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The human brain is organized in functional modules. Such an
organization presents a basic conundrum: Modules ought to be
sufficiently independent to guarantee functional specialization
and sufficiently connected to bind multiple processors for efficient
information transfer. It is commonly accepted that small-world
architecture of short paths and large local clustering may solve this
problem. However, there is intrinsic tension between shortcuts
generating small worlds and the persistence ofmodularity, a global
property unrelated to local clustering. Here, we present a possible
solution to this puzzle. We first show that a modified percolation
theory can define a set of hierarchically organized modules made
of strong links in functional brain networks. These modules are
“large-world” self-similar structures and, therefore, are far from
being small-world. However, incorporating weaker ties to the net-
work converts it into a small world preserving an underlying back-
bone of well-defined modules. Remarkably, weak ties are precisely
organized as predicted by theory maximizing information transfer
with minimal wiring cost. This trade-off architecture is reminiscent
of the “strength of weak ties” crucial concept of social networks.
Such a design suggests a natural solution to the paradox of effi-
cient information flow in the highly modular structure of the brain.

One of the main findings in neuroscience is the modular or-
ganization of the brain, which in turn implies the parallel

nature of brain computations (1–3). For example, in the visual
modality, more than 30 visual areas analyze simultaneously dis-
tinct features of the visual scene: motion, color, orientation,
space, form, luminance, and contrast, among others (4). These
features, as well as information from different sensory modalities,
have to be integrated, as one of the main aspects of perception is
its unitary nature (1, 5).

This leads to a basic conundrum of brain networks: Modular
processors have to be sufficiently isolated to achieve independent
computations, but also globally connected to be integrated in
coherent functions (1, 2, 6). A current view is that small-world
networks provide a solution to this puzzle because they combine
high local clustering and short path length (7–9). This view has
been fueled by the systematic finding of small-world topology in a
wide range of human brain networks derived from structural (10),
functional (11–13), and diffusion tensor MRI (14). Small-world
topology has also been identified at the cellular-network scale
in functional cortical neuronal circuits in mammals (15, 16) and
even in the nervous system of the nematode Caenorhabditis ele-
gans (8). Moreover, small-world property seems to be relevant for
brain function because it is affected by disease (17), normal aging,
and by pharmacological blockade of dopamine neurotransmis-
sion (13).

Although brain networks show small-world properties, several
experimental studies have also shown that they are hierarchical,
fractal and highly modular (2, 3, 18). As there is an intrinsic
tension between modular and small-world organization, the main
aim of this study is to reconcile these ubiquitous and seemingly
contradictory topological properties. Indeed, traditional models

of small-world networks cannot fully capture the coexistence of
highly modular structure with broad global integration. First,
clustering is a purely local quantity that can be assessed inspecting
the immediate neighborhood of a node (8). On the contrary,
modularity is a global property of the network, determined by
the existence of strongly connected groups of nodes that are only
loosely connected to the rest of the network (2, 3, 19, 20). In fact,
it is easy to construct modular and unclustered networks or,
reciprocally, clustered networks without modules.

Second, the short distances of a small world may be incompa-
tible with strong modularity, which typically presents the proper-
ties of a “large world” (21–27) characterized by long distances
that effectively suppress diffusion and free flow in the system
(26). Although a clustered network preserves its clustering coef-
ficient when a small fraction of shortcuts are added (converting it
into a small world) (8), the persistence of modules is not equally
robust. As we show below, shrinking the network diameter may
quickly destroy the modules.

Hence, the concept of small world may not be entirely suffi-
cient to explain the modular and integration features of func-
tional brain networks on its own. We propose that a solution to
modularity and broad integration can be achieved by a network in
which strong links form large-world fractal modules, which are
shortcut by weaker links establishing a small-world network. A
modified percolation theory (28, 29) can identify a sequence of
critical values of connectivity thresholds forming a hierarchy
of modules that progressively merge together. This proposal is
inspired by a fundamental notion of sociology termed by Gran-
ovetter as “the strength of weak ties” (30, 31). According to this
theory, strong ties (close friends) clump together forming mod-
ules. An acquaintance (weak tie) becomes a crucial bridge (a
shortcut) between the two densely knit clumps (modules) of close
friends (30).

