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The ear detects sounds so faint that they produce only atomic-scale
displacements in the mechanoelectrical transducer, yet thermal
noise causes fluctuations larger by an order of magnitude. Explain-
ing how hearing can operate when the magnitude of the noise
greatly exceeds that of the signal requires an understanding both
of the transducer’s micromechanics and of the associated noise.
Using microrheology, we characterize the statistics of this noise;
exploiting the fluctuation-dissipation theorem, we determine the
associated micromechanics. The statistics reveal unusual Brownian
motion in which the mean square displacement increases as a
fractional power of time, indicating that the mechanisms govern-
ing energy dissipation are related to those of energy storage. This
anomalous scaling contradicts the canonical model of mechano-
electrical transduction, but the results can be explained if the
micromechanics incorporates viscoelasticity, a salient characteristic
of biopolymers. We amend the canonical model and demonstrate
several consequences of viscoelasticity for sensory coding.

auditory system ∣ hair cell ∣ interferometry ∣ vestibular system

The development of experimental and analytical tools has
made possible high-resolution studies of the mechanical prop-

erties of biological macromolecules on time scales ranging from
the picosecond fluctuations of single amide bonds in proteins,
through the submillisecond dynamics of ion-channel gating and
enzyme catalysis, to the much slower events involved in cell divi-
sion and motility (1,2). These studies reveal that the energy land-
scapes in proteins are complex and that the associated hierarchy
of time scales produces nonexponential temporal correlations
(3,4). The absence of a single characteristic time scale implies
stochastic processes with memory and therefore distinct from
simple diffusion.

Auditory physiology offers a unique perspective on biological
micromechanics. The conversion of a sound’s energy into an elec-
trical signal in the ear is a molecular event that involves an ion
channel linked mechanically to a gating spring, an elastic element
whose tension is modulated by sound. The weakest sounds that
we can hear extend the gating spring by less than a nanometer
(5,6). Under these conditions, separating the signal from the in-
trinsic thermal noise is a formidable task, but one facilitated by
the periodic structure of most sounds. Although random fluctua-
tions are known to dominate hair-bundle kinematics and to
influence signal detection through stochastic resonance (7), their
origin and statistical properties have remained obscure. In this
work we have experimentally characterized the random fluctua-
tions of hair bundles by dual-beam differential interferometry, a
technique that has allowed us to make large-bandwidth, high-re-
solution measurements of the nanometer-scale thermal motions
of stereocilia in living hair bundles from the inner ear. We have
interpreted the measurements by introducing a theoretical frame-
work that incorporates viscoelasticity and the known principles
of anomalous stochastic processes into the traditional model
of mechanotransduction.

Results
Subdiffusion in the Thermal Motion of Hair Bundles.A hair bundle is
a mechanosensitive organelle that comprises an array of closely

spaced, rigid, cylindrical stereocilia protruding from the upper
surface of a hair cell (Fig. 1A). Each stereocilium tapers and
becomes more compliant near its base, where it bends when a
mechanical stimulus deflects the hair bundle. As the stereocilia
slide with respect to one another while preserving a constant
separation, the mechanical energy contained in this mode of
motion is efficiently captured and delivered to the mechanosen-
sitive ion channels by obliquely oriented tip links (8) (Fig. 1B).
Other structural polymers between the stereocilia are stretched
negligibly during small hair-bundle deflections because they are
oriented not obliquely but perpendicularly to the sliding stereo-
cilia; they are engaged only during very large deflections to
protect hair bundles from mechanical damage (9).

Because a hair bundle’s position is directly coupled to the ten-
sion in its tip links, thermal fluctuations in these links and the
associated channels must reciprocally cause the bundle to move
randomly (SI Appendix, section 1). One might expect this me-
chanical noise to resemble the overdamped motion of a Brownian
particle in a quadratic potential: the drag force provides the cou-
pling to the fluid and the elastic connections constitute a harmo-
nic well. Brownian motion in a quadratic potential has three
related salient characteristics. The mean square displacement
at short times grows linearly with time as

hx2ðtÞi ∝ tα; with α ¼ 1; [1]

the positional autocorrelation function decays exponentially with
time; and the power spectrum is Lorentzian with a high-frequency
slope in logarithmic coordinates of −2. These behaviors are char-
acteristic of systems in which the mechanisms governing energy
dissipation are distinct from those of energy storage (10).

