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Breast cancers are comprised of molecularly distinct subtypes that
may respond differently to pathway-targeted therapies now
under development. Collections of breast cancer cell lines mirror
many of the molecular subtypes and pathways found in tumors,
suggesting that treatment of cell lines with candidate therapeutic
compounds can guide identification of associations between
molecular subtypes, pathways, and drug response. In a test of
77 therapeutic compounds, nearly all drugs showed differential
responses across these cell lines, and approximately one third
showed subtype-, pathway-, and/or genomic aberration-specific
responses. These observations suggest mechanisms of response
and resistance and may inform efforts to develop molecular assays
that predict clinical response.
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Genomic, epigenomic, transcriptional, and proteomic analyses
of breast cancers reveal subtypes that may differ in pathway

activity, progression, and response to therapy. In recognition of
these variances, more than 800 small molecule and biological
inhibitors are now under development for the treatment of human
malignancies (1). These inhibitors vary in strength of subset and
pathway specificity, with molecularly targeted experimental agents
tending toward stronger specificity (2). To test experimental
agents more efficiently, sensitivity-enrichment schemes are needed
to identify potentially responsive patient subpopulations early
during clinical development. Responsive subsets can be identified
during the course of molecular marker-based clinical trials; how-
ever, this approach is expensive and does not allow early evalua-
tion of experimental compounds in subpopulations most likely
to respond. As a consequence, the probability is high that com-
pounds that are very effective only in subpopulations of patients
will be missed. An alternative approach is to identify candidate
predictors of response by testing compounds in well-characterized
preclinical models so that early clinical trials can be powered to
detect responding subpopulations predicted by these studies. This
approach would reduce development costs and increase the
probability of finding drugs that may be particularly effective in
subsets of patients.
Several studies support the utility of preclinical testing in cell-

line panels for early and efficient identification of responsive
molecular subtypes to guide early clinical trials. For example,
cell-line panels predict lung cancers with EGFR mutations as
responsive to gefitinib (3), breast cancers with human epidermal
growth factor receptor 2/erythroblastic leukemia viral oncogene
homolog 2 (HER2/ERBB2) amplification as responsive to tras-
tuzumab (4) and/or lapatinib (5), and tumors with mutated or

amplified BCR-ABL (breakpoint cluster region - c-abl oncogene
1, non-receptor tyrosine kinase) as sensitive to imatinib mesylate
(6). The Discovery Therapeutic Program of the National Cancer
Institute (NCI) has pursued this approach on a large scale, iden-
tifying associations between molecular features and responses to
>100,000 compounds in a collection of ∼60 cancer cell lines (7).
Although useful for detecting compounds with diverse responses,
the NCI panel has limited power to detect subtype-specific re-
sponses because of the relatively sparse representation of specific
cancers and subtypes thereof. We and others therefore have
promoted the use of panels of well-characterized breast cancer
cell lines for statistically robust identification of associations be-
tween in vitro therapeutic compound response and molecular
subtypes and activated signaling pathways (4, 5). Here we report
associations between quantitative proliferation measurements
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and molecular features defining subtypes and activated pathways
for 77 Food and Drug Administration-approved and investi-
gational compounds in a panel of ∼50 breast cancer cell lines.
Approximately one third show aberration or subtype specificity.
We also show via integrative analysis of gene expression and
copy number data that some of the observed subtype-associated
responses can be explained by specific pathway activities. The
quantitative response and cell-line characterizations are available
via the Stand Up to Cancer (SU2C)/University of California,
Santa Cruz Cancer Genome Browser at https://genome-cancer.
soe.ucsc.edu/.

Results
Cell Lines Model Many Important Tumor Subtypes and Features. The
utility of cell-line panels for identification of clinically relevant
molecular predictors of response depends on the extent to which
the diverse molecular mechanisms that determine response in
tumors are operative in the cell lines. We reported previously on
similarities between cell-line models and primary tumors at both
the transcript and genome copy-number levels (4), and we refine
that comparison here by using higher-resolution platforms and
enhanced analysis techniques. Hierarchical consensus clustering

