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Abstract
The goal of this study is to create and examine machine learning algorithms that adapt in a
controlled and cadenced way to foster a harmonious learning environment between the user and
the controlled device. To evaluate these algorithms, we have developed a simple experimental
framework. Subjects wear an instrumented data glove that records finger motions. The high-
dimensional glove signals remotely control the joint angles of a simulated planar two-link arm on
a computer screen, which is used to acquire targets. A machine learning algorithm was applied to
adaptively change the transformation between finger motion and the simulated robot arm. This
algorithm was either LMS gradient descent or the Moore–Penrose (MP) pseudoinverse
transformation. Both algorithms modified the glove-to-joint angle map so as to reduce the
endpoint errors measured in past performance. The MP group performed worse than the control
group (subjects not exposed to any machine learning), while the LMS group outperformed the
control subjects. However, the LMS subjects failed to achieve better generalization than the
control subjects, and after extensive training converged to the same level of performance as the
control subjects. These results highlight the limitations of coadaptive learning using only endpoint
error reduction.

Index Terms
Adaptive learning; hand posture; human–machine interface; machine learning

I. Introduction
An increasing amount of research is dedicated to the development of systems that provide
severely disabled individuals with artificial means to control their mobility [1]–[4].
Electrical activities of the brain, eye or tongue movements, and joysticks or chin switches
are just a few of the possible sources of control signals being investigated for this purpose
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[5]. Such signals offer a rich set of data that can be interpreted by computer algorithms to
reveal the intent of the user. The user’s instructions can then be executed through the system
in the form of wheelchair navigation, control of a prosthesis, control of a computer cursor,
and more [3]. These types of systems are referred to here as human–machine interfaces
(HMIs).

Many current HMIs do poorly at helping subjects because they are difficult to control [3],
[7], [8]. Adding an algorithm that adapts the HMI based on the user’s performance of the
task may address this problem [4]. Such an algorithm must update, or “learn,” the mapping
from control signals to device output based on the user’s performance or strategy, while the
user simultaneously forms a representation of that mapping. This creates a dual learning
environment where the user and the adaptive algorithm are learning each other
simultaneously. The system must adapt with the users by making noticeable adjustments to
the mapping if it is to provide any benefit at all. Yet, if the system undergoes large and
frequent changes the users will have to constantly learn novel environments, which may
impair user performance.

We designed an experiment to test the effectiveness of two algorithms that adjust the HMI
mapping by adapting to subjects’ performance. We asked subjects to control a simulated
planar arm on a computer screen via finger movements that were captured by an
instrumented data glove [9]. In each set of movements, the mapping between the hand joint
angles and the arm’s free-moving tip (the “end-effector”) was updated so as to cancel the
mean endpoint error in the previous set of movements. This was done in two ways as
follows: 1) by a LMS gradient descent algorithm [10], which takes steps in the direction of
the negative gradient of the endpoint error function or 2) by applying the Moore–Penrose
(MP) pseudoinverse, which offers an analytical solution for error elimination while
minimizing the norm of the mapping matrix as an additional constraint. The latter method
corresponds to recalibrating the HMI anew after each set of movements, whereas the LMS
method carries a memory of the previous map.

We hypothesized that updating the mapping between hand posture and simulated arm joint
angles to cancel previous endpoint errors would improve subjects’ performance and ability
to generalize across the entire workspace. Performance varied greatly depending on the
algorithm used. Subjects exposed to LMS updates learned the task better than control
subjects (who performed the task without any adaptive algorithms). However, subjects
exposed to the pseudoinverse method failed to learn the task at all and performed much
worse than control subjects. Finally, subjects training with LMS mapping updates did not
show improved generalization. The ineffectiveness of the pseudoinverse method compared
with LMS suggests that update rules must exploit the redundancy in the finger-to-endpoint
mapping to do more than simply correct for endpoint error. The absence of improvement in
generalization for the machine learning groups may also indicate that basing the update rules
only on endpoint errors in training is an incomplete solution to the machine learning
problem in HMIs.

