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Abstract
In this review article we consider some of the current integral equation approaches and application
to model polar liquid mixtures. We consider the use of multidimensional integral equations and in
particular progress on the theory and applications of three dimensional integral equations. The IEs
we consider may be derived from equilibrium statistical mechanical expressions incorporating a
classical Hamiltonian description of the system. We give example including salt solutions,
inhomogeneous solutions and systems including proteins and nucleic acids.

I. Introduction
Theoretical techniques and methods used to study liquid state solutions and the effects of
fluid species on model solutes vary in their complexity, their numerical convenience and
their effective return in the accuracy of the predicted qualities of the model. In this
contribution we will consider the promising use of multidimensional integral equations and
in particular progress on the theory and applications of three dimensional integral equations
(3D-IEs).

The IEs we consider may be derived from equilibrium statistical mechanical expressions
incorporating a classical Hamiltonian description of the system. This provides a means to
calculate the distribution functions, which are statistical averages over the configuration
space of the equilibrium system. The functions obtained from the IEs we consider here
account for the atomistic nature of the fluid species allowing for a chemically relevant
mechanistic description of the solution and its thermodynamics. In theory, the IEs could give
exact results for a model system, and would, if the exact equations were numerically
tractable. However, this is not the case and approximations are used to obtain mathematical
expressions which are numerically operational.

Simulations are the most accurate means to study solutions when statistical convergence can
be achieved. That often takes an impressive computational effort to achieve. The observable
properties of the system may then be calculated from the ensemble weighted averages of the
microscopic configurations. Results are often meaningful and accurate for the model but
come at a high computational cost and are limited to systems where statistical convergence
is obtainable. Low concentration solutions suffer from sampling issues and such large
systems often have a slow rate of convergence. Moreover, simulations do not allow for
analytic analysis, asymptotic expansions etc.

This article is concerned with some of the current integral equation approaches and
application to model polar liquid mixtures. The IE approach to studying fluid mixtures has
proven to be a qualitatively reliable method for obtaining the liquid structure and
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thermodynamic properties through its many applications throughout the years [1–3] but with
improvements upon the theory surely its quantitative ability will increase with time. The use
of IE methods for fluid state properties have oscillated through the years relying on
advances in approximate techniques, computational hardware and creative intuition by the
researchers in this area of science. They are far less computationally demanding than
simulation but still more cumbersome than continuum solvent approaches like finite
difference solutions to the Poisson-Boltzmann equation.

Early applications of IE methods to study polar fluids involved using the mean spherical
model [4–6]. The methods for which molecular shape was critical were first addressed in
fluids using RISM theory [7, 8]. Extensions of the method for calculating site-site radial
distribution functions for polar and ionic fluids have been dubbed extended RISM or
XRISM theory[9–11]. Going beyond radial information to look at higher dimensional cuts in
the pair correlation required extending the theory and numerical analysis. Its application[3]
to new models, such as biological molecules including proteins and poly-ions such as
DNA[12–16] have yielded insights. Some recent progress in three-dimensional (3D)
techniques and theory[13] have increased interest in this area of research. These efforts in
combination with progress in describing ionic fluids have enabled IE methods to be used to
describe biological molecules close to their natural physiological conditions. The range of
possible applications of the IE approach have existed for some time but only recently have
the ideas been applicable to such a broad range of liquid systems using the 3D methods.[3]

Recently much effort has been applied to the extension of 3D-IE methods to model fluid
mixtures containing a solute species at infinite dilution in a solvent to calculate the
thermodynamic properties of the system [12–15]. These types of applications are ideal for
liquid-solid interfaces[17, 18] and large bio-molecules where the structural stability or free
energy is analyzed as a function of the solvent parameters and composition [17–21]. The
3D-IE functions also give more detailed structural positioning of the solvent species in
reference to the orientation of the solute molecule.

Many efforts in IEs are focused on developing more accurate and convenient
approximations to better predict the quantitative properties of the models [22–25]. However,
the applicability of the most accurate and time consuming methods are often limited to more
elementary molecular models such as diatomics.[26] A reason for continuing such efforts in
IEs is because they are currently one of the most systematic ways to mathematically
calculate the thermodynamics of the bulk system from the microscopic interactions based
purely on statistical mechanical considerations.

This article is intended to give a review and update on applying IEs to polar and ionic fluids
composed of interaction sites. While we have used examples from the work in this
laboratory the work by numerous authors are discussed at each level of theory in an attempt
to illustrate the triumphs and deficiencies of the IE methods. Section II contains an
introduction to liquid state integral equations. Section III contains the complementing
closure relations proposed for the IEs. Section IV shows the typical interaction potentials
between sites and there numerical application. Section V contains the mathematical
equations for calculating the thermodynamics from the correlation functions within the
closure relations. Section VI is divided into sections for the different types of IEs used to
calculate the correlation functions for atomic and molecular fluids. Section VII contains the
numerical routines commonly utilized and section VIII contains the epilogue.

II. Integral Equations
The derivation of the virial equation and its purpose in calculating the thermodynamics for
dilute ideal gases is a well understood application of theoretical tools to describe the gaseous
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state. Although the virial equation can be improved upon by calculating higher order
coefficients in the density expansion it is unable to accurately describe the behavior of dense
fluids such as the liquid state [27, 28].

