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Resting-state functional magnetic resonance imaging has become
a powerful tool for the study of functional networks in the brain.
Even “at rest,” the brain’s different functional networks spontane-
ously fluctuate in their activity level; each network’s spatial extent
can therefore be mapped by finding temporal correlations between
its different subregions. Current correlation-based approaches mea-
sure the average functional connectivity between regions, but this
average is less meaningful for regions that are part of multiple net-
works; one ideally wants a network model that explicitly allows
overlap, for example, allowing a region’s activity pattern to reflect
one network’s activity some of the time, and another network’s
activity at other times. However, even those approaches that do
allow overlap have often maximized mutual spatial independence,
which may be suboptimal if distinct networks have significant over-
lap. In this work, we identify functionally distinct networks by vir-
tue of their temporal independence, taking advantage of the
additional temporal richness available via improvements in func-
tional magnetic resonance imaging sampling rate. We identify mul-
tiple “temporal functional modes,” including several that subdivide
the default-mode network (and the regions anticorrelated with it)
into several functionally distinct, spatially overlapping, networks,
each with its own pattern of correlations and anticorrelations.
These functionally distinct modes of spontaneous brain activity
are, in general, quite different from resting-state networks previ-
ously reported, and may have greater biological interpretability.

Functional connectivity in the brain can be observed using
resting-state functional magnetic resonance imaging (FMRI),
because the spontaneous temporal fluctuations from functionally
related regions show temporal correlation with each other (1).
However, brain function is mediated by many functionally dis-
tinct networks. These networks may overlap each other, either
because a given region contains distinct functional units that
cannot be separated with the limited spatial resolution of the
data, or because a region truly is a part of more than one distinct
functional network. If two regions participate in multiple func-
tional networks, their apparent temporal correlation will reflect
the combined contribution from all networks, obscuring the true
underlying functional organization. The correlation will not
necessarily be meaningful, being some unknown combination of
correlations caused by various distinct processes. In this paper,
we describe an approach that allows for overlap between func-
tional networks, but differentiates the networks from each other
on the basis of their temporal, rather than spatial, independence.
The rationale is that in a resting FMRI dataset of sufficient
duration, functionally distinct networks should be largely tem-
porally distinct, even if spatially overlapping.

Two main modeling approaches have been used to estimate
functional connectivity from resting FMRI data. The simplest
(and most widely used) approach is seed-based correlation (1), in
which temporal correlation is treated as a single fixed quantity to
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be estimated over the whole experiment’s duration, although
some recent work has examined how the correlation varies over
time (2). A popular alternative approach is to carry out a low-
dimensional spatial independent component analysis (ICA) (3)
to define “resting-state networks” (RSNs). Spatial ICA decom-
poses the data into components that are maximally spatially in-
dependent of each other. With a low-dimensional ICA, each
component contains (in general) several noncontiguous regions
that all fluctuate together with similar spontaneous time courses;
different components have different time courses. A further
variant on these approaches is to parcellate the brain into a large
number of functionally distinct regions (e.g., based on an ana-
tomical atlas, or via a high-dimensional spatial ICA). The parcels
(also referred to as network “nodes”) are then clustered into
extended functional networks on the basis of the temporal cor-
relations between their associated time courses.

Soon after spatial ICA was first proposed for task FMRI (3),
temporal ICA (optimizing for temporal independence between
components) was also applied to task FMRI (4). It was shown
that both spatial and temporal ICA could identify a small
number of strongly distinct task activation and artifact processes
(5). However, it quickly became apparent that (for FMRI) ICA
performs much more robustly in the spatial than the temporal
domain, partly because ICA requires a large number of samples
to function well, and in FMRI there are orders of magnitude
more voxels than time points. Also, the underlying neural pro-
cesses in the data may well be more non-Gaussian in space than
in time (particularly for resting-state data), adding to the greater
robustness of spatial ICA. With respect to the separation of
activation from artifacts, and of spatially distinct activations from
each other, spatial independence may be the most appropriate
model, for example, where stimulus-induced head motion would
be temporally correlated to the signal of interest (3). For these
reasons, nearly all applications of ICA to FMRI (including
resting-state FMRI) have to date used spatial ICA.