II. Procedure for Paper Submission
A. Experimental Setup

Subjects wore a CyberGlove (Immersion Corporation) on their right hand. The CyberGlove
captured the movements of each finger joint, palm arch, thumb rotation, and separation
between fingers via 19 resistive sensors. Data from the glove were sampled in real time
(xPC environment, Mathworks, MA) at a rate of 50 Hz.
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The 19-D vector of sensor values was mapped to the position of a cursor presented on a
computer monitor as follows: first, the glove signals were multiplied by a 2 × 19
transformation matrix to obtain a pair of angles [θ1, θ2]T. These angles then served as inputs
to a forward kinematics equation of a simulated two-link planar arm to determine the end-
effector location (2). Fig. 1 graphically shows the equations for clarity

(1)

(2)

where ŝ = [l1, l2, x0, y0]T is a constant parameter vector that includes the link lengths and the
origin of the shoulder joint. The virtual arm was not displayed except for the arm’s endpoint,
which was represented by a 0.5-cm-radius circle. Subjects were given no information about
the underlying mapping of hand movement to cursor position and were not told that they
controlled the joint angles of an arm. Equation (2) adds a nonlinear component to the
transformation from glove to cursor coordinates.

The mapping matrix A was initially determined by having the subject generate four preset
hand postures that were identical for all subjects. Each one of these postures was placed in
correspondence with one of four “corners” inside the joint angle workspace. The corners of
the computer screen were not used, because after the kinematic transformation not all
portions of the workspace on the screen would necessarily be reachable. The A matrix was
then calculated as A = Θ·H+, where Θ is a 2 × 4 matrix of angle pairs that represent the
corners of the workspace, and H+ is the MP pseudoinverse of H, the 19 × 4 matrix whose
columns are signal vectors corresponding to the calibration postures. Using the MP
pseudoinverse corresponded to minimizing the norm of the A matrix in the Euclidean metric.
As a result of this redundant geometry, each point of the workspace was reachable by many
anatomically attainable postures. The initial calibration postures were chosen empirically
such that all points in the convex workspace were reachable. During calibration, subjects did
not see the cursor and thus had no information about the correspondence between hand
postures and cursor locations.

A separate calibration procedure was carried out for the purpose of reconstructing the
postures of the hand from the vector of glove signals. This was done by parameter
estimation using data obtained as subjects moved their fingers and thumb together, keeping
a fixed point of contact between them [11]. This procedure was repeated once for each
finger to develop a complete model of the subject’s hand [12].

B. Protocol
Seventeen subjects each gave their informed, signed consent to participate in this
experiment, which was approved by Northwestern University’s Institutional Review Board.
Subjects were divided into three groups, the LMS group, the recalibration group (MP), and
the control group. For two groups (LMS: six subjects; MP: six subjects), the hand-cursor
map was changed adaptively after each training epoch via LMS and pseudoinverse,
respectively. For the control group (five subjects), the map did not change throughout the
experiment.

Subjects performed reaching movements to four different targets that appeared in random
order on the screen. Once a new target appeared on the screen, the subject had unlimited
planning time before starting the movement. Reaching error was calculated 800 ms after
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movement onset, and the subject was informed of this “deadline” by a color change in the
target (Fig. 2). We characterized endpoint error in this way based on two considerations.

1. Monitoring reaching error when subjects are offered visual feedback of movement
is not feasible in practice because subjects will only come to rest once they have
reached the target, therefore achieving zero error. A possibility would have been to
define the reaching error based on the first time the cursor reaches a stop. However,
in practice, it is often impossible to establish with certainty where the first reaching
attempt terminates and the corrective movement begins, because this transition
need not take place at zero speed.

2. While identifying the first part of the movement in a reaching sequence is difficult
and somewhat artificial, it is always possible to define (albeit arbitrarily) a goal for
the subject to be reached. In this case, the goal is to get as close as possible within
800 ms—a time window that is comparable with a normal reaching movement of
the arm.

This protocol allows us to chart an explicit learning curve of endpoint errors with constant
visual feedback.

Subjects were instructed to minimize this error by getting as close as possible to the target
before the target changed color. However, subjects had unlimited time to acquire the target,
and the next trial was initiated only after the cursor remained within the target for 1 s.
Subjects performed 24 movements per epoch with random target order comprised of exactly
two reaches in each direction to each target in 11 daily epochs. To test generalization, a
different set of four targets was used in three of the 11 daily epochs (Fig. 3).

Table I shows the breakdown and order of the experiment. Generalization epochs were
preformed once before training to establish a benchmark of comparison, once during
training to assess progress, and once after training.

Between each training epoch, the A matrix was updated for the subjects in the LMS group
using the LMS learning algorithm. The A matrix was updated for subjects in the MP group
using the MP pseudoinverse in a recalibration operation. Control subjects began the
experiment with the original matrix created during calibration A0 and used only this matrix
throughout the experiment. Subjects in the machine learning groups were not told that the
mapping was updated between epochs. Data from generalization epochs were not used to
update or influence the mapping in any way.

