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Metastatic disease is the proximal cause of mortality for most
cancers and remains a significant problem for the clinical manage-
ment of neoplastic disease. Recent advances in global transcrip-
tional analysis have enabled better prediction of individuals likely
to progress to metastatic disease. However, minimal overlap
between predictive signatures has precluded easy identification
of key biological processes contributing to the prometastatic
transcriptional state. To overcome this limitation, we have applied
network analysis to two independent human breast cancer data-
sets and three different mouse populations developed for quanti-
tative analysis of metastasis. Analysis of these datasets revealed
that the gene membership of the networks is highly conserved
within and between species, and that these networks predicted
distant metastasis free survival. Furthermore these results suggest
that susceptibility to metastatic disease is cell-autonomous in es-
trogen receptor-positive tumors and associated with the mitotic
spindle checkpoint. In contrast, nontumor genetics and pathway
activities-associated stromal biology are significant modifiers of
the rate of metastatic spread of estrogen receptor-negative tu-
mors. These results suggest that the application of network analy-
sis across species may provide a robust method to identify key
biological programs associated with human cancer progression.

gene expression | mouse models

Recent advances in global transcriptome analysis has enabled
better understanding of the different subtypes of breast

cancer (1), as well as tumor prognosis and treatment (2). Gene
signatures derived from these analyses have provided new op-
portunities for better tailoring of treatment options based on
individual tumor biology. However, although these signatures
are potentially important clinical tools, for the most part they do
not provide novel insight regarding the underlying mechanisms.
This lack of insight is in part because they were developed as
prognostic classifiers, based on a minimum set of genes rather
than to interrogate the mechanisms underlying tumor biology.
The ability of these clinical classifiers to investigate molecular
mechanism is further complicated by the minimal overlap be-
tween independent signatures derived from different studies.
The lack of overlap is thought to be because of the fact that there
are likely thousands of genes that correlate with tumor pro-
gression (3). Membership of the individual genes in each signa-
ture is therefore dictated by the transcriptional patterns derived
from the specific patient populations. Subtle variations in those
populations result in different gene sets meeting the statistical
thresholds to be included in the final signature. Using conven-
tional methods, it has been estimated that thousands of samples
would be required to develop a robust, stable signature (4). Thus,
although these signatures have important potential for clinical
applications, comparisons of the signatures have not provided
similar benefit for the elucidation of mechanisms of metastasis by
identifying common molecular or cellular functions.
Recent advances in computational biology have provided new

strategies to study biological processes as networks of coexpressed
genes rather than collections of genes correlated to particular
phenotypes (5). These methods have been successfully applied to
animal models of neoplastic disease to identify both individual
genes and cellular processes associated with cancer susceptibility

(6). These results suggest that the rich public data available for
human breast cancer might be used for similar analysis to identify
critical biological processes and functions associated with breast
cancer progression. Moreover, our laboratory has been generat-
ing similar datasets from modeling inherited metastatic suscep-
tibility in murine systems. Identification of genes and cellular
functions associated with metastatic disease in common between
mouse and human networks would provide strong evidence of
a causal role for these factors in tumor progression.
Here we describe the results of a cross-species network analysis

of metastatic breast cancer. Using two publicly available human
breast cancer gene-expression datasets that represent the natural
progression of disease, as well as three experimental mouse
populations used for identification of inherited metastasis sus-
ceptibility genes, we have identified two gene networks that are
independent predictors of metastatic disease in a meta-analysis of
1,881 human tumors (7). Unlike previously described human
prognostic signatures, the networks significantly overlap between
the two human datasets. In addition, significant overlap was also
observed for the networks generated from the mouse samples.
Unexpectedly, these networks are specific for either estrogen
receptor (ER+) or ER− breast cancer. Moreover, the results
suggest that the network associated with metastatic progression in
ER+ cancers is tumor-cell autonomous, but that of ER− repre-
sents a stromal component. Finally, by limiting the analysis to
highly connected genes that are shared between overlapping
mouse and human networks, the prognostic signatures were re-
duced to less than 10 genes each. These core signatures implicate
the mitotic spindle checkpoint as a critical factor for metastatic
progression in ER+ breast cancers, and suggests that inherent
differences in immune response and stromal pathways modify the
rate of metastatic disease progression in ER− patients.