The methods for dense fluids most often rely on calculating the pair distribution functions
(PDFs) for the solution species and then using these functions to calculate the
thermodynamics of the liquid state[29, 30]. The pair distribution function, g(r), for
homogeneous liquids is a 2-body property and the argument, r, is a function of the two body
positions for both distance and orientation relative to each other, r = r ⃗1 – r ⃗2 For spherically
symmetric distributions the functions depend only on the separation of the sites and are
called the radial distribution functions. The pair distribution function is a function of the
positions of the particles that relates the particle density at r, ρ(r), to the bulk density, ρ The
easiest mathematical form in which to show this is through the following expansion of the
density around the homogenous bulk value,

(II.
1)

We have introduced the function, h(r), which is the total pair correlation function (TCF) and
is related to the response of the density due to a reference particle. The TCF and other
spatial functions can be experimentally measured with x-ray diffraction[31], inelastic
scattering of thermal neutrons[32], light scattering[1] and electron diffraction[33]
experiments.

In 1914 Ornstein and Zernike introduced an equation (Eq. II.2) defining the direct
correlation function, c(r)[34]. The Ornstein Zernike (OZ) equation is rigorously derived in
many works but is easily obtained from the partition function through functional calculus or
equivalently graphical topology techniques and separates of the terms of the series or
diagrams into two groups. In graphical language, the first group contains no nodal circles
and is summed in, c(r), and a second group containing nodal circles is summed in the
indirect correlation function, t(r)=h(r)-c(r). A good discussion of graphical expansion and
topological reduction techniques is given in several articles[2, 35].

(II.
2)

Equation II.2 is the full molecular OZ equation which depends on the angular dependent
correlation functions. The OZ equation contains the total correlation function, h(r), and the
direct correlation function, c(r), which are both unknown functions. Since the OZ contains
two unknown functions another relation between h(r) and c(r) is needed in order to obtain a
closed set of equations. Some of the more commonly proposed closure relations are shown
in the next section.

The OZ equation and its complementing closure equation are usually solved using the
Fourier transform of the OZ equation

(II.
3)

In practice the Fourier components are calculated using a Fast Fourier Transform (FFT)
routine which greatly reduces the computational work load compared to the direct method of

Howard and Pettitt Page 3

J Stat Phys. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



solving the OZ equation. The FFT routine is available in many numerical libraries which are
available online and have been tested and tuned for different machine architectures[36].

The OZ equation is of course one equation with two unknowns. Thus another relationship
between h(r) and c(r) must be used to close the equations. Considerable analysis has gone
into this problem and we recommend Hansen and McDonald’s treastis for an introduction.
[37] In the next section we cover this topic at the level needed for the applications to follow.

Explictly molecular features such as non spherical shape usually require methods beyond
those for atomic fluids. Calculating the molecular correlation functions using the fully
angular dependent OZ equation is not an often practiced technique due to the dependence of
the correlation functions on the molecular orientations. Methods involving the expansion of
the correlation functions in rotational invariants have been successful for simple diatomic,
triatomic and tetraatomic molecules[38–40], but are slow to converge for more anisotropic
molecules and can become highly dependent on the choice of basis set. The simplest
approximation for calculating the liquid structure of molecular fluids is based on the
argument that the intermolecular potential and so the correlations can be sufficiently
described using site-site correlation functions. The site-site correlation functions depend
only on the separation between sites and can be defined using the molecular correlation
functions as

(II.
4)

Where r1a and r2b are the position vectors for sites a and b on molecules 1 and 2,
respectively. The site-site total correlation functions represent the probability of a site being
at a particular position or separation from another site. These functions contain enough
information to calculate the thermodynamics of the interaction site fluid, but not enough to
reconstruct the orientationally dependent correlation functions.

To calculate the site-site correlation functions, the Site-Site OZ (SSOZ) equation is utilized,
which is also historically referred to as RISM theory[7, 41]. It is similar in appearance to the
OZ equation but contains the additional intramolecular correlation functions, w, containing
the molecular connectivity of the molecules. The Fourier space representation of the SSOZ
equation is

(II.
5)

Here the functions ĥ hand ĉ are n by n matrices (n is the total number of sites) containing the
total and direct correlation functions, respectively, with the matrix elements defined by the
site indices, hab and cab, and ρ is a diagonal matrix containing the number densities of the
atomic sites.

(II.
6)

The Fourier space definition of the intra-molecular correlation function for two sites at a
distance l is,
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(II.
7)

The indices a and b represent the sites on the molecules 1 and 2, lab =|l⃗ab| represents the
bond length between sites, and waa (k) = 1.

The extension of RISM theory to models containing Coulomb interaction terms is often
called XRISM theory[9, 10]. The long-ranged interaction potentials are then treated using a
renormalization [9, 10, 42], usually equivalent to the separation of the correlation functions
into a long-ranged analytically transformable function part and shorter-ranged numerically
transformable part[43]. The method using the error function is outlined below.

Multiple chemical species are required for many solution applications. Finite concentration
of a species is a trivial redimensioning of the above equations. The handy thermodynamic
reference of infinite dilution requires some analysis. Analytically we can reduce the
equations to calculate the solvation structure and resulting free energy of a molecule at
infinite dilution[44]. By defining the interaction sites as either part of a solvent molecule (v)
or a solute molecule (u) the OZ equation can be written as

(II.
8)

If the solute density, ρu, is taken to zero the equations containing the solvent-solvent
correlation functions uncouple from the solute correlations.