Interestingly, this theme also emerges in theoretical models
of large-scale cognitive architecture. Several theories suggest
integration mechanisms based on dynamic binding (6, 32) or on
a workspace system (1, 33). For instance, the workspace model
(1, 33) proposes that a flexible routing system with dynamic and
comparably weaker connections transiently connects modules
with very strong connections carved by long-term learning me-
chanisms.
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Results
Experimental Design and Network Construction. We capitalize on
a well-known dual-task paradigm, the psychological refractory per-
iod (34). A total of 16 subjects responded with the right hand to a
visual stimulus and with the left hand to an auditory stimulus (see
SI Text). The temporal gap between the auditory and visual stimuli
varied in four stimulus onset asynchrony, SOA ¼ 0, 300, 900, and
1,200 ms. The sequence of activated regions that unfolds during the
execution of the task has been reported in a previous study (35).

The network analysis relies on the time-resolved blood oxygen
level-dependent functional magnetic resonance imaging (BOLD-
fMRI) response based on the phase signal obtained for each voxel
of data (36). We first compute the phase of the BOLD signal
for each voxel with methods developed previously (36). For each
subject and each SOA task, we obtain the phase signal of the ith
voxel of activity, ϕiðtÞft¼1;::;Tg, over T ¼ 40 trials performed for a
particular SOA value and subject.We use these signals to construct
the network topology of brain voxels based on the equal-time
cross-correlation matrix, Cij, of the phase activity of the two voxels
(see SI Text). The accuracy of the calculated Cij values was esti-
mated through a bootstrapping analysis (see SI Text and Fig. S1).

To construct the network, we link two voxels if their cross-
correlation Cij is larger than a predefined threshold value p
(11, 12, 37). The resulting network for a given p is a representa-
tion of functional relations among voxels for a specific subject
and SOA.We obtain 64 cross-correlation networks resulting from
the four SOA values presented to the 16 subjects.

Percolation Analysis. Graph analyses of brain correlations relies
on a threshold (11), which is problematic because small-world-
like properties are sensitive to even a small proportion of varia-
tion in the connections. The following analysis may be seen as
an attempt to solve this problem.

The thresholding procedure explained above can be naturally
mapped to a percolation process (defined in the N × N space of
interactions Cij). Percolation is a model to describe geometrical
phase transitions of connected clusters in random graphs; see
ref. 28, chapters 2 and 3, and refs. 29 and 38.

In general, the size of the largest component of connected
nodes in a percolation process remains very small for large p.
The crucial concept is that the largest connected component
increases rapidly through a critical phase transition at pc, in which
a single incipient cluster dominates and spans the system (28, 29,
38). A unique connected component is expected to appear if the
links in the network are occupied at random without correlations.
However, when we apply the percolation analysis to the func-
tional brain network, a more complex picture emerges revealing
a hierarchy of clusters arising from the nontrivial correlations in
brain activity.

For each participant, we calculate the size of the largest con-
nected component as a function of p. We find that the largest
cluster size increases progressively with a series of sharp jumps
(Fig. 1A, SOA ¼ 900 ms, all participants, other SOA stimuli are
similar). This suggests a multiplicity of percolation transitions
where percolating modules subsequently merge as p decreases
rather than following the typical uncorrelated percolation process
with a single spanning cluster. Each of these jumps defines a
percolation transition focused on groups of nodes that are highly
correlated, constituting well-defined modules.