Results
Network Analysis Identifies Multiple Coexpressed Networks Associated
with Disease Progression. Network analysis was performed on the
GSE2034 (8) (n = 286) and GSE11121 (9) (n = 200) human
breast cancer datasets. These datasets consist of lymph node-
negative patients untreated with adjuvant therapy, representing
the natural course of disease. In addition, three datasets from our
mouse mammary tumor virus-polyoma middle T antigen (MMTV
PyMT) transgenic mouse-based metastasis susceptibility screens
were analyzed (10). The mouse datasets represent three different
experimental cross-populations developed to map the inherited
factors associated with metastatic mammary cancer (11). The
tumors derived from these experiments are all induced by the
expression of the PyMT antigen but have differing metastatic
susceptibility because of the segregation of different genomic
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components from mice with low metastatic capacity. Network
analysis was performed on microarray gene expression data of 56
samples from a PyMT ×AKXD recombinant inbred cross (11, 12)
and 68 samples from anNZB × PyMT backcross (11). In addition,
transcriptome sequencing data from 30 samples of a MOLF ×
PyMT backcross were also included in the analysis. Normalized
expression data were used to identify expression networks for
each dataset individually using weighted gene coexpression net-
work analysis based on topological overlap measure algorithms
(13). Network structure was visualized using a minimum spanning
tree and each network named based on the most highly connected
gene (Fig. 1A). Fifteen to 20 networks of coexpressed genes were
identified for each dataset (Table 1).
To determine which of the networks were associated with dis-

ease progression, Kaplan-Meier analysis was performed using the
gene expression-based outcome (GOBO) algorithm (7). Because
the hub genes are expected to capture the majority of expression
variation of each network, only genes with two or more con-
nections were included in each network signature (Fig. 1A). Be-
tween five and eight networks per dataset were found to be
significantly associated with distant metastasis-free survival
(DMFS) after Bonferroni correction for multiple testing (Fig. 1B;
Table 1, red text).

Transcriptional Networks Significantly Overlap Between Different
Datasets. We analyzed networks associated with DMFS that are
replicated in multiple datasets, because these are more likely to
represent core processes in the metastatic cascade. Because
GSE2034 was the dataset with the largest number of samples, all
subsequent overlap analysis was performed using this dataset as the
reference. Two-hundred ninety significant overlaps were identified
at a false-discovery rate < 0.05 after correction for multiple com-
parisons. To limit the analysis to the most significantly overlapping
networks, these results were filtered for network pairs that shared

at least 20 genes, and the shared genes constitute at least 25% of
the members in one of the two networks. Ten of the 17 GSE2034
networks significantly overlap networks from other datasets (Table
2). Two of the GSED2034 networks were represented in all four of
the other datasets (CD53 and TPX2) (Table 2). For each of these
two networks, four of the five overlapping networks were signifi-
cantly associated with DMFS (Table 1 and bold text in Table 2),
consistent with the hypothesis that they represent critical processes
in metastatic progression. All further analysis was therefore fo-
cused on the CD53 and TPX2 networks.