of gene-expression profiles for 49 breast cancer cell lines and five
nonmalignant breast cell lines shows that the cell-line collection
models the luminal, basal, and claudin-low subtypes defined in
primary tumor samples (SI Appendix, Fig. S1A) (8, 9). The basal
and claudin-low subtypes map to the previously designated
basal A and basal B subtypes, respectively (Dataset S1). A high-
resolution SNP copy-number analysis (SI Appendix, Fig. S1B)
confirms that the cell-line panel models regions of recurrent
amplification at 8q24 [v-myc myelocytomatosis viral oncogene
homolog (avian) (MYC)], 11q13 [cyclin D1 (CCND1)], 17q12
(ERBB2), 20q13 [serine/threonine kinase 15 (STK15)/aurora ki-
nase A (AURKA)], and homozygous deletion at 9p21 [cyclin
dependent kinase inhibitor 2A (CDKN2A)] that are found in
primary tumors. Given the clinical relevance of the ERBB2 tu-
mor subtype, we assigned cell lines with DNA amplification of
ERBB2 to a special subtype designated “ERBB2AMP.”

Cell Lines Exhibit Differential Sensitivities to Most Therapeutic
Compounds. We quantified the sensitivity of our cell-line panel
to 77 therapeutic compounds by measuring the concentration
needed for each compound to inhibit proliferation by 50%
(designated the GI50, where GI indicates “growth inhibition”)

R

Lapatinib

BIBW2992

Rapamycin

Temsirolimus

GSK1070916

Carboplatin

Cisplatin

VX-680

Methotrexate

Pemetrexed

1 0.5 -1-.
5

BA

La
pa

tin
ib

B
IB

W
29

92

R
ap

am
yc

in

T
em

si
ro

lim
us

G
S

K
10

70
91

6

C
ar

bo
pl

at
in

C
is

pl
at

in

V
X

-6
80

M
et

ho
tr

ex
at

e

P
em

et
re

xe
d

-lo
g1

0 
G

I5
0 

(M
)

4
5

6

S
en

si
tiv

ity

Luminal
ERBB2AMP
Basal
Claudin-low

Sigma AKT1-2 inhibitor

Chemotherapeutic 
agents

AURK inhibitors

mTOR inhibitors

ERBB2 inhibitors

DHFR inhibitors

Claudin-low
Luminal

Basal
ERBB2AMP

b

Amplified

Normal

q = 0.02 q = 0.04

q = 0.02 q = 0.08 q = 0.08

a

BIBW2992 NU6102

GSK1070916 Carboplatin

20q13 (AURKA) 11q13 (CCND1)

17q12 (ERBB2)c

S
en

si
tiv

ity
 (

-lo
g1

0 
G

I5
0)

S
en

si
tiv

ity
 (

-lo
g1

0 
G

I5
0)

-22 1 -10

CGC-11047

Lapatinib
BIBW2992
Gefitinib

Erlotinib

17-AAG

AG1478

Sigma AKT1-2 Inh.