Subjects in the control and LMS groups performed the experiment for three days, such that
the final day was no later than four days after the initial day. The MP group performed the
experiment over only one day, unlike the other groups, due to prohibitive frustration and
lack of effective learning.

C. Analysis/Statistics
Endpoint error was defined as the Euclidean distance between the cursor and the target 800
ms after movement onset (see protocol). Endpoint errors were averaged over all movements
by epoch. This process resulted in 24 training values per subject (eight epochs/day * three
days) and nine generalization values per subject. The values obtained for all epochs of each
subject were then normalized by the first epoch and averaged together.

Trajectory linearity was measured as the maximum lateral excursion to the straight-line
distance from the start to end of the entire movement divided by the distance between the
start and end of the movement [9]. This measure is termed as the aspect ratio of the
movement. A straight line has an aspect ratio of zero.
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Hand postures were recorded when the subject placed the cursor in the target and held it still
for 1 s. Postures were collected for each movement and separated into sets by the four
training targets. Hand posture variance was then calculated for each of these four datasets as

(3)

where N is the number of total movements in an epoch, and hi is the ith hand posture in the
set of postures h, and E(h) is the expected value of h. Each of these four variances was
averaged by subject and by epoch.

As a metric for change in mapping, we used d = ||An − An + 1||, where An is the previous
mapping, An + 1 is the updated mapping, and || · ||is the norm operator, which yields the
largest singular value of its argument.

A 95% confidence interval was calculated using the Student’s t-statistic for error bars shown
in Figs. 4, 5, 7, 9, 10, and 11.

D. Machine Learning
After each training epoch, the transformation matrix A was updated for the subjects in the
LMS group using the gradient descent algorithm, LMS [10], [13]. LMS is an iterative
procedure, which seeks to minimize the square of the performance error norm by iteratively
modifying the elements, ai,j, of the A matrix (4). The error was calculated as the average
distance in joint space from the actual configuration to the target configuration of the virtual
arm for each target. To take into account the nonlinear character of the joint-to-endpoint
map, we considered for each target location, only the arm configurations that were included
within a small neighborhood of each other. More precisely, for each epoch, we gathered
together K movements to the same target. We then averaged the K joint angle pairs at the
moment of endpoint error calculation. Thus, we derived a pair of average shoulder and
elbow angles. This joint angle pair was put through the arm forward kinematics to yield a
cursor location. However, because of the nonlinearity in arm kinematics, this location need
not coincide with the average calculated directly from the cursor data. Using the notation
introduced earlier, if θ1, θ2, …, θK indicate the K joint angle pairs and

indicate the corresponding cursor locations, then

To reduce this nonlinear effect, we limited the LMS calculations to configurations that were
close enough to each other to insure that
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Elements of the A matrix were then updated according to

(4)

where m is the iteration index, μ is the step size of a single iteration, ei (n) is the error
function evaluated in joint angle space at a particular dimension, i, and a particular
movement n. Because the LMS algorithm was run offline, the otherwise important choice of
the value of μ became much less critical. The algorithm was allowed to run after each
training epoch until it converged to an acceptable joint-angle error. This was set empirically
as ε = π/64.

The LMS algorithm was subject to an additional constraint. As the variance of the h vectors
decreased over the course of training, the LMS algorithm would terminate if the difference
between the old and new A matrices became too large. Specifically

(5)

Here A is the mapping, N is the index of the epoch number, and the equation for variance is
given by (3). This mechanism aimed at improving learning stability by forcing the algorithm
to make only small changes when a subject had settled into a particular strategy.

The MP group was exposed to the MP pseudoinverse in place of LMS

(6)

where H is a matrix of average h vectors each taken 800 ms after movement onset and Θ is
the matrix of targets in joint angle space. The MP pseudoinverse H+ gives the minimum
norm solution for A. This process corresponds to carrying out the initial calibration
procedure after each epoch, based on the average h vectors. To limit the amount of variation
in the updated A matrix, the original four calibration postures were also included in the Θ
and H matrices.