TPX2 Network Predict DMFS Specifically in ER+ Tumors. To better
understand the nature of the human-mouse network comparisons,
the structure of the overlaps was evaluated. Pair-wise comparisons
between the GSE2034 TPX2 and overlapping partner networks
revealed nine common hub genes (BUB1, UBE2C, CDC20,
CCNB2, KIF2C, BUB1B, CEP55, CENPA, TPX2) (Fig. 2A). The
conservation of these genes across the five datasets and their
positions within the network suggested that theymay play a critical
role in the metastatic process. The TPX2 gene signature was
therefore reduced to these nine genes and the Kaplan-Meier
analysis repeated. As seen in Fig. 2B, the nine-gene signature was
also capable of discriminating patient outcome. Unexpectedly,
stratification of the dataset by ER status revealed that the nine-
gene TPX2 signature was significantly associated with DMFS in
ER+ (Fig. 2C) but not ER− patients (Fig. 2D). To confirm that
these results were not specific to the GOBO analysis, the minimal
TPX2 signature was analyzed from the glass slide-based Nether-
lands Cancer Institute (NKI) dataset (14) using BRB ArrayTools
(http://linus.nci.nih.gov/BRB-ArrayTools.html). Consistent with
the GOBO analysis, the TPX2 minimal signature was prognostic
in ER+ tumors (Fig. 2E) but not ER− (Dataset S1).

TPX2 Signature Is Tumor-Cell Autonomous. This nine-gene signature
consisted primarily of genes that are associated with microtubule
and mitotic spindle biology. Four of the encoded proteins
physically interact (BUB1, BUB1B, UBE2C, CDC20) and are
important factors in chromosomal segregation (15, 16). This
finding suggests that the effect of the TPX2 network would be
tumor-cell autonomous. To investigate this result, the TPX2
signature was examined in tumors resulting from implanting the
highly metastatic Mvt1 mouse mammary tumor cell line (17) into
mice with high inherited susceptibility ([AKR/J × FVB/NJ]F1) or
low susceptibility ([DBA/2J × FVB/NJ]F1) (18) to metastatic
disease. Only 3 of the 299 genes in the GSE2034 TPX2 network
were significantly different in these samples, consistent with this
network being tumor autonomous.
If the TPX2 network is tumor-cell autonomous and associated

with metastatic progression, it would be expected to correlate
with the metastatic propensity of the tumor cells. To test this
hypothesis, transcriptional analysis of the metastasis suscepti-
bility gene Bromodomain 4 (Brd4) (19) was performed. Brd4 is
transcribed as two isoforms, the longer of which is antimetastatic
(19) and induces a gene signature associated with longer DMFS,
but the short isoform is prometastatic and induces a gene sig-
nature indicative of poorer DMFS (20). The expression of the
TPX2 network was therefore examined in the highly metastatic
Mvt1 mouse mammary tumor cell line (17) stably expressing
either the long or short Brd4 isoforms. Transcriptional profiling
demonstrated that the two isoforms had opposing effects on the
TPX2 network (Fig. 2F). Furthermore, the prometastatic short
isoform up-regulated the majority of the prometastatic TPX2
network, but the antimetastatic long isoform down-regulated the
majority of the network. These results are consistent with the
known role of the Brd4 isoforms and demonstrate that the rel-
ative activity of the TPX2 network correlates with metastatic
capacity, at least within this model system. The precise role of
the TPX2 network and its relationship between Brd4 and other
metastasis-modifying factors, however, is unclear at present and
currently under investigation.
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Fig. 1. (A) Network diagram for the GSE2034 TPX2 network. Genes are
indicated by circles. Lines connecting genes represent relationships between
genes in the network based on correlations of gene expression. Red circles
represent genes with more than one connection that were used in the GOBO
Kaplan-Meier analysis to identify networks associated with DMFS. (B) GOBO
Kaplan-Meier analysis result for the TPX2 network. The red curve represents
patients with network expression higher than the median; gray is lower. The
P value is Bonferroni-corrected for multiple testing.
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CD53 Network Predicts DMFS Specifically in ER− Tumors. A similar
analysis was carried out for the CD53 network. A three-gene
signature was identified for the CD53 network that was common
between the overlapping mouse and human networks (CD48,
CD53, IL10RA) (Fig. 3A). Like the TPX2 minimal signature, the
three-gene CD53 signature was significantly associated with
DMFS in the full GOBO dataset (Fig. 3B). In contrast, however,
the CD53 minimal signature was significant only in ER− patients
(Fig. 3D), not ER+ patients (Fig. 3C). The association of the
CD53 signature with ER− patients replicated in the NKI dataset
(Fig. 3E), but not in the ER+ patients (Dataset S2).
Gene set enrichment analysis of the full CD53 signature