GSK2119563
GSK2126458

Rapamycin
Temsirolimus

Vorinostat
Trichostatin-A

LBH589

Fascaplysin

Triciribine

GSK1070916

Etoposide

Cisplatin
Docetaxel

VX-680

PD173074

ERBB2

AURK

HDACs

mTOR

PI3K

EGFR

l

l

l
l

4
5

6
7

8

l

3
4

5
6

l

l

4
5

6
7

8
9

l

l

l
l

l

l

17-AAG Gefitinib
q = 0.02

D
C

Fig. 1. Cell lines show a broad range of responses to therapeutic compounds. (A) Luminal and ERBB2AMP cell lines respond preferentially to AKT inhibition.
Each bar represents the response of a single breast cancer cell line to the Sigma AKT1-2 inhibitor and is colored according to subtype. Cell lines are ordered by
decreasing sensitivity [−log10(GI50)]. (B) Drug-response profiles for compounds with similar mechanisms and targets are highly correlated. Heatmap shows
hierarchical clustering of pairwise correlations between responses of breast cancer cell lines treated with one of eight compounds. Red indicates positively
correlated sensitivity across the panel of cell lines. Green indicates anticorrelated drug-response profiles. (C) Many compounds are significantly associated
with subtype. Each column represents one cell line, and each row represents the median-centered −log10(GI50) for a particular compound. Both rows and
columns are clustered hierarchically. Red represents sensitivity, green represents resistance, and gray represents missing values. Colored boxes below the
dendogram identify sample subtype. Overall, cell lines of similar subtype tend to cluster together, as do compounds with similar targets or mechanisms. (D)
CNAs are associated with compound response. Boxplots show distribution of response sensitivity for cell lines with amplified (A) and normal (N) copy number
at the noted genomic locus. (a) 20q13 (STK15/AURKA) amplification is associated with GSK1070916 response (A = 7; N = 26 samples). (b) Amplification at
11q13 (CCND1) is associated with response to carboplatin (A = 9; N = 28 samples). (c) 17q12 (ERBB2) amplification is associated with sensitivity to BIBW2992
(A = 6; N = 19 samples), 17-AAG (A = 7; N = 27 samples), and gefitinib (A = 7; N = 18 samples), as well as resistance to NU6102 (A = 6; N = 21 samples).
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after 72 h of continuous exposure (Dataset S2). The anticancer
compounds tested included both conventional cytotoxic agents
(e.g., taxanes, platinum compounds, anthracylines) and targeted
agents (e.g., hormonal and kinase inhibitors). Replicate analyses
of the responses to several compounds showed that the median
absolute deviation of −log10(GI50) values was 0.15 in log10 space
(SI Appendix, Fig. S2). Waterfall plots showing responses to the
77 compounds are shown in SI Appendix. Most compounds
showed high variation in response across the cell-line panel;
however, three did not and were excluded from further analysis.
The representative waterfall plot in Fig. 1A shows relatively
higher efficacy in luminal and ERBB2AMP cells for the Sigma
AKT1-2 inhibitor. Overall, responses to drugs with similar mech-
anisms and targets were highly correlated across the cell lines, as
illustrated in Fig. 1B (also see Dataset S3).

Many Compounds Were Preferentially Effective in Subsets of the Cell
Lines. We assessed response–subtype associations with non-
parametric Kruskal–Wallis ANOVAs to compare −log10(GI50)
values across the clinically relevant transcriptional and genomic
subtypes. We tested three comparisons: (i) luminal vs. basal vs.
claudin-low; (ii) luminal vs. basal and claudin-low; and (iii)
ERBB2AMP vs. non-ERBB2AMP.
Overall, 23 of 74 compounds showed transcriptional subtype-

specific responses [Benjamini–Hochberg false discovery rate (q)
<0.1] (Table 1 and Dataset S4). Although doubling times (DT)
vary according to subtype, these subtype associations cannot be
explained by differences in DT (SI Appendix, Fig. S3). Fig. 1C
shows a hierarchical clustering of the quantitative responses of
23 agents with significant subtype associations. The 10 agents
most strongly associated with subtype include inhibitors of re-
ceptor tyrosine kinase signaling and histone deacetylase. Several
of these compounds showed preferential sensitivity in both
the luminal and ERBB2AMP cell lines [e.g., lapatinib and
GSK2126458 (pan phosphoinositide-3-kinase, catalytic; PIK3C
inhibitor)], although the degree of specificity could vary.
For instance, lapatinib was associated more strongly with the

ERBB2AMP than with the luminal subtype, whereas the opposite
pattern was observed for GSK2126458. Other compounds were
specific for only one of these subtypes, as exemplified by
the preferential sensitivity of luminal cells to vorinostat. The
ERBB2AMP cell lines alone were preferentially responsive to
AG1478, BIBW2992, and gefitinib, all of which target EGFR
and/or ERBB2. VX-680 (AURK A/B/C inhibitor) was negatively
associated with ERBB2 amplification. Etoposide, docetaxel, and
cisplatin showed preferential activity in basal or claudin-low cell
lines, as observed clinically (10, 11). Agents targeting the mitotic
apparatus, including GSK1070916 (AURK B/C inhibitor), also
were more active against basal and/or claudin-low cell lines. Inter-
estingly, some compounds targeting the mitotic apparatus (e.g.,
ispinesib and GSK923295) showed no significant subtype speci-
ficity, indicating the complexity of signaling through this network.
Fig. 1D shows responses for six compounds that were signifi-