We examined the statistics of thermal fluctuations of hair bun-
dles with the techniques of passive microrheology (11), which are
noninvasive and extend over a broad frequency range to high
frequencies inaccessible to the existing active methods (12). The
experiments disclosed that the thermal motion of a hair bundle
differs from the expectation for an overdamped particle in a po-
tential well. The mean square displacement grew sublinearly with
time, so α < 1 (Fig. 1C). The autocorrelation function exhibited
power-law behavior and the power spectrum displayed a high fre-
quency slope less negative than −2 (Fig. 1D). The thermal motion
of a living hair bundle is therefore likely to represent subdiffu-
sion, an hypothesis that we subjected to several additional tests.

The observed statistics of hair-bundle motion are consistent
with an equilibrium, time-reversible, Gaussian process in the fre-
quency range from 100 Hz to 10 kHz (SI Appendix, section 2, and
Figs. S1 and S2). The fluctuations may reflect nonequilibrium
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processes at even lower frequencies and inertial forces at still
higher frequencies (13). We excluded the possibility that instru-
mental noise affected the high-frequency portion of the measured
spectra by quantifying its power and by including it in our data
analysis. Both approaches indicated that additive noise was neg-
ligible (SI Appendix, Figs. S3 and S4). Anomalous, fractional
Brownian motion satisfies the Gaussian property and can gener-
ate subdiffusion (14). When coupled to an elastic element, the
process becomes mean reverting–it drifts toward its average value
with time–and provides a good phenomenological explanation of
the hair bundle’s high-frequency motion. Fractional Brownian
motion has been used in the form of a generalized Langevin
equation to explain subdiffusive fluctuations within single protein
molecules (4, 15, 16). What viscoelastic models and what arrange-
ment of coupled biomechanical components can explain the data
from hair cells?

Effect of Disrupting Gating Springs on Subdiffusion. If fluctuations in
gating springs underlie a hair bundle’s subdiffusion, then remov-
ing the springs should restore ordinary diffusion. To test this pre-

diction, we disconnected the gating springs with the Ca2þ chelator
bis(2-aminophenoxy)ethane tetraacetic acid (BAPTA), which
severs the bonds between the cadherin-23 and protocadherin-
15 dimers that form a tip link (17). This intervention switched
the scaling from subdiffusive to ordinary (Fig. 1D). In contrast,
subdiffusion persisted when we applied the protease subtilisin,
which is known to remove basal links and shaft connectors, lateral
structural polymers that are not coupled to the channels and are
not stretched appreciably during small hair-bundle deflections. A
similar result ensued when we arrested metabolism and brought
ten hair cells to thermodynamic equilibrium with poisons that
block oxidative phosphorylation and glycolysis (Fig. 1E; SI
Appendix, section 2). The fluctuations likewise remained subdif-
fusive in six cells after we blocked the mechanotransduction
channels, whose effective gating viscosity could affect the noise
spectrum (18), with the chemically unrelated compounds amilor-
ide (Fig. 1E) and gentamicin (19). This result indicates that
reverse electromechanical transduction is not responsible for sub-
diffusion.
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Fig. 1. Subdiffusive movement of the hair bundle. (A) A scanning electron micrograph depicts a hair bundle from the bullfrog’s sacculus. The axis of mechan-
osensitivity corresponds to the plane of the illustration; the direction of excitatory mechanical stimulation is to the right. The scale bar represents 2 μm. (B) A
transmission electron micrograph portrays the tops of two stereocilia joined by an obliquely oriented tip link, which is thought to be attached at its lower
insertion to two transduction channels. The scale bar represents 100 nm. (C) A plot of a hair bundle’s mean square displacement demonstrates that an intact
bundle performs subdiffusion. The values of hΔx2i for 16 hair cells are shown in gray and their average in red. For comparison, ordinary diffusion defined by the
relation hΔx2i ∝ t is indicated by a blue reference line. (D) The average power spectrum (red) from the 16 intact hair bundles in (C) displays a limiting slope near
−1.75 (underlying black line). Cutting the tip links with BAPTA in 11 cells yields a spectrum (blue) with a slope near −2 (underlying black line) characteristic of
ordinary diffusion. The shaded areas represent 99% confidence intervals obtained by bootstrapping. (E) The power spectrum of a hair bundle at thermal
equilibrium after treatment with NaN3 (green) displays subdiffusion. A fit with the Mittag-Leffler function (underlying black line) yields a coefficient of
α ¼ 0.77. The power spectra of another hair bundle also display subdiffusion, both when its channels are intact (red, α ¼ 0.69) and when they are blocked
with 5mM amiloride (magenta, α ¼ 0.74). The difference in themagnitudes of the fluctuations between the two hair bundles results primarily from differences
in the positions of the laser beams. By contrast, the spectrum for a single kinocilium (blue) accords with ordinary diffusion; the coefficient for fitting a Mittag-
Leffler function is α ¼ 0.96.
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To test whether BAPTA or any of the other drugs caused hair-
bundle damage, we used a dual-beam laser interferometer direc-
ted at the opposite edges of the hair bundle (20) and established
that after the pharmacological treatments the stereociliary move-
ments remained coherent, ruling out gross rearrangements of
bundle geometry as the cause of the cessation of subdiffusion.
Moreover, in line with previous observations (21, 22), damaged
hair bundles that became incoherent produced a broad spectrum
of subdiffusive behaviors regardless of any pharmacological
treatments. In damaged hair bundles, unlike functional ones, in-
dividual stereocilia displayed relative motions as large as several
nanometers that certainly engaged various structural polymers.
Because viscoelasticity is a generic property of polymers, in a
damaged hair bundle the structural polymers could produce sub-
diffusion independently of the gating springs and even in their
absence. We therefore experimented only on hair bundles dis-
playing a coherence of at least 0.9 between 100 Hz and 10 kHz.
These experiments emphasize the importance of the control for
coherence, which requires the use of a dual-beam interferometer
and is impossible with a single-beam instrument.