However, for finding functionally independent, potentially spa-
tially overlapping, functional networks, temporal ICA may provide
a better (or at least complementary and informative) approach.
Indeed, a relevant point was made in a commentary on the original
use of spatial ICA for FMRI: “On the negative side, the very nature
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of functional integration among brain areas means that [distinct]
large scale neuronal dynamics can share a substantial anatomical
infrastructure” (6). Here we propose to identify extended func-
tional networks on the basis of their temporal independence. We
show that these networks are in general different from the well-
known RSN identified by spatial ICA (7) and seed-based corre-
lation; therefore we use a different terminology, referring to
“temporal functional modes” (TFMs). We use the word “modes”
rather than “networks” after observing many recurring spatial maps
containing significant amounts of anticorrelated spontaneous ac-
tivity; presumably, two functionally distinct networks may anti-
correlate (e.g., if they represent alternative brain states that do not
in general simultaneously coexist), and it would be inappropriate to
consider the two networks as a single functional network—hence
the more general term “modes.”

Although we aim to identify temporally independent modes,
temporal ICA for FMRI data remains considerably less robust
than spatial ICA. This means that to be able to identify TFMs
robustly and reproducibly, we need to improve data quality and
increase the temporal sampling rate, and also to develop an ef-
ficient analysis strategy to allow the estimation of temporal in-
dependence. We address the former by using improved FMRI
pulse sequences, developed initially to address the challenges of
high-resolution FMRI at ultra-high fields and subsequently de-
veloped further as part of the National Institutes of Health (NIH)
Human Connectome Project. We used accelerated imaging to
acquire multiple slices of data simultaneously, covering the entire
brain in 0.8 s. A total of 36 10-min runs of resting FMRI data
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yielded 24,000 time points concatenated from five subjects. To
maximize robustness of the final temporal ICA, we align multiple
subjects’ datasets to each other with high accuracy and then
perform an initial decomposition of the whole-group data with
spatial ICA at high dimensionality. After removing artifact
components, the remaining components are the desired func-
tional parcels, whose time series are then fed into temporal ICA.
This identifies TFMs—each temporal ICA component is a dis-
tinct TFM, comprising a time series (guaranteed to be in-
dependent of all other TFM time series) as well as a vector that
describes the (positive or negative) strength of involvement of
each of the many network nodes (functional parcels derived by
the spatial ICA) in the given TFM.

We present results from a TFM analysis of a resting FMRI
accelerated imaging dataset showing multiple functional net-
works that differ substantially from previously shown resting-
state networks, and which are therefore of significant value in
aiding our understanding of sensory, motor, and cognitive net-
works in the brain. We found both between-subject and between-
study reproducibility.

Results

From 36 10-min sessions of resting FMRI data, concatenated
temporally, we derived 200 spatial ICA components. We iden-
tified 58 of these as artifacts. The remaining 142 components
have relatively compact spatial patterns, and we refer to these as
“network nodes.” The 142 nodes’ time series were fed into 21-
dimensional temporal ICA, identifying 21 TFMs. A TFM can be

Fig. 1. Three visual components from a 21-dimensional spatial ICA decomposition of the complete dataset, as well as three components from the 21-di-
mensional TFM analysis. To help localize the maps structurally, they are shown on the partially inflated cortical surface, with sulci indicated by darker
background intensity. To help localize the maps functionally, the bottom row shows several cytoarchitecturally based (V1 and V2) and retinotopically based
(higher visual) areas from the “FS_LR" atlas (11). LGN, lateral geniculate nucleus. FEF, frontal eye fields.
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considered spatially as a pattern or set of weights over these
spatial nodes. We now present the 21 TFMs and discuss their
anatomical and functional relevance; the 21 spatial maps can be
seen in greater detail in SI Appendix. Axial/coronal 2D slices are
shown left-right reversed; color overlays denote significance of
P < 0.05 (corrected for multiple comparisons; Methods).

Visual Areas. Fig. 1 compares the three major visual components
derived from a standard low-dimensional spatial ICA decom-
position of the group data (i.e., resting-state networks) with the
three major visual components from the TFM analysis. Both
analyses were carried out with a final ICA dimensionality of 21.
These RSNs and TFMs were strongly symmetric between the left
and right hemispheres. Comparison with an atlas-derived par-
cellation of visual areas shows that RSN 1 occupies the central-
field representation of areas V1 and V2, RSN 2 mainly occupies
peripheral V1 and V2, and RSN 3 occupies a broad neighboring
swath of dorsal and ventral extrastriate visual cortex, including
several “higher” retinotopic areas. The RSNs are spatially largely
nonoverlapping, and their time courses were positively correlated
with each other.