(II.
9)

This allows us to calculate the solvent correlation functions independently and then use them
to calculate the solute-solvent correlations. The solvation free energy can be calculated from
equations below (V.4) and used to analyze a variety of properties including the
conformation stability [45–50]. These types of systems of equations are directly extended to
RISM equations[11] and the 3D-IEs.[12]

Promising recent applications of IEs have involved defining the functions on a three-
dimensional (3D) grid to solve for highly-anisotropic solute models and obtain the
approximate orientational dependence of the solute-solvent correlation functions[12, 14, 51].
These types of calculations give a fully 3D description of the solvent around the solute. The
3D-IEs have allowed for the application of these methods to much larger solute species than
usually possible by 1D-IEs where solutions were either unobtainable or gave little structural
detail. These 3D-IEs most often place one of the species at infinite dilution on a 3D grid
where the correlation functions are represented. The 3D-RISM equation for a solution
composed of a solute species at infinite dilution in a solvent mixture is[12]

(II.
10)
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The solute-solvent total and direct correlation functions, hua (k) and cua (k), are defined on
the 3D grid and depend on the coordinate system choice. The solvent density, ρb, is the
number density of the solvent sites. The pure solvent-solvent correlation functions, hba (k),
can be obtained in advance from one of the 1D-IE theories (XRISM, DRISM, PISM etc) and
used in equation II.10. Equation II.10 is solved in Fourier space using 3D Fast Fourier
Transform methods.

The RISM or SSOZ equation is in effect derived by the approximate orientational reduction
of the molecular correlation functions in the molecular OZ equation. Several derivations
have been presented in many articles and have been based on graphical expansion/reduction
techniques, perturbation theory and density functional techniques[41, 52]. A formally exact
graphical expansion of the SSOZ equation however revealed that the equation did not
account for some allowed diagrams and contained some inappropriate terms. This led to the
derivation of a diagrammatically correct set of equations called the proper interaction site
model theory (PISM)[53, 54]. PISM theory is unique in that it forms a mathematically
rigorous basis on which developments and improvements can be made in principle[23] but
there have been technical difficulties and it is not further discussed here.

III. Closure Equations
The molecular OZ equation (Eq. II.2) is an exact statistical expression relating the total
correlation function, h(r), to the direct correlation function, c(r). Both of these functions are
unknown, so an additional relation is needed in order to close the equations. The exact
graphical expansion of the direct correlation function is known;[55] however, this infinite
series expression is problematic because some of the individual terms (graphs) quickly
become unmanageable in terms of the ability to evaluate the integrals. A number of
approximate closures, have been suggested, applied and investigated over the years with
varying success in their qualitative and quantitative predictions. We will not discuss the
great number of closures available here. The closures in this section depend on a separation
coordinate, r, which can represent either a three-dimensional coordinate system or a one-
dimensional radial coordinate system reduced from its 3D representation and are used
interchangeably in this section. In addition, special care is needed when dealing with long-
ranged potential energy functions and we will describe some recent advances in that case in
the following section.

The derivations of the closure equations vary and many different approximations are
possible but the ones most often used are the ones with the simplest solvable forms (lowest
order forms) or those which give desirable results for a specific model. A mathematically
rigorous definition of the closure equations before applying any approximations is,

(III.
1)

where t(r) = h(r) – c(r) is the indirect correlation function containing all graphs with nodal
points and u(r) is the interaction pair potential between the solution species.[55] The
function B(r) is composed of bridge diagrams and represents the remaining diagrams not
accounted for in the indirect correlation function or its products. B(r) can be written exactly
as a functional of h(r). If the complete set of diagrams were included in equation III.1 for
each function III.1 would be an exact expression. This, however, is not possible because the
complete set is an infinite sum of integrals which quickly increase in dimensionality, each
one of which is numerically tedious.

The two most well used closures (in terms of the number of applications to model systems)
are the Percus-Yevick[56] (PY) and Hyper-netted chain[57–59] (HNC) closures. The PY
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approximation is achieved by setting B(r) = 0, and expanding only the part of the
exponential containing the indirect correlation function. The expansion is truncated at the
linear term to obtain the PY approximation,

(III.
2)

In terms of the predictive capabilities the PY closure has been most successful for models
representing hard spheres or models lacking electrostatic interactions.

The HNC closure is another useful approximate closure and is achieved by setting B(r) = 0
in equation III.1 and is defined as,

(III.
3)

The HNC closure sums more graphs (is more mathematically complete) than the PY closure
and it would have been thought that this would lead to more accurate results, but this is not a
completely predictable trait. However, the HNC equation is generally better at predicting the
behavior of liquids containing substantial attractive potentials, such as liquid species
containing coulomb interaction sites, when compared to the PY equation.

Another closure which is often used but is more consistent with the longer ranged behavior
than the shorter ranged behavior of the correlation functions is the mean-spherical
approximation (MSA)[60],

(III.
4)

Integral equation results using the closures in this section are, generally, qualitatively better
than continuum type results for the fluid properties. However, their general acceptance as a
routinely applied method has not been universal. This may be due to the difficulty in
obtaining numerical solutions to the IEs for some models using the “better” closures. Often
trouble is encountered with models that have many intrinsic length scales and are highly
charged, such as the majority of bio-macromolecules. Steps have been taken by some
authors to make numerical solutions more facile for such models by using better numerical
methods (below) or by proposing alternative closure approximations.

