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Luminal breast cancers express estrogen (ER) and/or progesterone
(PR) receptors and respond to hormone therapies. Basal-like “triple
negative” cancers lack steroid receptors but are cytokeratin (CK) 5-
positive and require chemotherapy. Here we show that more than
half of primary ER+PR+ breast cancers contain an ER−PR−CK5+

“luminobasal” subpopulation exceeding 1% of cells. Starting from
ER+PR+ luminal cell lines, we generated lines with varying luminal
to luminobasal cell ratios and studied their molecular and biolog-
ical properties. In luminal disease, luminobasal cells expand in
response to antiestrogen or estrogen withdrawal therapies. The
phenotype and gene signature of the hormone-resistant cells
matches that of clinical triple negative basal-like and claudin-low
disease. Luminobasal cell expansion in response to hormone ther-
apies is regulated by Notch1 signaling and can be blocked by
γ-secretase inhibitors. Our data establish a previously unrecog-
nized plasticity of ER+PR+ luminal breast cancers that, without ge-
netic manipulation, mobilizes outgrowth of hormone-resistant
basal-like disease in response to treatment. This undesirable out-
come can be prevented by combining endocrine therapies with
Notch inhibition.
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Gene expression profiling distinguishes among intrinsic breast
cancer subtypes (1). “Luminal” subtypes account for >70%

of tumors (2) and are characterized by presence of estrogen
(ER) and/or progesterone (PR) receptors, expression of cyto-
keratin (CK) 8/18, low or no epidermal growth factor receptors 1
(EGFR) or 2 (HER2), and absence of CK5. Although most lu-
minal cancers have a favorable prognosis and respond to anti-
estrogens or aromatase inhibitors, development of hormone
resistance associated with tumor recurrence is common (2). The
“basal-like” cancers are classified as “triple negative” (TN) if
they lack ER, PR, and HER2 but retain EGFR and/or CK5, or
“5 negative phenotype” if they lack all five markers (3). A re-
cently identified “claudin-low” subtype is enriched for mesen-
chymal and stem cell markers (4). Basal-like and claudin-low
cancers are hormone-independent, characterized by brief dis-
ease-free survival, a high proliferative index and poor histologic
grade (4, 5), and require aggressive chemotherapy.
Molecular profiling of whole-tumor extracts is clinically and

biologically informative. However, most tumors contain hetero-
geneous cell types (6), in which case subtype classification can be
biased toward the most abundant subpopulations. That minor
populations matter is evident from studies demonstrating the
tumor-initiating potential of rare cells (7, 8). How this intra-
tumoral cellular heterogeneity arises continues to be debated,
although both genomic mutations and epigenetic changes seem
to define the ultimate mosaic (9). Further, recent evidence
suggests that the molecular subtypes reflect the cellular hierarchy
of the normal breast. Thus, the claudin-low signature matches
a mammary stem cell profile (4); the basal-like signature is
consistent with that of committed luminal progenitor cells; and

luminal signatures resemble those of differentiated luminal ep-
ithelial cells (4, 10). Given this hierarchy, it is reasonable to
speculate that differentiated ER+PR+ luminal tumors might
contain cell subpopulations with undifferentiated or progenitor
properties.
The latest guidelines for immunohistochemical (IHC) quanti-

tation of steroid receptors in luminal breast cancers recommend
that ER and PR assays be considered positive if at least 1% of
nuclei are stained (11). This raises questions about the properties
and function of the remaining ER−PR− cells in luminal disease.
We recently identified an ER−PR−CK5+ cell subpopulation in
luminal breast cancer models that express basal-like markers (12).
These cells, referred to here as “luminobasal” cells, have tumor-
initiating potential. Similar cells are up-regulated in patients
whose luminal tumors develop resistance to chemo- and hormone
therapies (13).
We now show in an analysis of 72 primary breast cancers that