The three TFMs have distinctly different spatial patterns. TFM
2 includes all of V1 and V2, as well as lateral geniculate nucleus,
with very little anticorrelation, indicating a functional mode in
which activity is temporally coordinated throughout low-level
visual areas and nuclei in both hemispheres. TFM 4 shows
a spatially segregated pattern with anticorrelated activity between
low and high eccentricity, indicating a different mode involving a
push—pull relationship between the activity in regions corre-
sponding approximately to RSNs 1 and 2. This is consistent with
deactivation found in task studies (8), where foveal activation
causes deactivation in the high eccentricity area and vice versa.

The spatial maps of TFMs 2 and 4 approximate the mean and
difference of RSNs 1 and 2, respectively, as one might expect if
one applied a principal component analysis, thus enforcing
spatial and temporal orthogonality. However, there is no such
constraint in the temporal ICA model to force this outcome. If,
for example, one TFM covered all of V1 and the other only
included the foveal part, the temporal ICA would be expected to
report exactly that (7).

TFM 8 occupies much of the extrastriate swath found in RSN 3,
but it also extends across the “dorsal visual stream” and into
parietal somatosensory cortex, as well as the frontal eye fields.
This has also been referred to as the “task-positive network” (9),
and includes regions activated in attention tasks. The anti-
correlated regions include several parts of the default mode
network, including (somewhat weakly compared with some other
TFMs) posterior cingulate cortex (PCC) and parts of primary and
association auditory cortex. This TFM connects higher-level
visual areas to the rest of the dorsal visual stream as a single
integrated network more cleanly than is seen in any single RSN.

TFMs Relevant to the Default Mode Network. The default mode
network (DMN) is a well-characterized RSN that shows a con-
sistent pattern of (temporally averaged) correlations and anti-
correlations (9). The DMN deactivates (compared with baseline)
under many attention tasks, and is often estimated in resting
FMRI studies by seeding a correlation map from PCC. Several of
the TFMs overlap spatially with the areas involved in the DMN.

Consider, for example, TFMs 11 and 13 (Fig. 2). Both have
strong overlap with parts of the DMN, but are different from one
another in important respects. TFM 11 contains large portions of
the DMN, including PCC/precuneus, anterior cingulate cortex
(ACC), and widespread angular gyrus, along with Brodmann 22
and frontal areas 9/46. These regions are very similar to the
“semantic network” found in a meta-analysis of 120 semantic
system studies (10). Anticorrelated regions are less prominent,
including early auditory (Brodmann 42) and higher-level visual
regions. TFM 13 also includes large and asymmetric frontal areas
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Fig. 2. Spatial maps for TFMs 11 (semantic with default mode system) and
13 (language versus default mode system).

(more lateral than in TFM 11), and is the only TFM to strongly
cover Broca’s area (Brodmann 44). This forms part of a strongly
lateralized “language” network, including bilateral supramarginal
gyrus, which anticorrelates with much of the known DMN
(without including auditory), with the medial-frontal part of the
DMN being strongly lateralized toward the right. TFM 13, which
might be considered a “language versus default mode” system, is
quite distinct from previously seen RSN spatial patterns, and is
reproducible across studies (see below).

Even with the large reduction in dimensionality when model-
ing the entire dataset as 21 TFMs, we expect that the combined
(averaged) behavior across all TFMs should reproduce any
average correlation-based results obtained from the original
dataset. We now compare these two analyses, with respect to
PCC-seeded correlation, to demonstrate that this is indeed the
case, before noting how the relevant TFMs are spatially over-
lapping but distinct from each other.

To carry out a standard seed-based correlation analysis (vox-
elwise) of the DMN with our dataset, we identified a PCC seed
region using a combination of coordinates from three previous
studies (2, 9, 12). Starting from a seed mask containing four
voxels (in MNI152 space), we dilated about these points with
a sphere of radius 6 mm, smoothed the result by a Gaussian of
half-width 5 mm, and thresholded the result to give a PCC mask
(Fig. 34, green). From all subjects’ combined 4D datasets (in
MNI152 space), we averaged the resting FMRI time series from
all voxels in the PCC mask and regressed this into the 4D
datasets, giving an average PCC-seeded correlation map (Fig.
3A). This corresponds well to published areas of DMN correla-
tion and anticorrelation (e.g., in the studies from which we took
the PCC seed coordinates).