Fig. 1B shows the detailed behavior of the jumps in a typical
individual (subject labeled #1 in our dataset available at http://
lev.ccny.cuny.edu/~hmakse/brain.html, SOA ¼ 900 ms). At high
values of p, three large clusters are formed localized to the medial
occipital cortex (red), the lateral occipital cortex (orange), and
the anterior cingulate (green). At a lower p ¼ 0.979, the orange
and red clusters merge as revealed by the first jump in the per-
colation picture. As p continues to decrease this mechanism of
cluster formation and absorption repeats, defining a hierarchical
process as depicted in Fig. 1B Upper. This analysis further reveals
the existence of “stubborn” clusters. For instance, the anterior
cingulate cluster (green), known to be involved in cognitive con-
trol (39, 40) and which hence cannot commit to a specific func-
tional module, remains detached from the other clusters down to
low p values. Even at the lower values of p, when a massive region
of the cortex—including motor, visual and auditory regions—has
formed a single incipient cluster (red, p ≈ 0.94), two new clusters
emerge; one involving subcortical structures including the thala-
mus and striatum (cyan) and the other involving the left frontal
cortex (purple). This mechanism reveals the iteration of a process
by which modules form at a given p value and merged by com-
parably weaker links. This process is recursive. The weak links of
a given transition become the strong links of the next transition,
in a hierarchical fashion.

Below, we focus our analysis on the first jump in the size of the
largest connected component, for instance, pc ¼ 0.979 in Fig. 1B.
We consider the three largest modules at pc with at least
1,000 voxels each. This analysis results in a total of 192 modules
among all participants and stimuli, which are pooled together for
the next study. An example of an identified module in the medial
occipital cortex of subject #1 and SOA ¼ 900 ms is shown in
Fig. 1C in the network representation and in Fig. 1D in real space.
The topography of the modules reflects coherent patterns across
the subjects and stimuli as analyzed in SI Text (see Fig. S2).

Scaling Analysis and Renormalization Group.To determine the struc-
ture of the modules we investigate the scaling of the “mass” of
each module (the total number of voxels in the module, Nc)
as a function of three length scales defined for each module: (I)

Fig. 1. Percolation analysis. (A) Size of the largest con-
nected component of voxels (as measured by the fraction
to the total system size) versus p for the 16 subjects
(SOA ¼ 900 ms). The other three SOA values give similar re-
sults. The Inset presents a detail around p ≈ 0.95. (B) Detail
for a representative individual. As we lower p, the size of
the largest component increases in jumps when new mod-
ules emerge, grow, and finally get absorbed by the largest
component. We show the evolution of the modules by plot-
ting connected components with more than 1,000 voxels.
The hierarchical tree at the top of the plot shows how clus-
ters evolve by merging with each other. (C) A typical module
in network representation. (D) The same module as in C em-
bedded in real space—this specific module projects to the
medial occipital cortex, see SI Text for the spatial projection
of all modules.
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the maximum path length, ℓmax; (ii) the average path length be-
tween two nodes, hℓi; and (iii) the maximum Euclidean distance
among any two nodes in the cluster, rmax. The path length, ℓ, is
the distance in network space defined as the number of links
along the shortest path between two nodes. The maximum ℓmax
is the largest shortest path in the network.

Fig. 2A indicates power-law scaling for these quantities (21,
28). For instance,

NcðrmaxÞ ∼ ðrmaxÞdf [1]

defines the Euclidean Hausdorff fractal dimension, df ¼ 2.1�
0.1. The scaling with ℓmax and hℓi is consistent with Eq. 1, as seen
in Fig. 2A. The exponent df quantifies how densely the volume of
the brain is covered by a specific module.

Next, we investigate the network properties of each module,
applying renormalization group (RG) analysis for complex net-
works (21–25). This technique allows one to observe the network
at different scales transforming it into successively simpler copies
of itself, which can be used to detect characteristics that are
difficult to identify at a specific scale of observation. We use this
technique to characterize submodular structure within each brain
module (2).