Hair-Bundle Motion as a Fractional Brownian Process.To extract sum-
mary statistics from the experimental data, we used a model
based on fractional Brownian motion. Differential equations
invoking fractional derivatives to describe anomalous scaling
entered the physics literature in the context of rheology as an
expedient to describe phenomenologically the linear responses of
viscoelastic materials (23). The autocorrelation function of a frac-
tional Brownian process in a harmonic potential is given by the
Mittag-Leffler function (15). An integer-order Brownian process
exhibits exponential autocorrelation, so the Mittag-Leffler func-
tion reduces to the exponential as a special case when the scaling
exponent α equals unity.

After fitting the Mittag-Leffler function by maximum likeli-
hood to experimental power spectra over the frequency range
400–10,000 Hz (SI Appendix, section 2), we determined the scal-
ing exponents, whose deviation from unity characterized the
anomalous character of hair-bundle diffusion (Fig. 1E). As ex-
pected for ordinary diffusion in a potential well (Eq. 1),
α ¼ 0.98� 0.01 (mean� standard deviation) for 11 cells treated
with BAPTA and α ¼ 1.02� 0.02 for four individual stereocilia
and kinocilia disconnected from their bundles (Fig. 1 D and E).
By contrast, α ¼ 0.85� 0.05 for six cells with blocked channels,
α ¼ 0.85� 0.01 for three cells treated with subtilisin, α ¼ 0.80�
0.04 for ten deenergized cells, and α ¼ 0.71� 0.03 for 16 un-
treated hair bundles. These pharmacological results show that re-
moving a hair bundle’s structural polymers, disrupting cellular
metabolism, or blocking the mechanotransduction channels does
not suppress hair-bundle subdiffusion, but disconnecting the gat-
ing springs does.

To buttress these pharmacological results, we projected all the
power spectra onto the first two principal components of a kernel
principal-components analysis. This approach demonstrated two
clusters: isolated cilia and hair bundles without gating springs on
the one hand, and control cells, thermalized cells, and cells with
blocked channels on the other (SI Appendix, Fig. S5). We con-
clude that the high-frequency thermal fluctuations that agitate
the mechanoelectrical-transduction apparatus belong to the class
of subdiffusive processes with a fractional time dependence.

Viscoelastic Gating-Spring Model.Having established the fractional
nature of a significant portion of the power spectrum of hair bun-
dles, we sought a microscopic model to explain our data. The
macroscopic phenomenon of fractional diffusion over a finite
set of time scales can be modeled effectively by the superposition
of a finite series of simple viscoelastic modes. To explain the data,
we therefore incorporated viscoelastic components into a gating-
spring model that meets three criteria: the behavior at high fre-

quencies should be subdiffusive; the application of drugs that
block the channels should retain subdiffusivity; and severing
the tip links should yield ordinary diffusion. Because of the highly
coherent motion of the hair bundle (20), we can model its deflec-
tion from equilibrium by a single variable XðtÞ that corresponds
to the displacement of a point at the top of either the short or the
long edge of the bundle. The shearing of the stereocilia with re-
spect to each other is then proportional to XðtÞ and the dynamics
is determined by the sum of the forces acting on all the stereocilia.