A similar average correlation map emerged from combining
across all TFMs. The node-weight vectors for the 21 TFMs (the
142 x 21 temporal ICA mixing matrix) are shown in Fig. 3B.
(Node ordering had previously been determined by clustering
groups of nodes with similar time courses; SI Appendix, Fig. 1).
The low node-number visual regions are prominent in TFMs 2
and 4 (Fig. 3B, Top Left); the anticorrelations within TFM 4 are
apparent as red versus blue elements. Spatial correlation revealed
that node 49 corresponded strongly to the PCC seed mask; this
node can be seen in green in Fig. 3D. We then computed a spatial
map (node-weight vector) that is the weighted average over all
TFMs, with each TFM weighted according to the extent to which
the PCC node (49) is involved in it (inverting the sign if the PCC’s
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Fig. 3. Average correlations with PCC, estimated through seed-based cor-
relation (A) and by averaging across all TFMs (B-D). (A) PCC seed region
(green) is determined based on standard-space coordinates from the DMN
literature: (=5.1, —=52.5, 40.7), (-2, -39, 38.2), (0, —54.9, 26.5), (-6, —58, 28).
The PCC's average time series is regressed against all voxels’ time series,
resulting in the average map of correlation (red-yellow) and anticorrelation
(blue). (B) The 21 TFM node-weight vectors; each column shows the node
weights that make up the “spatial map” for a given TFM. (C) Each vector was
multiplied by its entry for node 49 (PCC), and the results were then averaged
across all TFMs, giving the right-most column. This average depicts the node
weights corresponding to the average correlation with PCC, and is shown as
a voxelwise map (D) by multiplying the value for each node by the corre-
sponding node’s spatial map. The PCC node is in green.

weight was negative). This is the average PCC correlation in-
formation, calculated via the TFM decomposition (Fig. 3C,
Right). Multiplying this by the 142 nodes’ 3D voxelwise maps
yields the average PCC correlation map (Fig. 3D).

Because the correlation with PCC, averaged across all TFMs,
clearly shows the well-known DMN areas of correlation and
anticorrelation, it is of interest to consider more carefully the
message conveyed by the matrix in Fig. 3C. Several distinct
TFMs contribute strongly to the average DMN appearance, in
particular TFMs 7, 11, 12, 13, 16, and 21, and there is significant
spatial overlap between these networks. Each of these TFMs has
a distinct profile of node weights. For example, the areas showing
anticorrelation with PCC (all blue elements in Fig. 3C) are quite
different in the different TFMs. This indicates that separate
temporal processes (that the time-averaged seed-based correla-
tion does not separate from each other) give rise to the overall
time-averaged pattern of correlations and anticorrelations tra-
ditionally associated with the DMN—it is not a single functional
network. That distinct TFMs (e.g., 11, 13) relate to the DMN in
quite different ways (positive correlation with semantics in TFM
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11, and anticorrelation with language in TFM 13) provides in-
sight into their functional significance.

Further Sensory-Motor and Cognitive TFMs. We now discuss the
remaining “neuronal” TFMs, which can be seen in Fig. 4 (in
addition to TFM 5; see below). TFM 1 contains much of the
dorsal visual stream, similar to TFM 8. However, whereas in 8
the anticorrelated regions include the DMN and auditory areas,
here anticorrelation is strongly found in primary motor-so-
matosensory (mouth or face), along with supplementary motor
area (SMA) and posterior putamen/pallidum, premotor thala-
mus, and the cerebellar “face area.” TFM 3 is dominated by
primary and secondary sensory-motor areas (particularly at the
level of the upper extremity representation), along with superior
temporal sulcus and cerebellum VI. The anticorrelated regions
are weaker, including parts of superior parietal lobule and ACC.
TFM 6 has strong anticorrelation between primary sensory-mo-
tor, SMA, premotor thalamus, SII, and cingulate motor, versus
primary auditory, medial DMN, and Brodmann 45. TFM 10
contains widespread motor-somatosensory, posterior superior
temporal sulcus, and areas 45 and 471, anticorrelated with pos-
terior intraparietal sulcus (IPS), angular gyrus, and dorso-lateral
prefrontal cortex (DLPFC). TFM 14 sees extrastriate visual
correlating with parts of somatosensory and retrosplenial cortex;
anticorrelations include large parts of posterior right frontal
cortex, striate visual cortex, and left cerebellum. TFM 18 is
dominated by motor-somatosensory regions, with focal anti-
correlation in areas 39/40. TFM 20 contains some higher-level
visual, superior parietal-occipital sulcus, anterior insula, and
posterior IPS, and anticorrelated regions in retrosplenial cortex
(areas 29 and 30).