Kovalenko and Hirata proposed a partial linearization of the HNC closure to better manage
convergence issues caused by spatial regions with a substantial potential well.[61] Such
attractions can result in large positive values for the unconverged distribution functions and
lead to numerical divergence problems. The exponential part of the HNC closure is
expanded and truncated at first order for only those regions with enhanced density, h(r) ≥ 0,
while the non-linearized form of the HNC closure is used for those regions with density
depletion. This closure is referred to as the KH closure[3] (Eq. III.5) and has been mostly
applied to systems where enhanced density regions are notorious for divergence of the
numerical solutions.

(III.
5)
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In addition to these closures any number of additional closures can be generated by
including any number of bridge diagrams in the bridge function, B(r), in equation III.1. One
such approximate bridge function which has been tested on protein sized solutes in the 3D
interaction site formalism is the repulsive bridge correction (RBC)[62],

(III.
6)

Here  is a 3D short-range repulsive interaction between the solute and the solvent and
ωba (r) is the density weighted intramolecular correlation function between sites (or atoms)
b and a. This function has the tendency to reduce the density distribution for sites bonded to
other sites which are statistically less likely. Many other heuristic bridge functions (not
obviously relatable to the bridge diagrams[37]) exist for various purposes. Some are used for
various forms of thermodynamic consistency and one of particular utility is that for the so
called dielectrically consistent RISM theory[63]. We will have more to say on the topic of
dielectric response below.

It would be convenient to have one approximate closure which could be used for any type of
fluid model without having to consider the solution parameters. However, this has not been
the case since these closures are approximations which inherently behave differently for
various systems. The choice of a closure for a model fluid is based on many considerations.
First, numerical solutions must be obtainable; some potential model systems present a stiff
set of equations which may or may not have a solution. Secondly, the closures must be
computable in a timely manner since the numerical routine may need thousands of iterations
to reach a converged set of equations. Once these criteria have been met the closure which
best models the fluid’s behavior compared to simulation results of identical models should
be used.

IV. Potential and effective potential models
The collective behavior of the particle interactions underlies the structural and
thermodynamic properties of the condensed fluid system. An important feature of the
interactions between these particles is the short ranged repulsive forces that represent the
region of the particle from which other particles are excluded. Realistic pair potentials also
include attractive forces between the sites which are due to the electrostatic moments
including the fluctuating nature of electronic charge distribution. Below we show some
common forms taken from the molecular mechanics literature. We note that partially
charged atoms as well as fully charged ions are used in this classical potential
representation. Charges used naively would result in divergences in the equations so far
discussed and some precautions must be taken to use them whether it be by subtraction or
renormalization as we will discuss.

The Lennard-Jones (LJ) 12–6 potential has been used often for the short ranged forces,

(IV.
1)

Here the parameters σ and ε are the sphere diameter and potential well-depth, respectively.
These values are chosen to best model the physical properties of the fluid species. To
calculate the interactions between particles with different physical attributes the Lorentz-
Berthelot rules are often utilized according to,
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(IV.
2)

(IV.
3)

In addition to dispersion forces: polar liquids, electrolytes, and plasma solutions contain
species with either a permanent net electronic charge or an anisotropic charge distribution.
The electrostatic interactions between charged sites is given by the Coulomb interaction
potential.

(IV.
4)

The qa and qb are the net charges on the sites and ε0 is the permittivity of free space and ε is
the dielectric screening constant of the bulk fluid if we are considering a continuum solvent.
Otherwise ε is related to the dipolar correlations in the system and is an outcome from the
calculation rather than an input.

The total pair interaction potential can be expressed as the sum of the shorter ranged
dispersion forces and the longer ranged coulomb potential.

(IV.
5)

Several different methods have been developed and applied to deal with the numerical
problem incurred with long ranged potentials. One can approach the Coulomb potential
problems by various means including analytically or numerically separating the full
potential and its induced correlations into long and short ranged parts and handling the
associated issues separately. One of the first methods to deal with this problem decomposed
the potential into its short and long ranged parts and analytically calculated the chain sums
of the long ranged potential terms and then use this with renormalized closures[11, 64].

A commonly applied numerical method is to divide the potential in to a long-ranged
analytically transformable function and a short-ranged numerically transformable function.
As one example, this can be done with the use of the error function, erf (r),[43]

(IV.
6)

where the first term is the long-ranged part, θl (r) = erf (αr)u(r), and the second term is the
short-ranged part, θs (r) = (1 – erf (αr))u(r), and α can be chosen to maximize the rate of
convergence.

This method can also be extended to the three-dimensional IE methodology. The coulomb
sites in the 3D model are not located at the origin of the Fourier transformable grid and thus
contain an additional phase factor. The total interaction potential between the solute sites
and the solvent sites on a grid is defined by,
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(IV.
7)

Here a and b represent the solvent and solute sites, respectively, σ is the LJ diameter, ε is the
well depth, qu and qv are the electronic charges on the solute and solvent sites, ru represents
the spatial coordinates of the solute sites, and r represents the grid point positions. The
decomposition of the potential into long- and short-ranged functions is analogous to the
early 1D methods[65] but the Fourier transform contains a phase factor which arises due to
the positions of the charged sites. We decompose the Coulomb potential using an error
function to define a range,

(IV.
8)

and using the 3D Fourier transform according to,

(IV.
9)

After a change of variables, where , the equation is

(IV.
10)

After transforming the variable r′, the Fourier space definition of the long-ranged part of the
potential is

(IV.
11)

This method is the direct extension of the 1D method to 3D systems.