cantly associated with recurrent focal, high-level copy-number
aberrations (CNAs) (t-test, q ≤ 0.1). A χ2 test showed only
nonsignificant trends in transcriptional subtype associations for
the CNAs. Amplification at 20q13, encoding AURKA was as-
sociated with resistance to the AURK B/C inhibitor GSK
1070916 (12). This resistance suggests that amplification of
AURKA provides a bypass mechanism for AURK B/C inhibitors.
Amplification at 11q13, encoding CCND1, was associated with
resistance to carboplatin. CCND1 is a G1/S cell-cycle checkpoint
gene that monitors for unrepaired DNA damage, and whose
overexpression is known to be associated with cisplatin resistance
in other tumor types (13, 14). Amplification at 17q12 (ERBB2)
was associated with sensitivity to BIBW2992 and gefitinib,
inhibitors of ERBB2 and/or EGFR, as well as 17-AAG [heat
shock protein 90kDa alpha (cytosolic), class A member 1
(HSP90AA1) inhibitor]. 17q12 amplification also was associated
with resistance to the cyclin-dependent kinase 1 (CDK1)/CCNB1
inhibitor, NU6102, perhaps reflecting the fact that ERBB2
negatively regulates CDK1 (15, 16), thereby diminishing the
impact of the CDK1 inhibitor.

Table 1. Therapeutic compounds that show significant subtype specificity

Compound Target
Basal vs. claudin-low

vs. luminal
Basal and claudin-low

vs. luminal
ERBB2AMP vs. not

ERBB2AMP Subtype specificity

Lapatinib EGFR, ERBB2 7.23E-02 3.34E-02 2.26E-06 Luminal/ERBB2AMP

Sigma AKT1-2 inh. AKT1, AKT2 1.17E-03 2.63E-04 1.29E-01 Luminal
GSK2126458 PIK3C A/B/D/G 1.27E-03 1.27E-03 8.67E-02 Luminal/ERBB2AMP

Gefitinib EGFR 4.89E-01 3.35E-01 4.14E-03 ERBB2AMP

BIBW 2992 EGFR, ERBB2 6.93E-01 8.08E-01 6.39E-03 ERBB2AMP

GSK2119563 PIK3CA 2.85E-02 8.11E-03 8.67E-02 Luminal/ERBB2AMP

Rapamycin MTOR 1.45E-02 8.11E-03 3.84E-01 Luminal
AG1478 EGFR 9.34E-01 9.34E-01 2.60E-02 ERBB2AMP

Etoposide TOP2A 3.34E-02 5.13E-02 8.89E-01 Claudin-low
LBH589 HDAC 5.14E-02 3.34E-02 3.22E-01 Luminal
Vorinostat HDAC 7.23E-02 3.34E-02 6.89E-01 Luminal
Cisplatin DNA cross-linker 8.45E-02 4.31E-02 8.52E-01 Basal/Claudin-low
Fascaplysin CDK4 4.83E-02 4.31E-02 3.70E-01 Luminal
Docetaxel TUBB1, BCL2 8.67E-02 4.83E-02 8.44E-01 Basal/Claudin-low
GSK1070916 AURK B/C 5.13E-02 4.83E-02 4.82E-01 Claudin-low
PD173074 FGFR3 5.13E-02 3.68E-01 5.06E-01 Claudin-low
Trichostatin A HDAC 1.22E-01 5.13E-02 7.10E-01 Luminal
Triciribine AKT, ZNF217 8.67E-02 5.91E-02 3.56E-01 Luminal
CGC-11047 Polyamine analog 6.51E-02 1.25E-01 8.08E-01 Basal
Temsirolimus MTOR 1.64E-01 7.25E-02 1.29E-01 Luminal
VX-680 AURK A/B/C 2.95E-01 4.02E-01 7.77E-02 not ERBB2AMP

17-AAG HSP90AA1 1.83E-01 1.10E-01 8.67E-02 ERBB2AMP

Erlotinib EGFR 9.48E-02 2.83E-01 2.33E-01 Basal

Each column represents q-values for one ANOVA. Compounds are ranked by the minimum q-value achieved across the three tests. BCL2, B-cell CLL/
lymphoma 2; CDK4, cyclin-dependent kinase 4; HDAC, histone deacetylase; MTOR, mechanistic target of rapamycin; TOP2A, topoisomerase (DNA) II alpha
170kDa; TUBB1, tubulin β1; ZNF217, zinc finger protein 217.
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Integration of Copy-Number and Transcription Measurements Iden-
tifies Biologically Relevant SuperPathways. We used the network
analysis tool PARADIGM (17) to identify pathway-based
mechanisms that underlie subtype-specific responses. PARA-
DIGM uses copy number and transcription data to calculate
integrated pathway levels (IPLs) for 1,441 curated signal trans-
duction, transcriptional, and metabolic pathways (18). We
compared IPLs for cell lines and primary breast tumors using
data from The Cancer Genome Atlas (TCGA) project (http://
cancergenome.nih.gov) and found a general concordance be-
tween transcriptional subtype and pathway activity across the two
cohorts (SI Appendix, Figs. S4 and S5 and Dataset S5). This
subtype-specific pathway activity likely explains much of the ob-
served subtype specific responses.
Mechanistic interpretation of IPLs for 1,441 pathways is