TFM 7 strongly involves medial parts of the DMN (PCC/
precuneus and ACC), along with primary and early association
auditory cortex, parts of the parietal-occipital fissure, and frontal
area 10; anticorrelated regions include superior temporal sulcus
and Broca (area 45 more than 44). TFM 9 includes dorso-lateral
prefrontal cortex, inferior parietal lobule, and lateral occipital
areas, anticorrelated with supramarginal/angular gyrus. TFM 12
contains parts of the semantic network on the left, anticorrelated
with right somatosensory association areas. TFM 16 contains
bilateral superior temporal sulcus correlated with parts of pre-
motor bilaterally, retrosplenial cortex, DLPFC, and medial-pa-
rietal cortex; anticorrelated areas include pre-SMA and more
anterior medial-frontal cortex. TFM 21 sees DMN areas (in-
cluding PCC) anticorrelated with lateral-frontal regions often
seen as part of the “executive control” RSN. TFM 17 is domi-
nated by a distinctive posterior-medial pattern containing two
close (but not connected) areas. Because of the position in/near
PCC, this TFM has likely merged into many previous PCC-
seeded DMN analyses; anticorrelated regions include area 39
and Brodmann 6 and 8. TFM 19 contains parts of the DMN and
strong involvement of Crus I in the cerebellum; anticorrelation
includes primary and association auditory cortex.

“Global” TFM Spatial Maps. Finally, TFMs 15 (Fig. 5) and 5 (Fig. 4)
are unlike the other TFMs in that they show widespread signal
across much of the gray matter, with very small areas of anti-
correlation. Their temporal power spectra (shown in ST Appen-
dix) are largely similar to the other TFMs below 0.2 Hz, but have
raised power above 0.2 Hz. There could well be some nonneural
physiological contribution to these TFMs, although the temporal
resolution is not quite high enough to avoid aliasing of cardiac
pulsation, and hence it is not easy to differentiate (for example)
cardiac and breathing effects in the spectra. TFM 15 includes
anticorrelation in anterior insula (probably lateral agranular
insula) and (more weakly) in the putamen. The insula is impli-
cated in heart rate control and other autonomic functions (13—
15); hence, the insular signal seen here might be neural in origin,
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and related to vascular (as distinct from neural) effects seen in
gray matter in virtually all other regions.

TFM Reproducibility. To gain further confidence in our results, we
confirmed significant reproducibility in tests between separate
groups of subjects. We also found encouraging results (several
TFMs matching what we have shown above, including TFMs 8§,
13, and 15) from a separate study utilizing a more traditional
acquisition. See SI Appendix for details.

Discussion

We have demonstrated spontaneously varying modes of brain
function, identified on the basis of their temporal independence.
This approach presents technical challenges, as it is fundamen-
tally less robust than the seed-based correlation and spatial ICA
methods in common use. However, by using accelerated MRI
acquisition that generates much more densely sampled time se-
ries, along with improved cross-subject alignment and two stages
of artifact removal, we identified a set of temporal functional
modes that are reproducible and robust. Several of these TFMs
seem to be functionally interpretable, although much remains to
be done on this front.

The well-known patterns of correlation and anticorrelation
that make up the default mode network and the task-positive
network appear to reflect the summation of multiple functionally
(temporally) distinct processes, which overlap spatially, and
hence become merged together in averaged seed-based corre-
lation analyses. The notion that the DMN comprises multiple
functional subnetworks has previously been suggested, based on
changing patterns of correlation when a seed region is moved
across distinct neighboring regions (e.g., 16). However, such
analyses have generally been based on simple correlation, and so
are fundamentally limited in their ability to differentiate spatially
overlapping networks from each other.