The topological arrangement of the stereocilia is that of a par-
allel mechanical circuit. The damping force owing to the fluid
and the elastic restoring force from the stereociliary pivots sum
linearly to contribute a total damping force λ d

dt XðtÞ and a total
elastic restoring force kXðtÞ (SI Appendix, Fig. S6A). There are
two distinct ways in which additional viscoelastic modes can be
introduced. The modes can lie in series with the mechanotrans-
duction channels, such that the force across the viscoelastic com-
ponents and the channels is identical (SI Appendix, Fig. S6B).
Alternatively, the modes can occur in parallel, in which case
the displacement is shared (SI Appendix, Fig. S6C). Because the
application of BAPTA abolishes subdiffusion by cutting the tip
links, which are in series with the channels, the viscoelastic ele-
ments probably lie in series with the channels. Neglecting for the
present the details of the parallel arrangement (SI Appendix,
section 3), we therefore focus on the consequences of a serial
arrangement.

The transduction channels’ rates of opening and closing are
determined by the tension in the tip links, which depends on
the viscoelastic properties of the tip-link complex. Even without
knowing the molecular composition of the viscoelastic compo-
nents, we could effectively model their fractal behavior through
mode decomposition (SI Appendix, section 3). Motivated by the
possibility that the source of subdiffusion is a polymer, we used
the mode structure of the worm-like chain to approximate frac-
tional behavior with α ¼ 3∕4 (SI Appendix, section 4). In this con-
figuration–which is not unique–we found that summing over the
first three modes was sufficient to explain our data and was in-
distinguishable from summations including additional modes.
The model satisfied our three requirements: high-frequency sub-
diffusion, subdiffusive channel block, and reversion to ordinary
diffusion upon tip-link scission.

Linear Noise Approximation. Thermodynamic equilibrium and lin-
earization of the dynamics about a fixed point allow us to approx-
imate analytically the linear response and power-spectral density
of a hair bundle and its channels. For two thermodynamic vari-
ables, bundle position XðtÞ and number of open channels n, the
linear response matrix χ of the system in the linear noise approx-
imation (SI Appendix, section 3) is given by

χ ¼ 1

ðkþ k̄þ iωλÞð1þ iωτÞε − z2

� ð1þ iωτÞε z
z kþ k̄þ iωλ

�
;

[2]

in which the stiffnesses k and k̄ are respectively the elastic con-
tributions of the stereociliary pivots and the sum of the viscoelas-
tic responses of the channel complexes in the bundle’s frame of
reference. The force associated with opening a channel through
its gating distance d is z ¼ dk̄, thermal fluctuation of the number
of open channels contributes the constant ε, and the mean open
time of the channels is τ. By the fluctuation-dissipation theorem
(SI Appendix, section 1), the power-spectral density follows from
the imaginary part of the linear response,

SðωÞ ¼ −2kBTIm½χðωÞ�
ω

: [3]
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The fluctuation power spectrum of the bundle position XðtÞ is
determined by component SXX of matrix S. Calculations based
on the linear noise approximation agree well with the results of
simulations (Fig. 2 A and C). Both approaches demonstrate the
effect of channel clatter and the fact that it is masked by the
inclusion of series viscoelastic elements. The linear noise approx-
imation facilitates the search for parameter values to fit the mod-

el to data, allows us to take limits, and clarifies the relationship
between bundle motion and channel response.

Channel Clatter. In the canonical gating-spring model the channels
are coupled tightly to hair-bundle motion, so their fluctuations
and the associated phenomenological viscosity should be appar-
ent in the data (18). In the absence of viscoelasticity, we accord-
ingly expect differences in the power spectra with channels
blocked (SI Appendix, Eq. S20) and unblocked (SI Appendix,
Eq. S19). With series viscoelasticity included in the model, the
difference between the spectra shrinks appreciably (Fig. 2C).
That we observe less viscosity than expected from the channels
can be explained as a consequence of series viscoelasticity. In
the series model and at high frequency, the gating-spring compo-
nent of the tip-link complex places an upper limit on the stiffness
of the complex, and hence on the frequency at which the channels
couple effectively to the hair bundle (Fig. 2). Fitting the data
(Fig. 1E), we estimate this stiffness to be at least 2 mN · m−1,
a value consistent with a recent estimate of the tip-link stiffness
(24) at 50 mN · m−1.