Another method proposed for 3D systems containing Coulomb interaction sites is the Ewald
sum method[66] similar to that used in computer simulations with periodic boundary
conditions. The Coulomb potential, ψua (r) = qaφu (r), modified using Ewald sums is,

(IV.
12)

The sum over k, excluding k=0, is often accomplished using 3D-FFT technology. The Ewald
method demands that the potential field derivative approach zero at the length of the box.
For equation IV.12 qb denotes the partial charge on site b, r is the coordinate position in
space, rb is the position of solute site b and α is an adjustable parameter depending on the
spatial resolution.

The Ewald method is an approximation of the Coulomb field and may be thought of as
introducing a background screening electric field due to the fictitious periodic images of the
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solute molecule. This introduces errors in the asymptotic behavior of the correlation
functions which have been shown to have nontrivial consequences on the thermodynamic
variables of the system[67].

An approximate correction for the long ranged behavior of the correlation function can be
calculated using,

(IV.
13)

where hba(k) is the 1D radial total correlation functions and wba(k) is the 1D radial intra-
molecular correlation functions,  is the total charge of the solute molecule, and the other
notations have the same meaning as previously defined. This term is then incorporated into
the closure, which for the HNC closure is expressed as,

(IV.
14)

It is known that the long-ranged behavior of the direct correlation function is proportional to
the long-range behavior of the interaction potential. In order to correct the direct correlation
functions for its use in the thermodynamic expressions the Ewald potential is subtracted
from c(r) and replaced with the interaction potential of the non-periodic image[3].

(IV.
20)

It is simpler to use the error function decomposition (or its relatives) above for most
purposes. It yields a system of equations which exactly represents the Coulomb interactions
without the need for correction. The resulting equations have been shown to have desirable
convergence properties as well.[13]

V. Thermodynamics
Given the solution structure, the correlation functions also provide the fundamental needed
information to calculate the solution thermodynamics. The thermodynamic quantities are
realized using the graphical representation of the partition function and its derivatives[68–
72] or equivalently by expressing the thermodynamic quantities in terms of the pair
correlation functions[29, 30].

The equation of state for homogenous fluids describes the behavior of the bulk system.
Statistical mechanics provides us with many convenient relationships between the two-body
correlation functions and some of the bulk properties.

The chemical potential/solvation free energy of the fluid species is a quantity which is often
thought of as the insertion of an individual species, and the “turning on” of the interactions
between the fluid species and the solution. The solvation free energy is the change in free
energy when the solution species moves from the vacuum to a solvated state. After Morita
and Hiroike the solvation free energy for interaction site fluids within the HNC[73] and
KH[3] closure is,
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(V.
1)

(V.
2)

where the subscripts specify the interaction sites of the fluid species.

Many chemical processes in solution are driven by a change in the solvent contributions to
the free energy. This change in free energy or the potential of mean force can be easily
calculated by taking the difference in the chemical potential energy of the two solvated
states.

(V.
3)

Many chemical properties such as binding constants, absorption constants, solubilities, etc,
depend on the associative behavior of the fluid species. The potential of mean force (PMF)
which describes the effective potential as a function of distance between fluid species can be
calculated directly from the pair distribution function.

(V.
4)

While prone to noise with simulations this is a much simpler task with the IE methods[74].

The magnitude of the free energy changes between different states depends on the changes
in the entropic and energetic contributions. A system can proceed by either decreasing
energy or increasing entropy or both. Analyzing a system and determining the source of the
free energy changes is fundamental to understanding the mechanism for the chemical
process. The energetic contribution from the interactions of the species with the solution
density field can be calculated using the energy equation,

(V.
5)

The entropic part can be calculated using the equations for the chemical potential. The
solvation free energy separated in to its energetic and entropic parts is

(V.
6)

The entropy can be calculated by taking the temperature derivative of the solvation free
energy,

(V.
7)

The entropy increases as the number of configurations of the system increases and accounts
for the conformational, rotational and translational degrees of freedom of the solution. These
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quantities increase when the system becomes less constrained or gains freedom to sample
different configuration modes. The energetic part of equation V.7 can be calculated once the
chemical potential and entropy are known giving a full description of the contributions to
the free energy.

The absolute values of the thermodynamic quantities, such as chemical potential, are often
grossly inaccurate when calculated using the IE methods. Many studies have shown that the
change in free energy between two systems (relative energy) is much more accurate
compared to the absolute values. In other words, the over or under-emphasis of the free
energy quantities is present in both systems and cancel when combined.

VI. Resulting Liquid Structure
The structure of the fluid determines the equilibrium thermodynamic quantities which are
often the application target for an investigation. Many thermodynamic quantities appear as
weighted moment integrals of the various correlation functions. Defects in the structure then
either at short range or at longer ranges effect various properties differently. Dielectric
properties display many difficulties related to this point. Often times correcting the short
ranged structure seen in h(r) can have little or no effect on the dielectric constant[75].

One of the unfortunate but manageable problems with RISM theory is its inability to predict
the dielectric screening of the electrostatic interactions due to polar solvent molecules
accurately.[2, 76, 77] For instance, the predicted dielectric screening of water at room
temperature and pressure with RISM theory is around 17, which is well below the
experimental value of ~80. The predicted dielectric constant can be analytically fixed
analogous to the renormalization methods where the long ranged effects are analytical
included into the correlation functions. This can be done with essentially no noticeable
effect on the short ranged structure[75]. The correlation functions from this method, denoted
as dielectrically consistent RISM theory (DRISM), contain the corrected long-range
asymptotic behavior and is a well used method for liquid mixtures containing polar
species[63, 78]. The correction can be put into the propagating OZ-like equation or into the
closure as a type of bridge function. The results are in better agreement with simulation than
XRISM. In particular DRISM is especially good for finite concentrations of ions (Figures 3
and 4).