We consider each module identified at pc separately. We then
tile it with the minimum number of boxes or submodules,NB, of a
given box diameter ℓB (21); i.e., every pair of nodes in a box has
shortest path length smaller than ℓB. Covering the network with
minimal NB submodules represents an optimization problem that
is solved using standard box-covering algorithms, such as the
Maximum Excluded Mass Burning algorithm, MEMB, which
was introduced in refs. 21, 22, and 41 to describe the self-similar-
ity of complex networks ranging from the World Wide Web, bio-
logical, and technical networks (see SI Text and Fig. 2B describing
MEMB; the entire experimental dataset and modularization and
fractal codes are available at http://lev.ccny.cuny.edu/~hmakse/
brain.html). The requirement to minimize the number of boxes
is important because the resulting boxes are characterized by the
proximity between all their nodes and minimization of the links
connecting the boxes (26). Thus, the box-covering algorithm de-
tects boxes/submodules that also tend to maximize modularity.

The repetitive application of box-covering at different values
of ℓB is an RG transformation (21) that yields a different parti-
tion of the brain modules in submodules of varying sizes (Fig. 2B).
Fig. 2C shows the scaling of NB versus ℓB averaged over all the
modules for all individuals and stimuli. This property is quantified
in the power-law relation (21):

NBðℓBÞ ∼ ℓ
−dB
B ; [2]

where dB is the box fractal dimension (21–25), which charac-
terizes the self-similarity between different scales of the module
where smaller-scale boxes behave in a similar way as the original
network. The resulting dB averaged over all the modules is
dB ¼ 1.9� 0.1.

Morphology of the Brain Modules. The RG analysis reveals that the
module topology does not have many redundant links, and it
represents the quantitative statement that the brain modules are
large worlds. However, this analysis is not sufficient to precisely
characterize the topology of the modules. For example, both, a
two-dimensional complex network architecture and a simple two-
dimensional lattice are compatible with the scaling analysis and
the value of the exponents described in the previous section.

To identify the network architecture of the modules we follow
established analysis (18, 42) based on the study of the degree dis-
tribution of the modules, PðkÞ, and the degree-degree correlation
Pðk1;k2Þ (22, 43). The form of PðkÞ distinguishes between a
Euclidean lattice (delta function), an Erdos–Renyi network (Pois-
son) (29), or a scale-free network (power law) (42). We find
that the degree distribution of the brain modules is a power law
(11, 42) PðkÞ ∼ k−γ over an interval of k values. In the SI Text
and Fig. S3 we describe a statistical analysis based on maximum
likelihood methods and KS analysis, which yield the value of
the degree exponent γ ¼ 2.1� 0.1 and the interval and error prob-
ability of the hypothesis that the data follow a power law (Fig. S4).
The analysis rules out an exponential distribution (see SI Text).

How can fractal modularity emerge in light of the scale-free
property, which is usually associated with small worlds (18)? In
a previous study (22), we introduced a model to account for the
simultaneous emergence of scale-free, fractality, and modularity in
real networks by a multiplicative process in the growth of the num-
ber of links, nodes, and distances in the network. The dynamic fol-
lows the inverse of the RG transformation (22) where the hubs
acquire new connections by linking preferentially with less con-
nected nodes rather than other hubs. This kind of “repulsion be-
tween hubs” (23) creates a dissasortative structure— with hubs
spreading uniformly in the network and not crumpling in the core
as in scale-free models (42). Hubs are buried deep into the mod-
ules, while low degree nodes are the intermodule connectors (23).

A signature of such mechanism can be found by following
hubs’ degree during the renormalization procedure. At scale ℓB,
the degree of a hub k changes to the degree of its box k0, through
the relation k0 ¼ sðℓBÞk. The dependence of the scaling factor
sðℓBÞ on ℓB defines the renormalized degree exponent dk by
sðℓBÞ ∼ ℓ