Frequency Selectivity from Viscoelastic Relaxation. Mechanotrans-
duction channels are force detectors that measure hair-bundle
position by sensing the tension in gating springs. From the per-
spective of signal transduction, it is the channels’ response rather
than the bundle’s movement that ultimately matters. Adding vis-
coelastic elements in series with the channels–that is, generalizing
the gating spring to gating viscoelasticity–introduces a dynamic
high-pass filter of the force and hence of the input signal. In com-
bination with the low-pass filter set by the corner frequency of
the hair bundle as a whole, transduction channels can therefore
display resonant sensitivity to a stimulus and demonstrate a
degree of frequency selectivity. Note that viscoelastic relaxation
differs in a number of ways from Ca2þ-dependent channel reclo-
sure or fast adaptation (25). Whereas the latter might increase
the tension, viscoelastic relaxation reduces the tension in the gat-
ing springs, allowing the channels to close. This behavior accords
with that of a postulated relaxation element (26, 27).

The components of matrix χ (Eq. 2) determine the linear re-
sponse of the bundle and the channels to external forces. Just as
bundle fluctuations are affected by channel clatter, the channels
are gated not only by thermal forces applied directly to them but
also by external forces impinging on the bundle. This behavior is
of course necessary to allow the transduction of external stimuli.
The response of channels to bundle motion, χ ~n ~X , exhibits a peak
in the frequency domain indicative of frequency selectivity
(Fig. 3). This resonance, which can be tuned to a range of specific
frequencies, is present neither in the bundle’s displacement alone
nor in the canonical model. It is a consequence of the viscoelas-
ticity that has potential implications for signal transduction.
Signals in a specific range of frequencies are preferentially trans-
duced by the channels, whereas noise at other frequencies is sup-
pressed, yielding an improved signal-to-noise ratio.

Comparing Theory and Experiment with Viscoelastic Moduli. To ex-
tend the parallel between our theory and the experiments, we
compared the frequency scaling of the power spectra and of the
viscoelastic moduli of a real hair bundle with those from the ex-
tended model (Fig. 4; SI Appendix, section 3). The frequency scal-
ing of the hair bundle’s viscoelastic modulus was obtained directly
from the data using techniques common in microrheology (SI
Appendix, section 2). The modeled results fit the viscoelastic
moduli and power spectra of actual hair bundles before and after
BAPTA application: unambiguously viscoelastic and subdiffusive
when the mechanoelectrical-transduction apparatus is intact, the
motion becomes regularly diffusive after the gating springs have
been disconnected (Fig. 4).

Fig. 2. The effect of viscoelasticity onmechanotransduction: channel clatter.
(A) In the canonical gating-spring model, which lacks viscoelasticity, channel
clatter has a significant impact on the noise spectrum for a mean open time
of τ ¼ 1.26 ms. (B) The response is also significantly affected by channel clat-
ter when τ ¼ 12.6 ms. Both the magnitude and the frequency spectrum of
the phenomenon change with the mean open time. To emphasize the effect
of the channels, the gating-spring stiffness was set to κ ¼ 2;000 μN · m−1,
higher than the value of 800 μN · m−1 usually employed. (C) A viscoelastic
component in series with each channel masks the channels’ viscosity.
Blocking the channels does not significantly change the power spectrum.
The fitted parameter values were κ ¼ 2;000 μN · m−1, κ1 ¼ 130 μN · m−1,
ξ1 ¼ 650 nN · s · m−1, d ¼ 3.5 nm, and popen ¼ 0.2 (SI Appendix, Fig. S7,
Eq. S14, and section 3). The damping of the hair bundle owing to water was
set at λ ¼ 130 nN · sm−1 and the stereociliary stiffness at k ¼ 70 μN · m−1. (A
and C) additionally establish a close correspondence between numerical
estimates (solid) and approximate theoretical curves (dashed). The numerical
estimates stemmed from an average of 100 simulations of 50 channels for
400 ms. The theoretical curves were computed using the linear noise approx-
imation; (B) shows only an approximation.
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Discussion
We have combined the traditional methods of hearing research
with the modern techniques of materials science, particularly the
experimental and analytical tools of passive microrheology, to

examine mechanotransduction. We have characterized the statis-
tical properties of the internal mechanical noise in the mechan-
oelectrical-transduction apparatus and determined the frequency
dependence of the associated viscoelastic moduli. Through mod-
eling we have then explored the consequences of those properties
for sensory transduction, which we discuss in the following para-
graphs.