revealed a significant association with immune response (9.0 ×
10−23). The ability of patients with ER− breast cancers to mount
an effective DMFS-associated immune response might be be-
cause of either differential production of tumor-derived factors
or an inherent difference in the ability of the stromal cells to
recognize and respond to the tumor. To investigate this possi-
bility, the Mvt1 tumor transplants into AKR or DBA F1 mice
was reanalyzed for the CD53 network. Thirty-one of 151 of
the CD53 network genes were found to be differentially expressed
at a significance threshold of P < 0.01 between the tumors
implanted into AKR or DBA F1 animals. All but one of these
genes was overexpressed in the low-metastatic DBA genotype
compared with the high-metastatic genotype (Fig. 3F).

Discussion
The network analysis of independent human/mouse gene-ex-
pression datasets described here has resulted in reproducible sets
of genes associated with metastatic disease. Previous efforts to
identify prognostic genes have resulted in some overlaps between
independent datasets and have identified general cellular func-
tions, such as proliferation (8, 21, 22), associated with dissemi-
nated disease. However, these previous studies have not
provided an understanding of the underlying transcriptional
program that would inform investigators of particular molecular

complexes and network nodes that are necessary for control of
complex networks (23). Here we present an initial view of the
underlying transcriptional network structures associated with
metastatic susceptibility using two human breast cancer datasets
that represent the natural course of disease. Further refinement
of these structures by addition of similar human datasets will
undoubtedly further enhance our understanding of the metas-
tasis-associated network structures and reveal additional op-
portunities for investigation and intervention.
The inclusion of themouse datasets provides an additional filter

to focus on critical genes and cellular functions. By identifying
genes shared between overlapping mouse and human networks
that were independent predictors of DMFS, highly significant
prognostic signatures were developed based on relatively few
genes. In addition, the differences of network structure between
the mouse and human networks permitted the refinement of sig-
natures down to the highly connected nodes in the human net-
works. In the TPX2 network, these shared genes implicate the
mitotic spindle checkpoint as a critical factor in metastatic spread
in ER+ disease and specifically implicate the UBE2C/BUB1/
BUB1B/CDC20 complex. Furthermore, because many of the
gene-expression differences in the mouse datasets are likely the
result of inherited polymorphisms, as all of the tumors are induced
by the same oncogenic transgene, differences in transcription
of these key node genes in humans may also be partially a result of
inherited factors. Consistent with this possibility, examination of
the gene list for the TPX2 network reveals the presence of two
genes previously identified in our mouse mammary tumor genetic
screens [CDC25A (24), RRP1B (25)]. Additionally, four TPX2
network genes [RFC3, RFC4 (26), JMJD6 (27), CNOT1 (28)] are
known to physically interact with the metastasis susceptibility
protein BRD4 (19). Further investigation into the role of these
critical node genes may reveal interesting and important insights
into the etiology of metastatic breast cancer.
In contrast to the tumor cell-autonomous genes associated

with the ER+-associated TPX2 network, the ER−-associated

Table 1. Network Kaplan-Meier analysis summary

GSE2034 GSE11121 AKXD MOLF NZB
Module P value Module P value Module P value Module P value Module P value
ACTB 0.0011 CD48 0.00007 1110057K04Rik 0.096 Ap1g1 0.00011 Atp5d 0.06
CD53 0.0017 CD86 0.39 Abhd5 0.0016 BC013712 0.00001 Cacnb3 0.1
CD86 0.63 CNN1 0.016 Add3 0.000010 Bub1b 0.00001 Cct2 0.00007

COL5A2 0.19 COL5A2 0.13 Aplp2 0.12 Cidec 0.00091 Cd34 0.021
GPD1 0.000002 DBT 0.00012 Cd36 0.00001 Ddx3x 0.014 Cd36 0.00004