−dk
B (21). Scaling theory defines precise relations be-

A DB C

Fig. 2. Strong ties define fractal modules. (A) Number of voxels or mass of each module, Nc , versus ℓmax (red circles), hℓi (green squares), and rmax (blue
diamonds). Each point represents a bin average over the modules for all subjects and stimuli. We use all the modules appearing at pc . The straight lines
are fittings according to Eq. 1. The variance is the statistical error over the different modules. The variance is similar in the other data. (B) Detection of sub-
modules and fractal dimension inside the percolation modules. We demonstrate the box-covering algorithm for a schematic network, following the MEMB
algorithm in refs. 21 and 41 (SI Text). We cover a network with boxes of size ℓB, which are identified as submodules. We define ℓB as the shortest path plus one.
(C) Scaling of the number of boxes NB needed to cover the network of a module versus ℓB yielding dB. We average over all the identified modules for all
subjects. (D) Quantification of the modularity of the brain modules. The identified percolation modules at pc are composed of submodules with a high level of
modularity, as can be seen by the scaling of QðℓBÞ with ℓB that yields a large modularity exponent dM ¼ 1.9� 0.1. Deviations from linear scaling are found at
large ℓB due to boundary effects because the network is reduced to just a few submodules.
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tween the exponents for fractal networks (21), through γ ¼ 1þ
dB∕dk. For the case of brain modules analyzed here (Fig. S4A),
we find dk ¼ 1.5� 0.1. Using the values of dB and dk for the brain
clusters, the prediction is γ ¼ 2.26� 0.11, which is within error
bars of the calculated value γ ¼ 2.1� 0.1 from Fig. S4B.

The previous analysis reveals the mechanism of formation of
a scale-free network, but it does not assure a fractal topology,
yet. Fractality can be determined from the study of the degree-
degree correlation through the distribution, Pðk1;k2Þ to find a link
between nodes with ðk1;k2Þ degree (22, 43). This correlation char-
acterizes the hub-hub repulsion through scaling exponents de and
ϵ (see SI Text and Fig. S6) (22, 43). In a fractal, they satisfy
ϵ ¼ 2þ de∕dk. A direct measurement of these exponents yields
de ¼ 0.51� 0.08 and ϵ ¼ 2.1� 0.1 (Fig. S6). Using the measured
values of de and dk, we predict ϵ ¼ 2.3� 0.1, which is close to the
observed exponent. Taken together, these results indicate a scale-
free fractal morphology of brain modules. Such structure is in
agreement with previous results of the anatomical connectivity
of the brain (2, 3) and functional brain networks (11).

Quantifying Submodular Structure of Brain Modules. Standard mod-
ularity decomposition methods (19, 20) based on maximization
of the modularity factor Q as defined in refs. 2, 19, 20, 26, and
27 can uncover the submodular structure. For example, the Gir-
van–Newman method (19) yields a value ofQ ∼ 0.82 for the brain
clusters, indicating a strong modular substructure. Additionaly,
the box-covering algorithm benefits from detecting submodules
(the boxes) at different scales. Then, we can study the hierarchical
character of modularity (2, 26, 27) and detect whether modularity
is a feature of the network that remains scale-invariant (see SI
Text and Fig. S7 for a comparison of the submodular structure
obtained using Girvan–Newman and box-covering).

The minimization of NB guarantees a network partition with
the largest number of intramodule links and the fewest intermo-
dule links. Therefore, the box-covering algorithm maximizes the
following modularity factor (26, 27):

QðℓBÞ≡
1

NB ∑
NB

i¼1

Lin
i

Lout
i

; [3]

which is a variation of the modularity factor,Q, defined in refs. 19
and 20. Here, Lin

i and Lout
i represent the intra- and intermodular

links in a submodule i, respectively. Large values of Q (i.e.,
Lout
i → 0) correspond to high modularity (26). We make the

whole modularization method available at http://lev.ccny.cuny
.edu/~hmakse/brain.html.

Fig. 2D shows the scaling of QðℓBÞ averaged over all modules
at percolation revealing a monotonic increase with a lack of a
characteristic value of ℓB. Indeed, the data can be fitted with a
power-law form (26):

QðℓBÞ ∼ ℓ
dM
B ; [4]

which is detected through the modularity exponent, dM . We study
the networks for all the subjects and stimuli and find dM ¼ 1.9�
0.1 (Fig. 2D). The lack of a characteristic length scale expressed
in Eq. 4 implies that submodules are organized within larger mod-
ules such that the interconnections between those submodules
repeat the basic modular character of the entire brain network.