A general implication of viscoelasticity in series with the me-
chanically sensitive channels is that it changes the nature of the
mechanical noise experienced by the transduction apparatus.
Because each channel is equipped with a viscoelastic element
serving both as a noise generator and as a mechanical filter, fluc-
tuations in the currents carried by different channels are decorre-
lated and can be averaged. The second benefit of this arrange-
ment is that series viscosity can implement the release mechanism
for fast adaptation. When coupled with negative stiffness, this
mechanism can provide amplification (28). The third conse-
quence involves masking the high phenomenological viscosity
of the channels, which in the presence of viscoelasticity has little
effect on hair-bundle motion. This phenomenon renders hair-
bundle drag only a few times the minimum imposed by hydrody-
namics alone (29), rather than the hundredfold the minimum ex-
pected if channel viscosity were to dominate (18). The fourth
potential benefit is that viscoelasticity endows the mechanotrans-
duction complex with frequency resonance. The relationship of
this phenomenon to other resonant properties of a hair bundle
remains to be investigated. Finally, we note that gating-spring vis-
coelasticity may be based on the mode structure of a worm-like
chain, which is nonlinear. In principle even a small gating swing
of the mechanotransduction channel can significantly decrease
the effective stiffness of the gating spring and produce the gating
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compliance required for signal amplification by the hair bundle.
In contrast, to achieve the same softening of a linear linkage
necessitates an unrealistically large conformational change of
the channel’s gate that surpasses the size of a typical ion channel
(30). Viscoelasticity of the mechanotransduction apparatus may
therefore be key for the ear’s sensitivity. Verifying this conjecture
experimentally would require single-molecule assays on isolated
gating springs or perhaps very fast mechanical measurements
from hair bundles in which adaptation is blocked.

It is not surprising that a hair bundle manifests viscoelasticity,
for biopolymers and their complexes with lipid membranes are
intrinsically viscoelastic. It is noteworthy, however, that introdu-
cing in the model as few as three additional mechanical modes,
arranged either in series or in parallel with a mechanotransduc-
tion channel, suffices to replicate the experimental results. This
result implies that viscoelasticity is a robust feature of the me-
chanoelectrical-transduction apparatus and that its physiological
consequences are independent of the details of the molecular
implementation.

Methods
Experimental Methods. The experimental procedures were approved by the
Institutional Animal Care and Use Committee of The Rockefeller University.
Sacculi were dissected from adult bullfrogs (Rana catesbeiana) and main-
tained in oxygenated saline solution containing 120 mM NaCl, 2 mM KCl,
1 mM CaCl2, 10 mM D-glucose, and 5 mM Hepes at pH 7.3. After a
30–60 min digestion at 20–25 °C in 1 mg · mL−1 collagenase (type XI, Sigma
Chemical Co.), each sensory epithelium was separated from the underlying
connective tissue, the otolithic membrane was removed, and the epithelium
was folded along its line of mirror symmetry and secured against the bottom
of an experimental chamber by a golden electron-microscopic grid. Laser in-
terferometry was used to measure hair-bundle motions with subnanometer

spatial and submillisecond temporal resolution (20, 29, 31). Data were ac-
quired simultaneously with two independent laser beams, low-pass filtered
at 20 kHz, and sampled at 10 μs intervals. The multitaper method (32) was
used for spectral analysis in Matlab (MathWorks).

Maximum-Likelihood Fit of Data. Model spectra were fit to data with a max-
imum-likelihood procedure (SI Appendix, section 2). Each standard error was
approximated as the square root of the inverse of the Hessian matrix of the
negative log-likelihood. Power spectra were estimated using the multitaper
method.

Estimating Viscoelastic Moduli. The fluctuation-dissipation theorem links a
viscoelastic material’s shear modulus with its equilibrium power spectrum
(SI Appendix, section 1). Moduli were estimated by two different methods
(SI Appendix, section 2).

Mode Decomposition and Simulation. The bundle’s response to stereociliary
and thermal forces can effectively be decomposed into a series of viscoelastic
modes (SI Appendix, Fig. S6). This network of simple modes combined with
the nonlinear channels formed the basis for our analytical approximation
and numerical simulations. We used Langevin simulations of the nonlinear
channels and the viscoelastic modes in equilibrium to capture the nonlinear
effects of the channels, to verify the quality of our linear noise approxima-
tion, and to compare the model directly to experimental data (SI Appendix,
section 3).
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