III. Results
A. Training

As subjects practiced controlling cursor movements through manipulation of their hand
posture, their movements became less variable and more accurate, consistent with Mosier et
al. [9]. The task in this study is different in that the subjects here were always provided with
visual feedback of the controlled cursor. Furthermore, they controlled the nonlinear
kinematics of a simulated two-joint arm, although only the cursor displaying the endpoint of
the arm was visible to them. Subjects were able to demonstrate rapid and significant learning
despite this added layer of complexity and nonlinearity. The pooled data indicates that final
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error, after three days of practice, was reduced to approximately 30% of the initial error in
the control and LMS groups (Fig. 4). This final level of performance corresponds to 1.86 ±
0.7 cm for control and 2.10 ± 0.8 cm for the LMS group at 95% confidence.

The LMS group reduced error faster than the control group but ultimately seemed to
converge to the same level of final performance. The substantially faster improvement
demonstrated by the subjects training with LMS was the primary benefit seen by the group.

The time required for subjects to complete each movement was also recorded, and while the
differences were not significant, the average time to completion of epochs 4–20 were all
lower (by as much as 2 min) than the control group times. Both groups converged to roughly
70 s per epoch by epoch 21, shown in Fig. 5.

Fig. 6 qualitatively shows the general increase in task performance and movement linearity
by displaying sample trajectories from two typical subjects, one in the control group and the
other in the LMS group. Each panel illustrates performance at a particular stage of the
experiment: 1) prior to any significant training; 2) at a stage in which LMS subjects
outperformed control subjects; and 3) at the end of the third day of training. Prior to training,
controlling the cursor was exceedingly difficult, as shown by high errors and erratic looking
trajectories in panel a of Fig. 6. Panel b shows that by the sixth epoch, the LMS subject
performs relatively straight movements with much improved endpoint error, while the
control subject still displays large curvature and error. After training, in panel c, subjects
from both groups exhibit well-established and quasi-linear movements of the cursor.

B. Dimensionality Reduction and Behaviors
Experimental evidence has suggested that in movement tasks where there is visual feedback,
moving straightly in the visual space with minimal jerk dominates the control strategy [6],
[14], [15]. In our experiment, subjects were not instructed to move along rectilinear
trajectories to reach targets but as they became proficient at the task the cursor trajectories
became consistently more rectilinear.

Subjects in both groups began to make more rectilinear cursor movements almost
immediately and continued this trend for approximately ten epochs before improvement
leveled off. However, there was no significant difference in the trend toward trajectory
linearity between subjects training with the LMS algorithm and the control group. Aspect
ratio variability was quite high at the onset of the experiment but decreased sharply through
training to approximately 0.35.

Subjects learned to position the cursor on various fixed-point targets in the 2-D screen space,
implying that they were able to solve the underdetermined problem of mapping points in 2-
D into the much larger dimensionality of the glove/hand-space. Next, we examine how
subjects solved this highly redundant problem and compare strategies across experimental
groups.

Fig. 7 shows the variability of hand postures once the subjects’ cursor remained stationary in
the new target. The variance of postures of each subject was calculated during a single
epoch, while the mapping remained constant for both experimental groups. Then it was
averaged across subjects. The LMS group used a strategy that generated significantly lower
variance of hand postures than the control group in reaching the training targets. The control
subjects used a wider variety of postures to reach targets.

If all subjects gravitated towards the use of a particular set of hand postures to reach the
training targets in the face of a highly redundant mapping, this might suggest that there is a
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very specific optimal control strategy being employed by the motor system to deal with the
familiar kinematics of the hand in an unfamiliar high-dimensional task. To investigate this
possibility, we wish to determine whether subjects solved the redundant mapping problem
the same way, despite the existence of many possible solutions.

In each row in Fig. 8, a set of postures is shown for a single subject. The top two rows show
results from LMS subjects and the bottom two show results from control subjects. Each
column was obtained from a single epoch, and each hand image shows the posture of the
hand after one movement, when the subject terminated all corrective actions and the cursor
was stable in the target. Each hand image was taken at the same target. The dashed lines
separate subjects that did not use the same mapping, except during epoch 1 where the
mapping is the same for all subjects by design. LMS changes the mapping during the
experiment, which strongly influences the hand postures used by the subjects, making it
difficult to compare the evolution of their choice of postures. Intrasubject posture
comparisons in Fig. 8 verify trends of reduced posture variability seen in Fig. 7. The
subjects’ postures from both groups appear to be more consistent from epoch 12 to 24 than
from epochs 1 to 6.