Of relevance to this, an area of increasing interest is the study
of temporal nonstationarities in resting-state patterns. The term
“nonstationarity” implies that a statistic of interest is non-
constant, and it is used in a variety of ways; for example, non-
stationarity might (i) refer to an apparent change over time in
correlation between two regions (2); (if) refer to changes in the
mean and/or variance in the time course of a functional network
(or TFM); or (iii) refer to the underlying network structure
changing over time. If multiple functional networks are static
over time in terms of each network’s “internal” connection
strengths, but each has its own fluctuating overall activity level
(case ii), the network structure may be stationary, but apparent
nonstationarity in correlation will occur (e.g., as measured via
sliding-window correlation, or apparent as session variability).
Indeed, many other factors (that may not be functionally in-
teresting) can also cause apparent changes in correlation, in-
cluding changing noise level or poor sampling of the correlation
(e.g., allowing the signal to remain dominated by wavelengths
longer than the scale of the window in sliding-window correla-
tion). Given that the TFM model allows brain regions to be part
of multiple networks, this model may account for some of the
apparent nonstationarity seen in simple correlation (case i). By
reconstructing the data from the TFM model (i.e., assuming each
TFM'’s set of connections, and their strengths, is fixed), we can
estimate the remaining apparent nonstationarity in correlation

Smith et al.

Fig. 4. A further 15 TFMs from the set of 21. The most in-
formative view(s) for each is chosen from the left/right, me-
dial/lateral surfaces.

and hence estimate how much apparent correlation non-
stationarity is due purely to the overlapping networks rather
than other factors such as nonmodeled noise or “deeper” non-
stationarities (case iii ). Using sliding-window correlation (see SI
Appendix for more details), we found that at least 25% of the
apparent nonstationarity in raw data correlations is attributable
to the fact that multiple (internally fixed) functional networks
with time-varying amplitude are spatially overlapping.

Spatially, many (although not all) of the TFMs contain signifi-
cant spatial areas of both strongly positive and negative values,
meaning that, with respect to a given TFM’s time course (and
hence, we propose, function), there is considerable deactivation
synchronized with activation. This is much less apparent in the
spatial maps of resting-state networks identified from spatial ICA.
Anticorrelations involving the DMN have been reported using
seed-based correlation (9), and although there has been some
debate over certain preprocessing enhancing (or even creating)
this anticorrelation, it does now seem clear that there is indeed
real underlying anticorrelation (12). The anticorrelations repor-
ted here support that conclusion, and are not subject to the same
(preprocessing-related) methodological concerns. The most ob-
vious interpretations of anticorrelations relate to mutual func-
tional incompatibility (particularly in cognitive networks) and
suppression (more likely in sensory areas). The former scenario
might be most strongly argued for functional modes that require
conscious involvement; if it is the case that conscious thought can
only strongly be involved in one kind of cognitive task at any one
moment (semantic, decision making, memory recall, etc.), this
might lead to anticorrelation between the areas involved in those
different tasks. If indeed there are multiple networks that are all
mutually incompatible, this suggests that our focus on temporal
independence, although being more appropriate than spatial in-
dependence, may still be suboptimal; one may need to relax con-
straints of total mutual independence (and orthogonality) in time
(temporal ICA) and space (spatial ICA). One possible strategy
would be to maximize non-Gaussianity in space and time, while not
fully enforcing independence/orthogonality. Along these lines, al-
though enforcing spatial sparsity may be a practical way to opti-
mize non-Gaussianity, this is unlikely to be a sensible approach
temporally (we see no evidence that the TFM time courses are
sparse). Although the spatiotemporal approach of ref. 17 might be
useful in this context, if it is the case that anticorrelation really does

Fig. 5. TFM 15 (global versus insula mode).
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occur within a single biological component, it is unlikely to make
sense to optimize for skew of the spatial maps. In the temporal
domain, given that many object to the concept of deactivation as
a meaningful biological concept (as opposed to nonactivation, in-
cluding inhibition), it might make sense to constrain the compo-
nent time courses to be only positive (or zero); this is achieved in
a nonnegative matrix factorization (18). However, such methods
assume that both domains (time and space) have to be fully non-
negative, so again this does not perfectly suit our needs. Instead, it
would be valuable to develop methods for weakening the temporal
independence constraint (and hence potentially improving in-
terpretability of the components found), while also seeking to
improve computational robustness.

We believe that the advances presented here make a contri-
bution toward improved mapping of the brain’s functional
modes. Through FMRI data quality improvements such as the
accelerated imaging used here, and with increased integration
with other modalities such as magnetoencephalography, new
modeling methods should be able to derive ever richer and more
interpretable mapping of the brain’s functions and networks.