IFI44 0.71 IFI44 0.75 Ckb 0.71 Ddx58 0.21 Cd48 0.00027

LHFP 0.00001 LHFP 0.0001 Eno3 0.73 Fstl1 0.0016 Cd9 0.057
MLPH 0.00014 MMRN2 0.00001 Fkbp8 0.00017 Gsn 0.0000003 Eno3 0.46
MTERFD1 0.66 MYOC 1 Gsk3b 0.0014 Hdac2 0.24 Exosc8 0.35
POLR2E 0.023 PJA2 0.0014 Hspa14 0.11 Kif11 0.00023 Hoxa9 0.0028
PTGER4 0.000003 RBP4 0.0000004 Ncoa2 0.00039 Myoz1 0.18 Krt16 0.81
SFRP1 0.023 SOX10 0.005 Ogn 0.000003 Rnf146 0.0000002 Pfkl 0.32
SFTPC 0.62 TPX2 0.0023 Psca 0.00001 Serpinf1 0.00022 Ppp1r12a 0.00044

SRRM2 0.013 WDR1 0.0002 Rad51ap1 1E-10 Usp9x 0.019 Rasgrp1 0.00016

TPX2 2E-10 ZFP36 0.0075 Susd5 0.029 Zmiz1 0.00004 Rnase4 0.032
YIPF5 0.038 Thoc1 0.00005 Tacc3 0.0000002

ZCCHC10 0.0019 Usp18 0.36 Tex10 0.00032

Timm13 0.064
Tm9sf3 0.14
Tpr 0.17

Modules were named after most connected gene in each network. Univariate P values based on GOBO analysis of genes with two or more
connections in each module. P values less than 0.0006 were considered signficant after Bonferroni correction for multiple P values and are
indicated in red.
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CD53 network is comprised primarily of stromal immune cell
components. Many of the most highly connected nodes within
the GSE2034 network are associated with T-cell receptors
(CD3D, CD2) or are related to the T-cell receptor (CD48) (29).
Also included in this network are a number of immune-related
cytokines and cytokine receptors, suggesting a direct protective

role for these cytokines in ER− disease. Combined with the data
obtained from the transplantation of tumors into the high- and
low-metastatic mouse genotypes, these results suggest an im-
portant role for inherited differences in immune response to the
primary tumor in the ultimate development of metastatic dis-
ease in patients with ER− breast cancer. Consistent with this
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Fig. 2. Analysis of the core TPX2 network. (A) The TPX2 network showing the positions of the nine node genes (red text) conserved among all five datasets.
(B–D) Kaplan-Meier analysis of the TPX2 nine-gene signature on all tumors, (B) ER+ only, (C) ER− only, or (D) of the GOBO meta-analysis. (E) Analysis of the
nine-gene TPX2 signature on the ER+ patients of the independent NKI dataset. Red curves in all plots represent patients with higher expression of the nine
genes. (F) Heat map showing differential expression of the Tpx2 core genes in Mvt1 cells transfected with either the long or short isoform of Brd4.

Table 2. Module overlap analysis

GSE2034 Overlapping networks

Network No. of genes Data set Network No. of genes No. of shared genes Overlap P value