The value of dM reveals a considerable modularity in the sys-
tem as it is visually apparent in the sample of Fig. 3A Left, where
different colors identify the submodules of size ℓB ¼ 15 in a
typical fractal module. For comparison, a randomly rewired
network (Fig. 3A Right and Center) shows no modularity and has
dM ≈ 0. Scaling analysis indicates that dM is related to Lout ∼ ℓ

dx
B ,

which defines the outbound exponent dx characterizing the num-
ber of intermodular links for a submodule (26) [dx is related to the
Rent exponent in integrated circuits (3)]. From Eq. 4, we find:

dM ¼ dB − dx, which indicates that the strongest possible modular
structure has dM ¼ dB (dx ¼ 0) (26). Such a high modularity
induces very slow diffusive processes (subdiffusion) for a random
walk in the network (26). Comparing Eq. 4 with Eq. 2, we find
dx ¼ 0, which quantifies the large modularity in the brain modules.

The Conundrum of Brain Networks: Small-World Efficiency or Large-
World Fractal Modularity. An important consequence of Eqs. 1
and 2 is that the network determined by the strong links above
the first pc jump lacks the logarithmic scaling characteristic of
small worlds and random networks (8):

hℓi ∼ logNc: [5]

A fractal network poses much larger distances than those appear-
ing in small worlds (21): A distance ℓmax ∼ 100 observed in Fig. 2A
(red curve) would require an enormous small-world network
Nc ∼ 10100, rather than Nc ∼ 104, as observed for fractal networks
in Fig. 2A. The structural differences between a modular fractal
network and a small-world (and a random network) are starkly
revealed in Fig. 3A. We rewire the fractal module in Fig. 3A Left
by randomly reconnecting a fraction prew of the links while keep-
ing the degree of each node intact (8).

Fig. 3B quantifies the transition from fractal (prev ¼ 0) to small
world (prev ≈ 0.01–0.1) and eventually to random networks
(prev ¼ 1), illustrated in Fig. 3A: We plot ℓmaxðprewÞ∕ℓmaxð0Þ,
the clustering coefficient CðprewÞ∕Cð0Þ, and QðprewÞ∕Qð0Þ for
a typical ℓB ¼ 15 as we rewire prew links in the network. As we
create a tiny fraction prew ¼ 0.01 of shortcuts, the topology turns
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Fig. 3. Transition from fractal to small-world networks. (A) (Left) A typical
percolation module in network space. The colors identify submodules ob-
tained by the box-covering algorithm with ℓB ¼ 15. This fractal module con-
tains 4,097 nodes with hℓi ¼ 41.7, ℓmax ¼ 139, and rmax ¼ 136 mm. When a
small fraction prew of the links are randomly rewired (8), the modular struc-
ture disappears together with the shrinking path length. The rewiring meth-
od starts by selecting a random link and cutting one of its edges. This edge is
then rewired to another randomly selected node, and another random link
starting from this node is selected. This is again cut and rewired to a new
random node, and we repeat the process until we have rewired a fraction
prew of links. The final link is then attached to the initially cut node, so that
the degree of each node remains unchanged. (B) Small-world cannot coexist
with modularity. The large diameter and modularity factor, Eq. 4 for ℓB ¼ 15,
of the fractal module inA (Left) diminish rapidly upon rewiring a tiny fraction
prew ≈ 0.01 of links, while the clustering coefficient still remains quite large.
(C) The transition from fractal to small-world to random structure is shown
when we plot the mass versus the average distance for all modules for
different prew values as indicated. The crossover from power-law fractal to
exponential small-world/random is shown.
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into a collapsed network with no trace of modularity left, while
the clustering coefficient at prew ¼ 0.01still remains quite high
(Fig. 3B). The rewired networks present the exponential behavior
of small worlds (8) and also random networks as prev increases,
obtained from Eq. 5:

Nc ∼ expðhℓi∕ℓ0Þ; [6]

where Nc is averaged over all the modules (Fig. 3C). The char-
acteristic size is very small and progressively shrinks to ℓ0 ¼ 1∕7
when prew ¼ 1. The hallmark of small worlds and random net-
works, exponential scaling (Eq. 6), is incompatible with the hall-
mark of fractal large-worlds, power-law scaling (Eq. 2). More
importantly, although we find a broad domain where short net-
work distances coexist with high clustering forming a small-world
behavior, modularity does not show such a robust behavior to the
addition of shortcuts (Fig. 3B).

Shortcut Wiring Is Optimal for Efficient Flow. Fig. 3B suggests that
modularity and small world cannot coexist at the same level of
connectivity strength. Next, we set out to investigate how the
small world emerges.

When we extend the percolation analysis lowering further the
threshold p below pc, weaker ties are incorporated to the network
connecting the self-similar modules through shortcuts. A typical
scenario is depicted in Fig. 4A, showing the three largest percola-
tion modules identified just before the first percolation jump in
the subject #1 shown in Fig. 1B at p ¼ 0.98. For this connec-
tivity strength, the modules are separated and show submodular
fractal structure indicated in the colored boxes obtained with
box-covering. When we lower the threshold to p ¼ 0.975 (Fig. 4B)
the modules are now connected and a global incipient compo-
nent starts to appears. A second global percolation-like transition
appears in the system when the mass of the largest component
occupies half of the activated area (see, e.g., Fig. 1). For differ-
ent individuals, global percolation occurs in the interval
p ¼ ½0.945;0.96� as indicated in Fig. 1A Inset.

Our goal is to investigate whether the weak links shortcut the
network in an optimal manner. When the cumulative probability
distribution to find a Euclidean distance between two connected
nodes, rij, larger than r follows a power law,

Pðrij > rÞ ∼ r−αþ1; [7]

statistical physics makes precise predictions about optimization
schemes for global function as a function of the shortcut exponent

α and df (25, 44, 45). Specifically, there are three critical values
for α, as shown schematically in Fig. 4C. If α is too large then
shortcuts will not be sufficiently long and the network will behave
as fractal, equal to the underlying structure. Below a critical value
determined by α < 2df (25), shortcuts are sufficient to convert
the network in a small world. Within this regime there are two
significant optimization values:

i. Wiring cost minimization with full routing information. This
considers a network of dimension df , over which shortcuts
are added to optimize communication, with a wiring cost con-
straint proportional to the total shortcut length. It is also
assumed that coordinates of the network are known (i.e., it is
the shortest path that it is being minimized). Under these cir-
cumstances, the optimal distribution of shortcuts is α ¼ df þ 1
(45). This precise scaling is found in the US airport network
(46), where a cost limitation applies to maximize profits.

ii. Decentralized greedy searches with only local information.
This corresponds to the classic Milgram’s “small-world experi-
ment” of decentralized search in social networks (44), where a
person has knowledge of local links and of the final destina-
tion but not of the intermediate routes. Under these circum-
stances, which also apply to routing packets in the Internet,
the problem corresponds to a greedy search, rather than to
optimization of the minimal path. The optimal relation for
greedy routing is α ¼ df (25, 44).

Hence, the analysis of Pðrij > rÞ provides information both
on the topology of the resulting network and on which transport
procedure is optimized. This distribution reveals power-law be-
havior Eq. 7 with α ¼ 3.1� 0.1 when averaged over the modules
below pc (Fig. 4D). Given the value obtained in Eq. 1, df ¼ 2.1,
this implies that the network composed of strong and weak links
is small-world (α < 2df ) (25) and optimizes wiring cost with full
knowledge of routing information (α ¼ df þ 1) (45).