complicated by the overlapping elements in many of the curated
pathways. We overcame this complication by merging the 1,441
curated pathways into a single “SuperPathway” in which re-
dundant pathway elements are eliminated. This approach en-
abled us to identify SuperPathway subnets that differed in
activity between transcriptional subtypes (SI Appendix, Fig. S6).
As an example, comparison of subnet activities between basal
cell lines and all others in the collection identified a network
comprised of 1,104 nodes (e.g., proteins, protein complexes, or
cellular processes) connected by 1,242 edges (e.g., protein–
protein interactions) between these elements. Several subnetworks
were up- or down-regulated in the SuperPathway networks. Fig.
2A, for example, shows up-regulation of an ERK1/2 subnetwork
controlling cell cycle, adhesion, invasion, and macrophage acti-
vation (19). The forkhead box M1 and DNA-damage subnet-
works also were up-regulated markedly in the basal cell lines.
The claudin-low network showed up-regulation of many of the
same subnetworks, as well as up-regulation of a MYC/Myc-as-
sociated factor X (MAX) subnetwork (Fig. 2B) associated with
metabolism, proliferation, angiogenesis, and oncogenesis (20).
Comparison of the luminal cell lines with all others showed
down-regulation of an activating transcription factor 2 network,
which inhibits tumorigenicity in melanoma (21), as well as up-
regulation of forkhead box A1 (FOXA1)/forkhead box A2
(FOXA2) networks that control transcription of estrogen re-
ceptor-regulated genes (Fig. 2C) and are associated with good-
prognosis luminal breast cancers (22, 23). ERBB2AMP subnet-
works were similar to those for luminal cells; this similarity is not
surprising because most ERBB2AMP cells also can be classified as
luminal. However, Fig. 2D shows down-regulation of a β-catenin
(CTNNB1) network in ERBB2AMP cell lines; up-regulation of
this network has been implicated in tumorigenesis and is asso-
ciated with poor prognosis (24, 25).
SuperPathway analysis of differential drug response among

the cell lines also revealed subnet activities that provide in-
formation about mechanisms of response. For example, basal
cell line sensitivity to the DNA-damaging agent cisplatin was
associated with up-regulation of a DNA-damage response sub-
network that includes ataxia telangiectasia mutated and check-
point kinase 1 homolog, key genes associated with response to
cisplatin (Fig. 3A) (26). Likewise, ERBB2AMP cell line sensitivity
to geldanamycin [an inhibitor of heat-shock protein 90 (HSP90)]
was associated with up-regulation of an ERBB2-HSP90 sub-
network (Fig. 3B). This observation is consistent with the known
ERBB2 degradation induced by geldanamycin binding (27, 28).

Discussion
Efforts to personalize breast cancer treatment are aimed at
identifying subsets of patients most likely to benefit from treat-
ment and avoiding treatment-associated morbidity and mortality
in patients who are unlikely to respond. We have supported this
effort by testing 77 therapeutic compounds in an in vitro cell-line
panel and have shown that approximately one third are prefer-
entially effective in one or more transcriptional or genomic
breast cancer subtypes. We also have shown that integration of
the transcriptional and genomic data for the cell lines reveals
SuperPathway subnetworks that provide mechanistic infor-