Using a one-way multivariate analysis of variance (MANOVA) for repeated measures, with
final 19-D h vectors as the dependent repeated measure and each of the five control subjects
as groups of the independent factor, we tested the null-hypothesis that the mean of each
subject’s h vectors were the same in the high-dimensional glove signal space [16]. The h
vectors were drawn from the last epoch of training where posture variance reached a
minimum (Fig. 7). This test was repeated once for each target and allows us to reject the null
hypothesis for all targets at p < 0.0001. Interestingly, for target 1, the MANOVA fails to
reject the hypothesis that the means reside in a 2-D manifold within the sensor space. This
indicates that while the hand postures used for this target are indeed different across
subjects, they may be contained in a lower variance space defined by the eigenvectors of the
internal group sum of squares matrix.

It is evident that regardless of experimental group each subject used different sets of hand
postures to reach the same targets. These differences highlight the redundancy involved in
this experiment. Many solutions are attainable and equally feasible and not significantly
limited by the kinematics of the hand.

We used principal component analysis (PCA) to examine the primary dimensions along
which the final hand postures were most variable. Through training, subjects reduced the
dimensionality of their hand postures. By the end of training, the first two principal
components of the glove signals were sufficient to account for roughly 80% of the total
variance (Fig. 9). This is consistent with other literature on the use of PCA for hand posture
analysis during learned dexterous manipulation [17]. It does not appear that LMS enhanced
or facilitated this reduction of dimensionality.

It has been proposed that the nervous system is primarily concerned with “correcting only
those deviations that interfere with task goals,” and therefore, would confine variability of
movement to nontask relevant dimensions [18]. However, experiments that lead to such
conclusions were targeted at tasks in which subjects had the benefit of lifelong experience,
such as standard reaching movements with path constraints. Here, in contrast, we were
concerned with the development of novel reaching skills. Our results suggest that, regardless
of the manifold to which variance is constrained during movement, reducing the
dimensionality of the control signals is a direct expression of motor learning.
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C. Generalization
The control and LMS groups’ endpoint error learning curves for the generalization targets
were equivalent, and both groups steadily reduced their error throughout the experiment (not
shown). This indicates that both groups developed a general representation of a mapping
that they used to effectively reach targets for which they had not received any training. If
subjects had instead simply memorized the hand postures required to reach the training
targets, we would expect the errors in training to be much lower than in generalization,
where subject received only three-eights the practice. However, in both the training and
generalization, epochs’ error reduction in both groups reached approximately 30% of the
initial performance error.

D. LMS versus Pseudoinverse
LMS is traditionally an algorithm used to track the minimum of a changing error function in
real time. In this experiment, however, LMS is implemented between blocks of movements
off line to search for the minimum. Why use LMS at all then? Why not simply solve the
least squares underdetermined problem, (6), directly using the MP pseudoinverse? The
recalibration (MP) group performed the experiment using mappings that were updated based
on the pseudoinverse solution and met with little success.

Our results show that using the MP method resulted in unstable performance to a degree that
prevented the subjects from even being able to complete the experiment due to frustration.
Data are shown in Fig. 10 for six MP subjects who completed eight training epochs. The
substantial intrasubject variability of the MP group prevents a detailed learning time-course
comparison with the LMS group. However, there is a significant difference in performance
between the first and eighth epochs of the LMS group while there is no significant
difference in the performance of the MP group. This lack of evidence for learning and the
massive variability in performance indicates a failure of the pseudoinverse method to
facilitate an improvement in performance.

Fig. 11 illustrates the norm of the difference between A matrices as a percent of the norm of
previous epoch for MP and LMS subjects. The LMS algorithm is changing the norm of the
mappings significantly less than the pseudoinverse solution used with the MP group.

One possible explanation for the decline in performance is that the quantity ||AMP − AN −1||
is unconstrained, where AMP is the mapping created by the recalibration method and AN−1 is
the previous mapping. This means that the solution of the pseudoinverse problem does not
care about how far away, in the high-dimensional space of possible mappings, the new
mapping is from the old one. Large changes in the map are likely responsible for
unfamiliarity with the new mapping. In order to limit the amount of change induced by the
pseudoinverse recalibration, the original calibration postures were concatenated with the
subject’s data from each epoch, H in (6). Lack of increased overall performance persisted
despite these added conditions to the linear system.