It is often the case that the solvent structure around a single complicated solute species is
needed in order to understand the solvents role on the stability of the solute
configurations[44]. It has been shown that solvent mediated forces play a significant role in
the conformational stability of solvated molecules.

To calculate the 3D correlation functions equation II.10 can be coupled with one of the
closures (HNC, PY, KH, etc.) in their 3D representation and solved iteratively with one of
the numerical methods in section VII. An example is given in figure 5 for the distribution of
water around water.

The closure can have a significant effect on the quality of the results for certain models.
Perkyns et. al. showed that the HNC closure is more accurate than the KH closure for polar
fluids when compared to MD simulations for the same Hamiltonian system.[13] The KH
closure significantly underestimates the magnitude of the density peaks. For models
containing electrostatic sites either the approximate Ewald method[3] or the 3D exact
method[13] (section IV) must be used in order to circumvent the problems associated with
the long-ranged potential functions. The algorithms for solving the 3D-IEs are more
computationally intensive than the 1D-IEs and require a larger amount of computer memory.
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The original motivation for using the 3D-IEs was the more detailed solvent distributions
they produce when applied to anisotropic solute models (compare Fig. 5 to Fig. 3). The 3D-
IE studies have provided valuable information on how the solvent species distribute
themselves in and around the solute molecule[13, 16, 79, 80]. Note that in figure 5 we have
a cut through a three body correlation function involving the ion, a wall and the solvent.

Some of the application studies include the probabilities of the solvent and ion species
around solute molecules[14, 16, 79] which include organic molecules, proteins and
polypeptides[81], protein binding sites[80, 82], cavities[12, 83, 84], protein membrane
channels[85], planar interfaces[18, 86–92] (see Fig. 6), and DNA[16, 93] (see Figs 7, 8 and
9). The qualitative ability of the 3D-IEs to accurately predict these distributions has been
demonstrated through many comparisons with simulations and experimental studies for
many solute/solvent systems [13, 17].

An interesting study on the ion selectivity of protein binding sites showed that the 3D-IE
theory could accurately predict the discrimination of different ions (Na+, Ca+, K+) by
binding sites and the results were for the most part in agreement with experiments[82]. The
3D-IEs have more recently also been able to capture the different ion selectivity in the minor
and major grooves of DNA[16]. The problems of convergence of the equations for mixtures
of simple ions and polyelectrolytes has largely been alleviated by the use of HNC closures
(with or without approximate bridge corrections) and the use of the error function treatment
shown above.

The ability to consider polyelectrolytes and their explicit distribution of both counter-ions
and co-ions with respect to other chemical and geometric variables allows a range of
possible applications. In figures 8 and 9 note the difference in contour levels between
counter- and co-ions. Co-ion distributions have been more difficult to quantify from
simulation.

The solvation of molecular complexes or clusters of species at infinite dilution has the effect
of adding an external potential field to the solvent environment which significantly affects
the solvent distributions within this field. These changes in the solvent distributions and the
genesis of solvent interactions with the solute can have an effect on the structural stability of
the solute’s configuration. Through the use of equations V.4,5, depending on the closure, the
solvation free energy of the solute can be calculated and the structural stability can be
analyzed.

3D-IEs have been used to assess the structural stability of several model solutes including
organic compounds[19, 94, 95], hydrophobic solutes[17, 62, 96], polar molecules[96], and
species as large as proteins[13, 20, 97]. These types of studies have been especially useful in
the analysis of the structural stability of an ensemble of protein configurations. In one study
the hydration free energy (HFE) for several protein sized models were calculated for the
active form and several unfolded states[97]. It was found that the stability of the proteins
could in some cases be approximately analyzed in terms of the solvent contributions to the
free energy. In the same study[21] the HFE was also decomposed into its energetic and
entropic components according to

(VI.B.
3)

where the solute-solvent interaction term was calculated from the energy equation,
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(VI.B.
4)

The entropic term was calculated using a finite difference method according to the
temperature derivative of the solvation free energy (eq. VI.C.3), The solvent-solvent term is
difficult to calculate directly and therefore is usually calculated from the other values in
equation VI.B.3 once they are known.

(VI.B.
5)

This decomposition allowed the authors to analyze their findings in terms of the entropic
and enthalpic parts of the free energy changes, which is a challenging task using molecular
simulations. These parts were then further decomposed into non-electrostatic and
electrostatic components to gain a complete picture of the energetic and entropic origins of
each component of the solvation free energy. It was found that the HFE for these protein
models is dominated by the non-electrostatic entropic part and the electrostatic enthalpic
part which ultimately can provide insight into the protein folding mechanism.

One of the more interesting and useful thermodynamic properties which can be calculated
using the 3D-IEs is the free energy profile with respect to any number of spatial parameters.
It has been shown that the solvent contributions to the free energy profile can have a
significant effect on the association of solution species [17, 98]. The free energy profile or
PMF, W(r),, can be calculated by summing the direct interactions among the solute
molecules, u (r), as well as the the work done on the system or the so-called cavity potential,
ΔΔμ(r).