mation about the observed subtype-specific responses. Compar-
ative analysis of pathways between cell lines and tumors shows
that the majority of subtype-specific subnetworks are conserved
between cell lines and tumors. This similarity is important, given
the very different environments between a cell line growing in
a standard 2D culture and a primary or metastatic tumor, and
supports the clinical relevance of the in vitro studies.
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Fig. 2. Cell-line subtypes have unique SuperPathway network features. In
all panels, each node represents a pathway “concept” corresponding to
a protein (circle), a multimeric complex (hexagon), or an abstract cellular
process (square). Node sizes are drawn in proportion to the DA score; larger
nodes correspond to concepts more correlated with a particular subtype
than with all other subtypes. Color indicates whether the concept is corre-
lated positively (red) or negatively (blue) with the subtype of interest. Lines
represent interactions, including protein–protein interactions (dashed lines)
and transcriptional interactions (solid lines). Interactions are included if they
connect concepts whose absolute level of DA is higher than the mean ab-
solute level. Labels on some nodes are omitted for clarity. (A) An ERK1/2
subnet preferentially activated in basal breast cancer cell lines. (B) A MYC/
MAX network activated in claudin-low cell lines. (C) A FOXA1/FOXA2 net-
work up-regulated in the luminal subtype. (D) A CTNNB1 subnet down-
regulated in the ERBB2AMP subtype. APOB, apolipoprotein B [including Ag(x)
antigen]; BCAT1, branched chain amino-acid transaminase 1, cytosolic;
BDH1, 3-hydroxybutyrate dehydrogenase, type 1; BIRC5, baculoviral IAP re-
peat containing 5; CAMK4, calcium/calmodulin-dependent protein kinase IV;
CAPN2, calpain 2, (m/II) large subunit; CCND2, cyclin D2; CDCA7, cell division
cycle associated 7; DDX18, DEAD (Asp-Glu-Ala-Asp) box polypeptide 18;
DLK1, delta-like 1 homolog (Drosophila); DUSP1, dual specificity phospha-
tase 1; DUSP6, dual specificity phosphatase 6; E2F3, E2F transcription factor
3; EIF4A1, eukaryotic translation initiation factor 4A1; ERK1-2, mitogen-
activated protein kinase 3-1; GCG, glucagon; JUN, jun proto-oncogene;
KLK3, kallikrein-related peptidase 3; LEF1, lymphoid enhancer-binding fac-
tor 1; MAP2K1, mitogen-activated protein kinase kinase 1; MAPK9, mitogen-
activated protein kinase 9; MSH2, mutS homolog 2, colon cancer, non-
polyposis type 1 (E. coli); MSK1-2, ribosomal protein S6 kinase, 90kDa,
polypeptide 5; MTA1, metastasis associated 1; PISD, phosphatidylserine
decarboxylase; PITX2, paired-like homeodomain 2; POLR3D, polymerase
(RNA) III (DNA directed) polypeptide D, 44kDa; PTGS2, prostaglandin-endo-
peroxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase);
RANBP3, RAN binding protein 3; RUNX2, runt-related transcription factor 2;
SCGB1A1, secretoglobin, family 1A, member 1 (uteroglobin); SKP2, S-phase
kinase-associated protein 2 (p45); SMAD3, SMAD family member 3; SOD1,
superoxide dismutase 1, soluble; SSH, slingshot homolog; TCF1E, HNF ho-
meobox A; TCF4E, transcription factor 4; TFF1, trefoil factor 1; TP53, tumor
protein p53; VCAN, versican; VTN, vitronectin; XBP1, X-box binding protein
1; ZFP36, zinc finger protein 36, C3H type, homolog (mouse).
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The potential clinical utility of these findings is supported by
concordance of in vitro-derived molecular predictors of response
to therapeutic compounds and clinical results. For example,
ERBB2-amplified cell lines are preferentially sensitive to
ERBB2-targeted agents, and basal subtype cell lines are pref-
erentially sensitive to platinum salts, as observed clinically. That
said, additional work remains before the signatures reported in
this study can be used to select patients for clinical trials. Such
future work would include the development of robust and reli-
able molecular assays that can be applied to clinical samples,
establishment of predictive algorithms with decision-making
thresholds optimized for clinical use, and validation of predictive
power in multiple independent studies. To initiate this process,
we suggest that the response-associated signatures identified in
this study be developed into standardized assays that can be
assessed for clinical predictive power in early-stage clinical trials
and used to design trials that are properly powered to detect the
responses in the clinical subsets predicted by the in vitro studies.
Assays that show positive predictive power in early clinical trials
then can be “locked down” and tested for predictive power in
follow-on clinical trials.

We anticipate that the power of this in vitro systems approach
will increase as additional molecular features, including muta-
tions, methylation, and alternative splicing, are included in the
analysis. In addition, expanding the cell-line panel will increase
the power to identify low-frequency molecular patterns and to
develop robust predictive models. Most important, however, is
iterative refinement of the in vitro assay system based on lessons
learned by comparing in vitro predictions with clinical reality.