Methods

For details, see SI Appendix Methods. We acquired 36 10-min resting FMRI
datasets in seven sessions from five healthy adults (one subject being scan-
ned on three separate occasions). The imaging was approved by the in-
stitutional review board at the University of Minnesota, and subjects
provided informed consent. Data were acquired on a standard 3T Siemens
Trio, with 40 mT-m~" maximum gradients and a slew rate of 200 mT-m~"s™".
A 32-channel receive-only radio-frequency (RF) head-coil array was used,
along with a body RF transmitter. The FMRI time-series data were acquired
using multiband (MB) accelerated (19) echo-planar imaging with controlled
aliasing. Three slices were simultaneously excited (MB = 3), giving a whole-
brain temporal resolution of 0.8 s.

Data were analyzed primarily using tools from FSL (20) as well as Free-
Surfer (21) for cortical surface modeling, and FastICA (22) for temporal ICA.
For visualization, we used tools from FSL and Caret (http:/brainvis.wustl.
edu/wiki/index.php/Caret:About). Each 10-min FMRI dataset was corrected
for head motion and high-pass—filtered to remove drifts before being fed
into spatial ICA to find and remove the majority of artifacts. We then
mapped each 4D dataset into a standard representation of gray matter
("grayordinates”) currently being developed for the NIH Human Con-
nectome Project; this is a combination of cortical midgray surface vertices
and 3D subcortical/cerebellar voxels (from a 3D nonlinear registration of the
structural to the MNI152 standard template image). The set of grayordinates
is arranged as a single long vector of vertices and voxels, and thus each FMRI
time-series dataset can be represented in this standard system as a 2D matrix
of grayordinates x time points.
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We concatenated temporally all subjects’ datasets in this format to feed
into the following groupwise ICA. We applied a high-dimensional spatial ICA
to identify further artifactual components as well as achieve a high-di-
mensional functional parcellation of the group data. From a 200-dimensional
spatial ICA, we manually identified 58 components as artifacts. These were
then regressed out of the remaining 142 time series, leaving 142 functional
nodes—node time series and associated spatial maps. The 142 node time
series were then fed into temporal ICA (the TFM analysis) with an ICA di-
mensionality of 21, that is, to find the 21 strongest TFMs present in the group
data as a whole. Thus, the overall model (see SI Appendix for details) is

Xvx1) = Ss(vxk) XAtk x1) X Stwxt) + E.- [1]

X is the data matrix of size Voxels (or grayordinates) x Timepoints, repre-
sented as a product of three matrices: S; are the spatial maps (network
nodes) estimated by the initial K-dimensional spatial ICA (after regressing
out the artifact components), S; are the TFM time courses from the L-di-
mensional temporal ICA, and A; is a central mixing matrix that describes the
node membership for each TFM. The fth column in A; contains the 142 node
weights for TFM /; these weights can be positive or negative, and where we
see significant positive and negative values in a single column, the analysis is
telling us that different areas of the brain are anticorrelated with each other
with respect to the particular behavior of that specific TFM. Fig. 3B is
showing A;. E combines noise and artifacts.

All TFM spatial maps shown were obtained by regressing the TFM time
courses into the original datasets and averaging the resulting maps across all
runs/subjects, with a within-run significance level of P < 0.05, corrected for
multiple comparisons across space. The sign of the spatial maps (and asso-
ciated time courses) is arbitrary; inverting the sign of one spatial map and its
associated time course gives an equivalent model of the data. TFM spatial
maps are shown both on the inflated cortical surface (what looks like the
right hemisphere is the right hemisphere) and with axial/coronal/sagittal 2D
slices (shown left-right reversed).

All analysis software used is either already publicly available or will be re-
leased in upcoming versions of FSL, Caret, and Human Connectome Project
toolkits. The multiband FMRI pulse sequence and reconstruction code is avail-
able fromthe Center for MagneticResonance Research, University of Minnesota,
for the Siemens VB17 platform with a 32-channel receive coil, and is expected
shortly to be available as a Siemens “Works in Progress” package. Collection of
the full Human Connectome Project datasets is due to begin in 2012, once the
imaging protocols have been finalized; these datasets will be made publicly
available. Our TFM and RSN maps are available from SumsDB (http://sumsdb.
waustl.edu/sums/directory.do?id=8288032&dir_name=TFM_PNAS).
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