongsuphasawat et al. Page 26

Scope
Ignore events outside this region

_Similan_2009Experi...

File Edit Settings Help Showing 246 / 246 records

= TEEs e e e e e
Query Panel ——} | custom # Ay | ~ Align by
A Ihtermediste
| R | Admit v
Sortby | Total Score vie © 11 220 2 4 H © 7D &0 W | v Similarity Search
P 1. Select Target (Drag and Drop)
Main Panel —— | j4ss3s0ss 0.90[TN A A" A fcu El custom
10/30/2008 i & riicr
Ext || 2. Select Categories
lude in Search
[JAT Score 0.96x0.25 = 0.24] [_|4s738727 o.03[[N A i A Special e ™
[AM Score 0.66x0.25 = 0.17 [11/14/2008 i A risrmediste j| Admit (246)
[A€ Score 0.83x0.25 = 0.21 [l vy =i
WAS Score 0.99x0.25 = 0.25 [N [Jassse155 o.ss [TN Ay Special (15)
'—‘ 10/17/2008
|| A foor e [cooro B| 1cu (261)
[T | [ess7oreo oss[NN 4™ L o : V|| intermediate (37)
Similarity Score /2008 o | | A Foor A Iniomjeciate | | m Admit 3| Floor (310)
x > 3
1. Avoid Time Difference (AT) T | Special i Exit (175)
2. Avoid Missing Events (AM) L_| 45634429 0.81 A icu - U L 3.Ch me T ek
3. Avoid Extra Events (AE) 10/29/2008 A vmedate | e . Choose t erence precision
4. Avoid Swapping (AS) LS A _’igi, | hour %
- m Floor R
Comparing Target: Custom (above) with 45635089 (Thu Oct 3 e 4:Specily Sasgeof t (optional)
Comparison Panel — plash 0 5. ® 9 1) OY OM 0D to OY OM 3D
m Admit bt) (Do)
e S |_Search! |
m iU [I e gt i & 19
| b 1
Iptarmediate
B Intermediate | X EE LTIV g ST 7z
‘ Bley 5
[o iD 20 3D 4D SO 6D 7D 8D] 90 10D 110 120 13D 14D 15D mm{w :
4

Figure 3.

Similarity search interface (Similan2) with the same query as in Figure 1. Users specify the
query by placing events on the query panel. To set the time range of interest and focus on
events within this range, users draw a red box. After clicking on “Search”, all records are
sorted by their similarity to the query. The similarity score is represented by a number that is
the total score and a bar with four sections. A longer bar means a higher similarity score.
Each section of the rectangle corresponds to one decision criterion, e.g. the top two records
has longer leftmost section than the third record because it has lower time difference so the
Avoid Time Difference Score (AT) is high, resulting in longer bars. Figure 4 shows how
users can adjust the weight.

Interact Comput. Author manuscript; available in PMC 2013 March 1.

1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Wongsuphasawat et al.

Figure 4.

0 3) Avold bxtra events [AE]
mn max 025

0 Avoid Swapiog 1251

Page 27

Similan2’s control panel has 2 tabs. The first tab is “search” as shown in Figure 3. Another
tab is weight and detailed weight — The users can adjust the weight of the four decision

criteria using the four sliders in the left figure. For more advanced customization, they can
even set the weight for each event type within each decision criterion by clicking on “more

details” (right figure).

Interact Comput. Author manuscript; available in PMC 2013 March 1.

1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Wongsuphasawat et al. Page 28

M&M Matching v.| M&M Matching v.2

Record#1 Record#1
tage) 8 c B Cc fww

Record#2 > Record#2
Acs s co

Record#1
)
Record#2
Record#1
ey
Record#2

Record#2

Figure 5.
(left) M&M Matching v.1 (right) M&M Matching v.2 — Events in each event type are
matched separately.

Interact Comput. Author manuscript; available in PMC 2013 March 1.

1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Wongsuphasawat et al.

XX X X X X X X X

EE T TS EIEIE:
n X ,‘(“""" X X
nXX,\ X
n X X X

Figure 6.
M&M Matching v.2 — Dynamic programming table

Interact Comput. Author manuscript; available in PMC 2013 March 1.

Page 29

1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuei\ Joyiny Vd-HIN

Wongsuphasawat et al.

Types of Difference

Record#1
(target) A B "
Record#2 —

A B time difference fo
Record#3 missing

A &
Record#4 extra—

A B € &
Record#5 T

A i il

tume ~

Figure 7.
Four types of difference: time difference, missing events, extra events and swaps

Interact Comput. Author manuscript; available in PMC 2013 March 1.

Page 30

1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuei\ Joyiny Vd-HIN

Wongsuphasawat et al. Page 31

100

Exact

=
i 1 5. Similarity

80

Performance Time (s)
3
R
—
+—d—

Figure 8.
Performance time a function of the interface type and the tasks (1-5). Vertical bars denote
0.95 confidence intervals.

Interact Comput. Author manuscript; available in PMC 2013 March 1.

1duasnuey Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

Wongsuphasawat et al.

Table 1

Page 32

Results of the analysis of subjective ratings given by the participants to the two interfaces while performed the

different tasks. “X” denotes exact match while “S” denotes similarity search.

Average Rating + SD
Question t(17) | p-value
X S

Q1: Easy to learn 5.67 +1.37 544 +1.29 0.61 p=.55
Q2: Query for sequence only 6.89+0.32* | 550+1.20 474 | p<.001
Q3: Query with time constraint 494+151 | 6.00+1.19* | —2.82 | p<.05
Q4: Query with uncertainty 411+137 | 578+1.06* | —5.15 | p<.001
Q5: Query similar records 394+043 | 6.78+0.43* | —7.99 | p<.001
Q6: Confidence-Find most similar | 5.83 +0.99 578 +1.17 0.15 p=.88
Q7: Confidence-Count 6.72+0.75* | 4.83+1.10 6.78 p<.001

“*” indicates preferred interface.

Interact Comput. Author manuscript; available in PMC 2013 March 1.

1duasnuey Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

Wongsuphasawat et al.

Algorithm 1

M&M Matching v.2

=
M B Q

13:

© ® N o g &~ w Nh R

n < length(X)
m < length(Y)
diff —n—-m
¢ « array[diff+1][m]
forj:=0tom—-1do
for i :=0to diff do
cost «— d(Xj+i, ¥j)
if j > 0 then
cost « cost + c[i][j — 1]
end if
ifi>0then
c[il[j] < min(cost, c[i — 11[j])
else
c[il[j] < cost
end if
end for

end for

Interact Comput. Author manuscript; available in PMC 2013 March 1.

Page 33