ACTB 147 GSE11121 WDR1 144 55 8.39E-35
ACTB 147 NZB Cct2 1586 75 1.71E-03
CD53 151 GSE11121 CD48 138 115 9.70E-168
CD53 151 MOLF BC013712 92 50 2.14E-51
CD53 151 NZB Cd48 69 29 1.01E-25
CD53 151 AKXD Psca 840 42 6.04E-06
CD86 61 AKXD Ogn 144 23 4.5E-45
CD86 61 GSE11121 CD86 99 55 1.6E-44
COL5A2 220 GSE11121 COL5A2 188 156 1.1E-193
COL5A2 220 MOLF Fstl1 254 63 1.1E-35
COL5A2 220 AKXD Ogn 144 44 1.0E-21
COL5A2 220 MOLF Serpinf1 82 29 4.3E-17
COL5A2 220 NZB Cd34 77 29 3.7E-10
LHFP 91 GSE11121 LHFP 113 40 4.1E-40
LHFP 91 GSE11121 MMRN2 74 34 1.4E-38
LHFP 91 AKXD Ogn 144 24 1.8E-14
MLPH 169 GSE11121 SOX10 75 21 9.4E-12
POLR2E 124 AKXD Fkbp8 269 54 1.6E-31
SFRP1 74 GSE11121 SOX10 75 45 9.8E-66
SFRP1 74 NZB Timm13 913 24 0.020
SFRP1 74 NZB Cct2 1586 23 7.1E-28
TPX2 299 GSE11121 TPX2 575 274 1.8E-226
TPX2 299 MOLF Bub1b 244 106 8.0E-60
TPX2 299 NZB Tacc3 85 60 7.3E-50
TPX2 299 AKXD Rad51ap1 134 48 1.0E-22
YIPF5 63 GSE11121 WDR1 144 28 4.5E-17

Networks in bold were significant in the GOBO Kaplan-Meier analysis after Bonferroni correction.
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hypothesis, recent evidence suggests that polymorphisms in
CD53 are associated with regulation of TNF-α levels (30), which
may affect the ability of the immune system to respond to the
primary tumor. Although the identity of the infiltrating tumor
cells is not defined by the CD53 network, the results of this study
may provide a valuable starting point for further investigations
into the role of the immune system in ER− breast cancer
progression.
The role of the TPX2 and CD53 networks in ER+ and ER−

breast cancer have additional important implications in un-
derstanding inherited predisposition to metastatic disease. Pre-
vious studies have implicated differences in gene expression of
stromal components in the progression of breast cancer (31, 32).
However, the factors driving these differences were not identi-
fied. The inherited differences in immune components in the
mouse that predict DMFS in ER− patients is, to the best of our
knowledge, unique evidence that polymorphisms in stromal
tissue play an important role in predisposing women to dissem-
inated disease. Our previous efforts to identify metastasis sus-
ceptibility genes have focused on tumor-autonomous factors (25,
33–35) rather than nonautonomous factors, such as immune
response. Interestingly, epidemiology studies have demonstrated
that polymorphisms in the human orthologs of these cell-au-
tonomous metastasis susceptibility genes are prognostic only in
ER+ patients (36), consistent with the finding that the cell-au-
tonomous TPX2 mitotic spindle checkpoint network is signifi-
cant only in ER+ patients. Thus, the critical inherited factors for
metastatic susceptibility targets for ER+ patients appear to
function primarily within tumor cells, but is the most relevant for
ER− disease polymorphisms within the stromal tissues.
Finally, we believe that these results provide a compelling ar-

gument for the continued use of mouse models to investigate the

inherited components of metastatic breast cancer. Despite the
difference in network structure, the three mouse datasets gener-
ated by array platform and next-generation sequencing re-
producibly identified the critical nodes within the human network
networks. As indicated above, the differences in network structure
likely is because of both decreased somatic and inherited genetic
heterogeneity within the animal samples. Utilization of additional
tumor-initiating systems and more complex population models
like the Collaborative Cross (37), designed to more closely re-
semble human genetic diversity, may result in network structure
more closely resembling those from human datasets. Importantly,
the cross-species analysis permits the identification the critical hub
genes within human networks. Furthermore, the mouse model
enables the generation of large sample sets that represent the
natural course of disease without any confounding factors asso-
ciated with adjuvant therapy or differences in treatment regimens.
Thus, we believe the combined use of the mouse- and human-
expression datasets in network analysis provides a powerful tool
for investigating the molecular basis of metastasis, and further
analysis will yield additional important insights into the etiology of
disseminated disease.