(VI.B.
6)

The coordinate, r, can be any geometric parameter describing the change in the model. The
solvent contributions to the PMF are usually taken as the difference between the
configuration and a reference configuration. In the case where the parameter is the
intermolecular separation the solvent contributions can be calculated according to,

where the first term is the solvation free energy of the complex structure and the last two
terms are the solvation of the individual structures where the intermolecular separation
would be infinity[17]. These types of studies on the free energy profiles of associating
species have been done for hard spheres[99], LJ spheres[100], ions[61, 66, 101],
molecules[101], ligand-protein systems[102] and hydrophobic plates[17] (Fig. 10). The
PMF from the 3D-IE in these studies were for the most part in relatively good qualitative
agreement with simulations for the same model system.

In the case of the hydrophobic plates, Fig. 10, we note that the HNC closure as well as some
others mentioned above were deficient in describing the drying transition, even when the
drying was purely sterically induced. Thus we expect that these approximations yield
hydrophobic cavities in proteins that are also wet when they should be relatively dry. This
defect may be addressable with bridge functions but is as yet a problem.
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VII. Numerical Methods
We would be remiss not cover some of the methods used in the solution of the liquid state
integral equations described above. While this is in itself a substantial area of research it is
dwarfed by the literature of differential equation solvers. We consider iterative, basis set and
multi grid methods below.

A. Picard methods
Picard type iterative methods have been the most widely used routines to solve the coupled
IEs presented in this article. They are fairly easy to implement compared to the other
routines mentioned in this section and require the least amount of memory and
computational resources. They are based on the successive iteration of the equations – an
initial guess to the equations is used as the input to the solution at the next level.

(VII.A.
1)

The Picard iterative routine does not depend on the minimization of any equation parameters
to reduce the residual vector, R(r) =hi+1 (r) – hi (r). This lack of control over the iterative
process can often cause the solutions to diverge for even a set of relatively non-stiff
equations. One method to encourage convergence of the solutions to stiffer problems is to
limit the amount of mixing of the new solution into the old solution according to successive
relaxtion,

(VII.A.
2)

where α is the mixing parameter with a typical range of (0 → 1) but this can be relaxed in
proactice. When α = 0 there is no mixing of the new values into the old (stagnant) and as α
→ 1 the contribution of the old solution reduces to zero. Often times as equations become
stiff considerable manual intervention can be required.

B. MDIIS methods
The modified direct inversion of the iterative subspace method (MDIIS) was originally
developed to accelerate the convergence of numerical problems in quantum mechanics[103–
105]. It has since become an invaluable tool for accelerating the convergence of the
numerical solutions to the IEs in this article[51, 66, 106]. Compared to direct methods this
method requires relatively small memory resources and converges more quickly than Picard
methods.

To implement this method a set of basis vectors spanning an n-dimensional subspace is
defined. These n-vectors are usually obtained from the iterative history and a linear
combination of these vectors forms a possible solution set to the linear equations. Solutions
to the linear equations are constructed using,

(VII.B.
1)

where the coefficients, cj, are chosen to minimize a residual scalar quantity which depends
on the residual vector set. The new residual vector for the solution set defined above is a
linear combination of the residual vectors corresponding to the vectors in equation VII.B.1.
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(VII.B.
2)

The coefficients in the above equations are chosen to minimize the magnitude of the residual
vector. To calculate these coefficients we define n independent equations from the residual
vectors and one additional constraint on the coefficients. These equations are,

(VII.B.
3)

and lead to the following set of linear equations

(VII.B.
4)

(VII.B.
5)

Once the coefficients are chosen they can be used to calculate the new solution vector
(VII.B.1) and residual vector (VII.B.2). A mixing parameter can be used to limit the amount
of the residual vector added to the solution vector for the calculation of the new solution
vector.

(VII.B.
6)

This new vector can be used to extend the dimensions of the subspace or can be used to
update one of the older vectors. The basis set is updated in this manner until a solution is
found where the scalar residual quantity satisfies some predetermined criterion or until the
updated solutions become stagnant. If the latter is the case the entire basis set can be dumped
and a new set can be formed from iteration.

C. Newton-Raphson type methods
Numerical methods based on Newton-Raphson schemes provide a direct means for
minimizing a function with respect to the functions values. As long as the starting solution is
within the radius of convergence the equation will converge to a minimized solution. Unlike
the Picard or MDIIS methods the rate of convergence of Newton type solvers is quadratic
when inside the radius of convergence. These methods are very robust; however, the
solution may be a local minimum and not the global minimum that was hoped for. These
numerical methods are based on solving Newton’s equation for the roots of the function
F(x). Newton’s equation is,

(VII.C.
1)
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The Jacobian matrix, J, contains the derivatives of the function, F(x). The Jacobian matrix
can become very large for discretized and multi-variable systems and require large amounts
of memory. In addition to the storage requirements and calculating the elements, the
Jacobian also must be inverted, which scales as O(n3).

Newton type numerical applications can be used in conjunction with a set of basis functions
to reduce the size of the Jacobian matrix and the number of discretized equations[107, 108].
These types of methods have been applied successfully to calculate solutions to the OZ-IE
for spherical species as well as solutions to the SSOZ-IE for molecular systems using 1D
and 3D spatial grids[17, 107–110].