Discussion
The existence of modular organization that becomes small world
when shortcut by weaker ties is reminiscent of the structure found
to bind dissimilar communities in social networks. Granovetter’s
work in social sciences (30, 31) proposes the existence of weak
ties to bind well-defined social groups into a large-scale social
structure. The observation of such an organization in brain net-
works suggests that it may be a ubiquitous natural solution to the
puzzle of information flow in highly modular structures.

Fig. 4. Weak ties are optimally distributed. (A)
Three modules identified at pc ¼ 0.98 for the subject
in Fig. 1B. The colors correspond to different submo-
dules as identified by the box-covering algorithm at
ℓB ¼ 21. (B) When we lower the threshold to
p ¼ 0.975, weak ties connect the modules. The three
original modules as they appear in A are plotted in
red; orange, purple, and the light blue nodes are the
nodes added from A as we lower p. Blue lines repre-
sent the added weak links with distance longer than
10 mm. The weak links collapse the three modules
into one. (C) Sketch of the different critical values
of the shortcut exponent α in comparison with df .
(D) Cumulative probability distribution Pðrij > rÞ.
The straight line fitting yields an exponent
α − 1 ¼ 2.1� 0.1 indicating optimal information
transfer with wiring cost minimization (45). Certain
clusters occupy two diametric parts of the brain. In
practice, these are two modules that are connected
through long-range links. These links increase signif-
icantly the percentage of links at large distances rij ,
because they are superimposed on top of the regular
distribution of links within unfragmented clusters.
This behavior is manifested as a bump in the curve.
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Over the last decades, wire length minimization arguments
have been used successfully to explain the architectural organiza-
tion of brain circuitry (47–51). Our results are in agreement with
this observation, suggesting that simultaneous optimization of
network properties and wiring cost might be a relevant principle
of brain architecture (see SI Text). In simple words, this topology
does not minimize the total wire per se, simply to connect all the
nodes; instead, it minimizes the amount of wire required to
achieve the goal of shrinking the network to a small world. A sec-
ond intriguing aspect of our results, which is not usually high-
lighted, is that this minimization assumes that broadcasting and
routing information are known to each node. How this may be
achieved—what aspects of the neural code convey its own routing
information—remains an open question in neuroscience.

The present results provide a unique view by placing modular-
ity under the three pillars of critical phenomena: scaling theory,
universality, and renormalization groups (52). In this frame-
work, brain modules are characterized by a set of unique scaling
exponents, the septuplet ðdf ;dB;dk;de;dM;γ;αÞ ¼ ð2.1;1.9;1.5;0.5;
1.9;2.1;3.1Þ, and the scaling relations dM ¼ dB − dx, relating frac-
tality with modularity; α ¼ df þ 1, relating global integration with
modularity; γ ¼ 1þ dB∕dk, relating scale-free with fractality; and
ϵ ¼ 2þ de∕dk, relating degree correlations with fractality.

One advantage of this formalism is that the different brain
topologies can be classified into universality classes under RG
(52) according to the septuplet ðdf ;dB;dk;de;dM;γ;αÞ. Universality

applies to the critical exponents but not to quantities like
ðpc;C;ℓ0Þ, which are sensitive to the microscopic details of the
different experimental situations. In this framework, noncritical
small worlds are obtained in the limit ðdf ;dB;dk;de;dM;dxÞ →
ð∞;∞;∞;0;0;∞Þ. A path for future research will be to test the
universality of the septuplet of exponents under different activ-
ities covering other areas of the brain [e.g., the resting-state
correlation structure (53)].

In conclusion, we propose a formal solution to the problem
of information transfer in the highly modular structure of the
brain. The answer is inspired by a classic finding in sociology:
the strength of weak ties (30). The present work provides a gen-
eral insight into the physical mechanisms of network information
processing at large. It builds up on an example of considerable
relevance to natural science, the organization of the brain, to
establish a concrete solution to a broad problem in network
science. The results can be readily applied to other systems—
where the coexistence of modular specialization and global inte-
gration is crucial—ranging from metabolic, protein, and genetic
networks to social networks and the Internet.
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