Materials and Methods
Mouse Samples. The [AKXD RI × PyMT]F1 (AKXD) and (FVB/NJ × [NZB/B1NJ ×
PyMT])N2 (NZB) backcrosses have been previously described (11). The thirty
MOLF samples represented the phenotypic extremes of a 194 animal (FVB/NJ ×
[MOLF/Ei × PyMT])N2 backcross developed to map modifiers of mammary tu-
mor latency, tumor growth and pulmonary metastasis. All animal experiments
were performed under approved Animal Care and Use protocols at either the
FOX Chase Cancer Center (AKXD and NZB) or the National Cancer Institute
(NCI; MOLF).
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Fig. 3. Analysis of the core CD53 network. (A) The CD53 network showing the positions of the three node genes (red text) conserved among all five datasets.
(B–D) Kaplan-Meier analysis of the TPX2 nine gene signature on all tumors, (B) ER+ only, (C) ER− only, or (D) of the GOBO meta-analysis. (E) Analysis of the
three gene CD53 signature on the ER− patients of the independent NKI dataset. (F) Heat map showing differential expression of the CD53 network genes in
Mvt1 tumors transplanted into AKR or DBA F1 animals.
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Gene-Expression Analysis. Affymetrix MOE430 gene-expression analysis was
performed as previously described (38). mRNA-Seq of the MOLF samples was
performed on the Illumina Genome Analyzer II or High Seq platform at the
NCI Center for Cancer Research Sequencing Facility. All sequence reads were
mapped to mouse reference genome (NCBI37/mm9), AceView (39), and
a custom Refseq-based alternative splicing database. The best mapping for
each read was chosen to form a consensus set of mappings. Reads with
questionable alignments were remapped using sim4 (40). The gene-expres-
sion level for each transcript annotated in Refseq was estimated by the reads
per kilo exonic bases per million reads (41) value, a within-sample normal-
ized metric correcting for differences in gene length and total mapped reads
in the transcriptome. Simple normalization by total reads was performed
before network analysis. The data are available through the Gene Expres-
sion Omnibus, accession no. GSE30866.

Brd4 Cell Line Transcriptional Profiling. The Brd4-expressing cell line has been
previously described (19, 20). Briefly, the highly metastatic Mvt1 cell line (17)
was transfected with long isoform Brd4 expression vectors (19) or trans-
duced with short isoform-expressing lentiviruses (20). Individual clones were
generated, total RNA isolated, and arrayed on Affymetrix MOE430 v2 chips
by the K.W.H. laboratory, as previously described (19) or by the Microarray
Core in the NCI Laboratory of Molecular Technology (20). Expression data
were normalized using the Partek Genomics Suite then loaded into BRB
ArrayTools version 4.2.0-Beta_2 (42). The relative expression of the TPX2
network was determined using the Class Comparison tool of BRB ArrayTools.

AKR and DBA F1 Transplant Tumor-Expression Profiling. AKR and DBA F1
animals were generated by breeding FVB/NJ male animals to either DBA/2J
or AKR/J females. The highly metastatic Mvt1 cell line (17) was orthotopically
transplanted into the fourth inguinal mammary gland into 8-wk-old ani-
mals and the animals aged for 28 d before harvesting tumors (18). Total
RNA from three independent AKR or DBA F1 tumors were arrayed on
Affymetrix MOE430 v2 chips and the relative expression of the TPX2 or
CD53 networks determined using the Class Comparison tool of BRB Array-
Tools version 4.2.0-Beta_2.

Network Analysis. Network analysis was performed on the top 4,000 most
variable genes present in the microarray data. The R package “weighted
correlation network analysis” (WGCNA) (43) was used to find clusters (net-
work networks) of high-correlation genes. The network for each network
was generated with the minimum-spanning tree with dissimilarity matrix
from WGCNA. This study used the high-performance computational capa-
bilities of the Biowulf Linux cluster at the National Institutes of Health,
Bethesda, MD (http://biowulf.nih.gov). Figures for publication were gener-
ated using the software package Cytoscape (44).
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