It is important to point out that both the MP and the LMS algorithms are capable of
converging to an exact solution for the average reaching error Σ ||θ ̂i − Ahi || = 0. This is a
consequence of the abundance of free parameters in the A matrix. However, the LMS
algorithm progresses iteratively towards zero reaching error starting from the original map.
While this does not impose an explicit constraint on the norm of the difference between the
original map and the updated mapping, the LMS algorithm, by design, will terminate as
soon as the desired condition is met. This process, therefore, limits the amount of change
from the initial map, unlike the MP method that minimizes the error signals without
reference to a starting point.
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IV. Conclusion
We investigated whether machine learning algorithms based on endpoint error reduction can
help subjects learn to operate a nonlinear system using control commands from a higher
dimensional signal space. In our experiment, finger joint angles served as a proxy for more
typical HMI signals—such as EEG and electromyography—and were mapped linearly to
joint angles of a planar arm, then by forward kinematics to the visible end-effector, in (1)
and (2). The rationale for this approach in two steps was to separate the redundancy and the
nonlinear features of the glove-to-endpoint map. The use of a linearly redundant map in (1)
insured integrability of the local pseudoinverse [19]. The particular form of the nonlinear
transformation in (2) matches the type of smooth nonlinearity that is typical of segmental
kinematics.

Subjects in the LMS group achieved better performance with less training than the control
group. However, both groups ultimately reached the same level of proficiency after
extended training, and both groups performed equally well in generalization. Surprisingly,
subjects in the MP group failed to improve their performance despite the MP pseudoinverse
updating the mapping to account for previous endpoint errors.

A. Assessment of the Learning Algorithms
For an underconstrained set of linear equations, the MP pseudoinverse selects the minimum
Euclidean norm solution out of the set of all possible solutions. In this case, the
pseudoinverse finds the “smallest” transformation that maps the endpoints of a subject’s
cursor movements from the most recent epoch directly onto the targets. The LMS algorithm
finds a different solution that maps the endpoints from the previous epochs to the same
targets. LMS iteratively reduces the error by walking down the error gradient of each
element in the transformation, starting from the previous values. For both the LMS and MP
methods, if the subjects were to produce the exact same set of hand postures as in the
previous epoch, they would each obtain zero average error.

Subjects who trained with the MP method performed worse than a control group that
practiced the task without the aid of any machine learning algorithm (Fig. 10). In fact, they
were not able to learn the task at all. On the other hand, subjects who trained with the LMS
machine learning reduced endpoint errors faster than control subjects who trained without
adapting the map.

How can it be that two solutions, which equally compensate for error, result in such
drastically different performances? Whenever there is online feedback, the path that the
cursor takes to the target has a strong influence on how the subject learns the mapping [6],
[14]. This control strategy is so central to motor learning that greatly altering the trajectory
that the cursor takes to the target by changing the overall mapping seems to suppress the
subject’s ability to form a representation of the mapping. Although neither the
pseudoinverse nor the LMS algorithm explicitly place constraints on the resulting trajectory
while updating the mapping, the LMS algorithm tends to preserve the general shape of
trajectories while the pseudoinverse does not.

The LMS algorithm is able to preserve trajectories because it tends to implement small
changes in the mapping while minimizing the error. This is because the initial condition of
each coefficient in the A matrix is set to its value in the previous epoch. As a consequence,
the LMS algorithm finds a solution that is similar to the solution found in the previous epoch
without the need to incorporate calibration data. (Similarity of the A matrices can be
measured as the norm of the element-wise difference of the two mappings.) The
recalibration using the pseudoinverse, on the other hand, finds the solution to (1) without
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any regard to how similar the solution is to the previous mapping. When performing the
pseudoinverse calculation there are, in fact, no initial conditions at all, which often causes
trajectories from one epoch to the next to look very different.

The failure of the MP method and the limitations of the LMS methods (similar
generalization and performance that plateaus at the same level as control group) indicate that
machine learning based on endpoint errors alone may not be the best tool for acquiring an
effective internal model of the map implemented by an HMI.

B. Kinematics and Variability
Our data show that the control subjects used many more hand postures than the LMS
subjects to reach the same targets. This larger hand space variability may have contributed to
the control group improving performance more slowly than the LMS group. However,
learning a greater number of successful postures on the training set did not lead to better
generalization, as both the LMS and control groups performed equivalently in generalizing.

The variable mapping causes LMS subjects to use different postures from one another (Fig.
8). However, the fact that control subjects also use different postures from each other
indicates that hand kinematics and biomechanical constraints do not dominate their strategy.
If these were the primary influence in determining the postures that subjects used to hit the
targets, we would expect to see all control subjects using roughly the same postures, insofar
as everyone has very similar hand kinematics and biomechanical constraints.