Although the implementation of Newton type methods are more involved than the Picard or
MDIIS methods, the solutions to the IEs can be obtained in a fraction of the number of
iterations needed by the other methods. Solutions to the equations can also be calculated in
regions of the phase diagram where the other numerical methods would fail to converge.
This method is especially handy when trying to calculate solutions near phase boundaries or
unstable regions of the phase diagram.

An application of a Newton-type scheme to calculate the correlation functions of a system of
LJ spheres in combination with the HNC closure is shown below as an example. For this
system our equation set will consist of the single component OZ equation and the HNC
closure. For the one-component system the OZ equation written in Fourier space is

(VII.C.
2)

where the subscripts denote the ith point from the origin of the discretized function, t(iΔr) =
ti. The other function, Fi(ci), is defined using the closure relation as,

(VII.C.
3)

(VII.C.
4)

where F(c) = 0 when the correct form of c and t have been obtained. Equation VII.C.4 and
VII.C.2 are used to solve our Newton type equation. The next step is to calculate the
Jacobian for our system of equations. The elements of the Jacobian, Jij, can be calculated by
taking the full derivative of the closure and applying the chain rule.

(VII.C.
5)

The first derivative on the right hand side of equation VII.C.4 is easily calculated and
defined as,

(VII.C.
6)

The first derivative in the second term is,
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(VII.C.
7)

To calculate the second derivative in the second term we need to define the relationship
between the real space functions and the Fourier space functions. The inverse Fourier
transform of the function, t, is

(VII.C.
8)

where the values of the variables are ri = iΔr and kl = lΔk. Using equation VII.C.8 we can
express the derivative as

(VII.C.
9)

The third derivative of the second term is calculated using equation VII.C.2. The expression
for this derivative is,

(VII.C.
10)

To calculate the last derivative in the second term we can use the definition of the forward
Fourier transform for c which is

(VII.C.
11)

and the derivative of this function can be written as,

(VII.C.
12)

After combining the derivatives, the elements of the Jacobian matrix can be defined as,

(VII.C.
13)

Calculating the Jacobian can be an exhausting task for grids containing many points. As can
be seen from equation VII.C.13 the Jacobian matrix elements depend on the current values
of the correlation functions and therefore the Jacobian elements should be updated after each
iteration. However, if the Jacobian elements are not changing dramatically the Jacobian can
be used for several iterations before being updated. This can greatly increase the speed of
the computation.
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The other limiting step in the efficiency of these types of applications is the inversion of the
Jacobian matrix. Methods based on the Gauss-Jordan elimination or LU decomposition
require a large number of iterations being proportional to n3. This makes the application of
these methods almost impossible for large grids, such as 3D grids. To increase the efficiency
of this step routines based on Krylov space methods have been utilized[17, 111, 112].
Krylov space methods iteratively build an approximate solution to the linear equation, which
scales proportional to n2 for each iteration. If the number of iterations is low one can see
how this method could increase the speed of convergence of the equations.

These methods can be used in combination in a variety of ways. Newton-Raphson methods
can be used on a coarse grid and the details can be filled in with other less costly methods.
Numerical stability in an iterative solution requires attention to transfers of the functions
between the coarse and fine grids. Many multilevel alternatives exist and can greatly
improve efficiency.[111, 113]

VIII. Conclusions
Integral equations have matured from the first applications of 1D-IEs to simple homogenous
hard sphere systems to current day applications which involve 3D-IEs for large
inhomogeneous systems in ionic aqueous solvents. However still many approximations have
been made which often compromised the integrity of the IEs. These approximations limit
the potential of the IEs in terms of thermodynamic predictions, but at the same time have
allowed for their expansion to include a wide scope of systems. Even with the current level
of theory the IEs have become an important tool for the study of dense fluids and their full
potential has not been reached yet.

Some of the progress currently being made includes methods to solve the angular dependent
correlation functions for complex systems such as water[114]. There are also efforts being
conducted to calculate the correlation functions using variational methods to minimizing the
free energy of the system[115]. A promising example is given by recent advances to
quantitatively improve upon the thermodynamics and predicted dielectric constant of
molecular fluids using molecular angular expansions in diagrammatically proper, site-site,
integral equation theory[26]. The possibility of an equation predictive of the dielectric
properties for any molecular mechanics potential is tantalizing.
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Figure 3 .
Pair correlation functions for SPC/E water calculated using DRISM theory.[78]
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Figure 4.
Pair correlation functions between the Na+ and Cl− ions in a 1M NaCl solution with SPC/E
water.[78]
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Figure 5 .
Water-oxygen site distributions in the plane through a water molecule at infinite dilution
located at the origin (SPC/E water model). The large peaks are the water-oxygen sites
coordinated to the hydrogen sites on the solute water molecule. Units are in Angtroms.[15]
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Figure 6 .
Water-Oxygen site distributions around a cation near a planar wall in a 1M NaCl solution.
Units are in Angstroms from the center of surface.[18]
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Figure 7 .
Water-oxygen site distributions around a 6-base pair AT DNA duplex near a planar surface.
The iso-surface value is set to 2.8. Density fluctuations along the surface of the plane are
induced by the DNA molecule.
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Figure 8 .
Na+ ion distribution around an 6-mer AT DNA duplex with an iso-surface value of 60.[16]
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Figure 9.
Cl− ion distribution around the 6mer-AT DNA duplex with an iso-surface value of 4.[16]
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Figure 10.
Water-oxygen site distributions around two graphene plates 7.5 Angstroms apart with an
iso-surface value of 2.8 (measured center to center).[17]
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