Methods
Unless statedotherwise, analyseswereperformed inR (http://www.r-project.org).

Cell Proliferation Assay and Growth Rate. The efficacy of 77 compounds in ∼50
breast cancer cell lines was assessed as described previously (29). Briefly, cells
were treated in triplicate for 72 h with nine doses of each compound in 1:5
serial dilution. Cell proliferation was estimated using the Cell Titer-Glo assay
(Promega). DT was estimated from the ratio of 72 h to 0 h for untreated
wells. A Gompertz curve was fit to the dose-response data using a nonlinear
least squares procedure with the following parameters: upper and lower
asymptotes, slope, and inflection point. The fitted curve was transformed
into a GI curve as described previously (30, 31).

Several quantitative response metrics were estimated including the GI50,
the concentration needed to inhibit proliferation completely (TGI), and the
concentration needed to reduce the population by 50% (LC50). When the
underlying proliferation data were of high quality but the end point re-
sponse (GI50, TGI, or LC50) was not reached, the values were set to the
highest concentration tested. The drug-response data were filtered so that
(i) the median SD across the nine triplicate-treated data points was <0.20;
(ii) the DT was within 2 SD of the median DT for each cell line; (iii) the slope
of the fitted curve was >0.25; (iv) we identified assays with no response by
requiring inhibition at the maximum concentration <50%. Approximately
80% of all assays passed all filtering requirements.

Compound and Cell-line Screening. Compounds were excluded from analysis if
(i) more than 40% of GI50 values were missing across the set of cell lines and/
or (ii) the GI50 was not >1.5 times the median GI50 for a given drug (mGI50) or
<0.5 mGI50 for least three cell lines. Nonmalignant cell lines were not in-
cluded in the molecular-response assessments.

SNP Array and DNA Copy-Number Analysis. Genome copy number was
assessed using the Affymetrix Genome-Wide Human SNP Array 6.0 analysis
platform. Arrays were analyzed using aroma.affymetrix (http://aroma-pro-
ject.org) (32), data were normalized as described (33), and DNA copy-num-
ber ratios at each locus were estimated relative to a set of 20 normal sample
arrays. Data were segmented using circular binary segmentation from the
bioconductor package DNAcopy (34). Significant DNA copy-number changes
were analyzed using MATLAB-based Genomic Identification of Significant
Targets in Cancer (GISTIC) (35). Nonmalignant cell lines were not included
in the GISTIC analysis. GISTIC scores for one member of each isogenic cell-
line pair were used to infer genomic changes in the other (Dataset S1).
Raw data are available in The European Genotype Archive (accession no.
EGAS00000000059).

Exon Array Analysis. Gene expression was assessed using the Affymetrix
GeneChip Human Gene 1.0 ST exon array platform. Gene-level summaries of
expression were computed using aroma.affymetrix (33) with quantile nor-
malization and a log-additive probe-level model based on the HuEx-1_0-st-
v2,DCCg,Spring2008 chip definition file (CDF). The raw data are available in
ArrayExpress (E-MTAB-181).

Consensus Clustering. Cell-line subtypes were identified using hierarchical
consensus clustering (36) of genes with an SD >1.0 on the log2 scale across all
cell lines. Consensus was computed using 500 samplings of the cell lines, 80%
of the cell lines per sample, agglomerative hierarchical clustering, Euclidean
distance metric, and average linkage.