It is possible that the LMS algorithm actually corrals subjects into lower variance
performance by rewarding posture consistency. After each epoch of movements, the
algorithm changes the A matrix such that the postures subjects made most often in the
previous epoch will now place the cursor near the target. When the mapping is updated it is
likely that some subset of infrequently used or unused postures that previously resulted in
hitting a particular target will now be unsuccessful. This may force LMS subjects to
continue to use the familiar postures that the LMS optimized for on the previous epoch as
opposed to learning a new subset of postures created by the updated mapping. Control
subjects would have no such bias because the transformation does not change. They are able
to train on a larger set of invariant postures that result in target hits and may be equally
successful for any postures that work.

Notably, both the LMS and control groups exhibited strong preferences toward rectilinear
movements despite operating in a nonlinear control space. This raises the possibility of
using the tendency toward rectilinear movements by including deviation from linearity in a
new formulation of the LMS cost function. Combining error history with path linearity may
lead to improvements in the machine learning algorithm, such as a lowering of the learning
floor or an increase in the rate at which users learn the mapping.

C. Implications for HMI Applications
Developments in brain–computer interface technology are beginning to supplement
sophisticated neural decoding methods with performance-based algorithms that account for
the cortical plasticity associated with learning. Notably, Taylor et al. have employed an
effective coadaptive movement prediction algorithm in rhesus macaques to improve
cortically controlled 3-D cursor movements [24]. Using an extensive set of empirically
chosen parameters, they updated the system weights through a normalized balance between
the subject’s most successful trials and their most recent errors, resulting in quick initial
error reductions of about 7% daily. After significant training with exposure to the coadaptive
algorithm, subjects performed a series of novel point-to-point reaching movements; neither
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subject’s performance was appreciably different from the training task, indicating that they
were able to generalize successfully.

Preliminary studies have shown that for human subjects operating a computer cursor with a
brain–machine interface (BMI) system via long-term implanted cortical electrodes in motor
cortex [27], linear filters that correlate neural activity to desired movement trajectories
perform comparably or better than correlates in monkeys [25], [26]. Studies with human
subjects also indicate that training on one platform, such as a neural controlled cursor, can
be easily generalized to the control of a simple robotic manipulator [27], which lends
support to studies that test adaptive algorithms using cursor control.

Much of the research being done on neural decoding algorithms used to control a neural
prosthesis focus on final efficiency or average tracking errors in completing discrete tasks,
not on the learning rates of the users [28]. These performance measures make it difficult to
quantitatively compare results achieved by these methods to our own. Some nonlinear
approaches used to assist nuanced tracing tasks, such as Bayesian decoders [29] and
nonlinear cascade system models [30], do well at facilitating consistent successful
movements. However, linear filters, like the LMS considered here, have been shown to be
sufficient for controlling robotic manipulators [28].

In this experiment, subjects carried out a task analogous, in three key ways, to controlling an
actual robotic manipulator using multiple control signals from muscles or
electroencephalographic activities. First, by employing many available degrees of freedom,
subjects performed a task that is of an inherently lower dimensionality. In common HMI
applications, the dimensionality of available control ranges from common 64 electrode
arrays [3] to as low as 20 [1], for EEG devices, and these signals always control low-
dimensional systems. Second, due to biomechanical coupling, many finger joint angles are
not independent of one another. Many HMI signals have the same feature. For instance,
noninvasive scalp electrodes capture local field potentials created by the activity of large
populations of neurons in the brain, many of these channels are not independent of each
other, perhaps making the user’s dimensionality reduction problem more complicated [20].
Third, many devices controlled through HMIs are nonlinear, such as wheelchair position or
robotic manipulators [21]. This final issue is the primary motivation for introducing a
nonlinear device into the system in our experiment.

In general, there are three levels of adaptation that must occur in an HMI to facilitate the
user’s learning if the interface is to be successful. The first is feature extraction and filtering
out the signal noise. The second is long-term adaptation to changing states and signal drift.
The final level is an adaptation to the subject’s performance as it relates to learning the skills
needed in the actual task [4].

This final level is perhaps the least well investigated, because feature extraction algorithms
or signal drift filters that are normally crucial when dealing with complex brain or noisy
muscle activity are at the center of nearly all current HMI studies [2], [8], [22], [24], [27]. In
contrast, the CyberGlove captures finger kinematics robustly, without drift, and with high
precision [23]. This allows the focus of the study to rest on algorithms that adapt to user
performance of the task and not on elaborate input filtering techniques.