Associations of Subtypes and Response to Therapeutic Agents. Associations
between drug response and subtype were assessed for (i) luminal vs. basal vs.
claudin-low; (ii) luminal vs. basal and claudin-low; and (iii) ERBB2AMP vs.
non–ERBB2AMP. Differences between −log10(GI50) of the groups were com-
pared with a nonparametric Kruskall–Wallis ANOVA. The P values for the
three sets of tests were combined, and the Benjamini–Hochberg false dis-
covery rate (q-value) was used to correct for multiple testing. For the three-
sample test, the most sensitive group was identified by performing a post
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Fig. 3. Pathway diagrams can be used to predict response to therapies. (A)
(Left) Basal breast cancer cell lines respond preferentially to the DNA-dam-
aging agent cisplatin. Each boxplot represents the distribution of drug re-
sponse data for basal (right) and non-basal (left) cell lines. (Right) Basal cell
lines show enhanced pathway levels in a subnetwork associated with the
DNA-damage response, providing a possible mechanism by which cisplatin
acts in these cell lines. (B) (Left) ERBB2AMP cell lines are sensitive to the HSP90
inhibitor geldanamycin. (Right) The ERBB2–HSP90 network is up-regulated
in ERBBP2AMP cell lines. Conventions are as in Fig. 2. BCL6, B-cell CLL/lym-
phoma 6; CASP1, caspase 1, apoptosis-related cysteine peptidase (interleukin
1, beta, convertase); CASP6, caspase 6, apoptosis-related cysteine peptidase;
CHEK2, CHK2 checkpoint homolog (S. pombe); DOCK7, dedicator of cytoki-
nesis 7; ERBB3, v-erb-b2 erythroblastic leukemia viral oncogene homolog 3
(avian); ERBB4, v-erb-a erythroblastic leukemia viral oncogene homolog 4
(avian); EREG, epiregulin; FAS, Fas (TNF receptor superfamily, member 6);
GADD45A, growth arrest and DNA-damage-inducible, alpha; NRG1B, neu-
regulin 1; NRG2, neuregulin 2; PLK3, polo-like kinase 3; TP53, tumor protein
p53; TP63, tumor protein p63.
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hoc analysis on the significant compounds in which we compared each
group with all others. The P values for the post hoc test were adjusted to-
gether. In all cases, q <0.10 was deemed significant. If the basal and claudin-
low group was significant in scheme ii, but only one of these groups was
significant in scheme i, precedence was given to the three-sample case when
assigning class specificity. No minimum difference in medians was required.

Association of Genomic Changes and Response to Therapeutic Agents. A t test
was used to assess the association between recurrent copy number changes
at 9p21, 11q13, 17q12, and 20q13, as identified in the GISTIC analysis, and
drug response. Cell lines with low or no amplification were combined into
a single group and compared with cell lines with high amplification. A
similar analysis was performed for regions of deletion. Cell lines for which
the GI50 was equal to the maximum concentration tested were omitted from
analysis (e.g., after censoring lapatinib, there were only two samples in the
amplified copy number group for 17q12; Dataset S6). Compounds were
omitted if the distribution deviated greatly from normality, as assessed by
a quartile–quartile plot. The complete set of P values was adjusted for
multiple comparisons, and q < 0.10 was deemed significant.

Integrated Pathway Analysis. Copy number, gene expression, and pathway
interaction data were integrated using the PARADIGM software (17). This
procedure infers IPLs for genes, complexes, and processes using pathway
interactions and genomic and functional genomic data from a single cell line
or patient sample. See SI Appendix for details.

TCGA and Cell-line Clustering. Pathway activities inferred for the cell lines
were combined with activities inferred for TCGA tumor samples (Dataset S7)
and analyzed using hierarchical clustering. Cell lines and tumor samples
were clustered using a set of 2,351 nonredundant activities determined by
a correlation analysis to avoid biases caused by highly connected hub genes
and highly correlated activities. The degree to which cell lines clustered with
tumor samples of the same subtype was calculated using a Kolmogorov–

Smirnov test to compare a distribution of t statistics calculated from corre-
lations between pairs of cell lines and tumor samples of the same subtype
with a distribution calculated from cell line pairs of different subtypes. See SI
Appendix for details.

Identification of Subtype Pathway Markers. Interconnected genes that col-
lectively showed differential IPLs with respect to subtype were identified by
treating each subtype as a dichotomization of the cell lines into a group
containing the subtype of interest and a group containing the remaining cell
lines. The R implementation of the two-class significance analysis of micro-
arrays algorithm (37) was used to compute a differential activity (DA) score
for each concept in the SuperPathway. For subtypes, positive DA corre-
sponds to higher activity in the subtype compared with the other cell lines.

The coordinated up- and down-regulation of closely connected genes in
the SuperPathway reinforced the activities inferred by PARADIGM. Entire
subnetworks with high DA scores were expected if the activities of neigh-
boring genes alsowere correlatedwith a particular phenotype. Regions in the
SuperPathway were identified in which concepts of high absolute DA were
interconnected by retaining only links that connected two concepts that both
had DA scores higher than the average absolute DA.
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