Adaptation by the interface to the subject’s actual performance is necessary to facilitate the
motor learning required to effectively control a device through an HMI [4]. The
experimental framework developed for this study is not limited to the two particular
algorithms considered here and will allow the testing of a broader class of performance-
based adaptation algorithms without contamination due to the use of other complex,
nonstationary signals.
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The next step in developing an HMI machine learning algorithm, therefore, can use this
experimental paradigm to assess its effectiveness. These algorithms must include criteria
that preserve trajectories and incorporate a cost function that is explicitly sensitive to
movement smoothness and/or linearity. This will potentially allow subjects to generalize
across all regions of the workspace more effectively and improve performance more
quickly.
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Fig. 1.
Hand-cursor mapping. Through finger manipulation subjects modulated the components of
the h vector, thereby controlling the two joint angles of a planar two-link arm on the screen.
The arm itself was not visible to the subjects, only the tip of the arm was revealed as a
cursor. The tip location was calculated via standard forward kinematics ζ (θ, ŝ) in (2). The A
matrix, established initially by a four-posture calibration, served as the mapping, between
the hand posture and the configuration of the planar arm. During machine learning, the A
matrix was adjusted so as to decrease errors in subject’s movements. The parameter vector ŝ
was set with a y-value below all targets and an x-value equidistant from the training targets;
the length of both links were set to 11.25 cm.
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Fig. 2.
Movement protocol. Inactive: the target appears and the subject is allowed unlimited
planning time prior to movement onset. Counting down: the subject initiates the rapid
movement toward the target. Expired: 800 ms after movement onset endpoint error is
calculated, after which point the subject makes corrective movements to acquire the target.
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Fig. 3.
Target scheme: Black targets were training targets and white targets were generalization
targets. The dashed lines connecting the training targets mark each one of the movements
subjects were required to make. Connecting lines are not shown for the generalization
targets. Generalization targets were a 40° rotation of the training target set.
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Fig. 4.
Average endpoint error approaches 30% of the initial error and the LMS group reaches this
level of performance faster than the control group. Squares refer to control subjects and
triangles to LMS subjects. Dashed vertical lines indicate daylong breaks from one epoch to
the next. Black bars represent 95% confidence intervals.
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Fig. 5.
Average time to completion of an epoch (24 movements) drops faster for the LMS group
(triangles) than the control group (squares). This trend, in combination with endpoint error
reduction in Fig. 4, further supports the notion that the LMS machine learning algorithm
facilitates subjects’ rapid learning of the system but does not improve performance after
significant amounts training. Black bars represent 95% confidence intervals.
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Fig. 6.
Representative trajectories across training. Each panel shows four cursor paths of a typical
LMS subject (light) and four paths of a control subject (dark). In panel a, movements are
taken from epoch 1, prior to training. In panel b, movements are taken from epoch 6, during
training. In panel c, movements are taken from epoch 24, after training. Dashed lines
represent the border of the visible workspace, and units are in centimeters.
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Fig. 7.
Variance of the vector of glove signals h for LMS (triangles) and control groups (squares).
Variance is calculated in Glove Sensor Units and each of the 19-D ranges from 0 to 255 (see
methods). Black bars are 95% confidence intervals.

Danziger et al. Page 22

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2012 February 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 8.
Hand images were reconstructed from the data using the kinematic model from [12]. These
postures were collected from four subjects, when the cursor was at the same target. In each
row, there are postures from one subject at each of the four epochs 1, 6, 12, and 24. The top
two rows are from subjects who trained with LMS, the bottom two rows are postures from
control subjects who did not train with LMS. Subjects separated by dashed lines indicate
that they used different mappings.
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Fig. 9.
Contribution of the two highest principal components to the fraction of total variance in the
data. Data were averaged across subjects in each group. The data set contains the variance of
all of the subject’s hand postures once they reached their target. Squares are the control
group and triangles are the LMS group. Black bars represent 95% confidence intervals.
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Fig. 10.
Endpoint error for MP subjects shows their lack of improvement. Black error bars are 95%
confidence on the data. For clarity, only one side of the confidence interval is shown for the
MP group. MP subjects are circles, control subjects are squares, and LMS subjects are
triangles. Control and LMS data are reproduced from Fig. 3.
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Fig. 11.
Beginning at the second epoch, each point represents the norm of the difference between the
mapping in the current epoch and the previous epoch for two typical subjects, divided by the
norm of the mapping in the previous epoch and converted into a percentage. The plot shows
that LMS changes the mapping less on average than the pseudoinverse. Data for LMS are
shown as triangles; data for MP are shown as circles.
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