more than half of ER+PR+ tumors contain an ER−PR−CK5+

luminobasal subpopulation exceeding 1% of cells. Starting from
ER+PR+ luminal cell lines, we generated lines with varying lu-
minal/luminobasal cell ratios and studied their molecular and
biological properties. In these models of luminal disease, lumi-
nobasal cells expand in response to estrogen withdrawal or an-
tiestrogen therapies. The phenotype and gene signature of the
luminobasal cells matches that of TN basal-like and claudin-low
tumors of patients. We show that luminobasal cell expansion in
response to hormone therapies is regulated by Notch1 signaling
and can be prevented by γ-secretase inhibitors (GSIs) of Notch.
Our data establish a previously unrecognized plasticity of
ER+PR+ luminal breast cancers that, without genetic manipu-
lation, mobilizes outgrowth of hormone-resistant basal-like dis-
ease in response to common endocrine therapies. We propose
that this undesirable outcome can be avoided by combining GSIs
with endocrine therapies.

Results
ER−PR−CK5+ Luminobasal Cell Subpopulation in ER+PR+ Luminal
Breast Cancers. Although >70% of breast cancers are ER+ and/or
PR+ and classified as luminal, such tumors often harbor poorly
characterized ER−PR− cells. We previously identified a luminal
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tumor cell subpopulation that lacks steroid receptors but
expresses CK5 (12). To quantify these “luminobasal” cells in
luminal disease, 72 primary tumors of known ER status (14)
were subjected to dual PR and CK5 analysis by IHC (Fig. 1A). A
cutoff of ≥1% PR+ nuclei or ≥1% CK5+ cytoplasm was con-
sidered positive in accord with accepted thresholds (11). Se-
venty-six percent of the tumors were ER+ and/or PR+ (Fig.
1Aa); the rest were receptor-negative, of which ≈45% were
CK5+ (Fig. 1Ab). Among the 55 luminal tumors, 44.7% were
CK5− by the above definition. The remaining 55.3% were PR+

but contained at least 1% CK5+ luminobasal cells (Fig. 1 Ac and
Ad), >97% of which lacked PR. In some tumors, luminobasal
cells constituted at least one-third of the population. Thus, more
than half of all luminal breast cancers contain a substantial
luminobasal cell subpopulation lacking steroid receptors that
would be resistant to hormone therapies (13) and could usurp

the tumor in response to such treatments. We therefore sought
to develop luminobasal cell models to study their regulation and
implication for development of hormone resistance.

Estrogen Deprivation Expands a Latent Luminobasal-Cell Subpop-
ulation in Luminal Tumor Xenografts. Under estrogen (E)-treated
or E-withdrawn (EWD) conditions in vitro, ER+PR+CK5−

breast cancer cell lines (MCF-7, BT-474, and T47D) rarely or
never contain ER−PR−CK5+ luminobasal cells (Fig. S1 A, B,
and C). However, when grown as orthotopic solid tumors in
immune compromised mice, clusters of CK5+ luminobasal cells
are found interspersed among the expected ER+ luminal cells
(Fig. 1B). Analogous to the clinical samples (Fig. 1A), the CK5+

luminobasal cell nuclei are ER−PR−. We used the solid tumors
to generate cell lines that enable study of luminobasal cells
in vitro. For this, cells passaged in mice were returned to culture
in the presence of E or under EWD conditions. Specifically,
eight T47D sublines were generated (Table S1) and designated
for the in vitro hormone condition and xenograft of origin (i.e.,
xenograft line 2 yielded lines E-2 and EWD-2).
Lines 1–7, exposed to hormones in vivo, had <1% luminobasal

cells in vitro in the presence of E, which rose to 20–50% in re-
sponse to EWD (Fig. 1C and Table S1). The T47D tumor-de-
rived lines grew well in E with the luminobasal subpopulation at
<1%. For example, dual CK5/PR immunocytochemistry (ICC)
(Fig. 1D) illustrates that line 1 E-treated cells contained 0.7%
CK5+ cells. However, under EWD conditions, or if antiestrogens
tamoxifen (Tam) or fulvestrant (Fulv) were added to E, the cells
underwent crisis. When proliferation resumed, 33.7% (EWD),
26% (E plus Tam), or 41.3% (E plus Fulv) of the surviving cells
were luminobasal (Fig. 1D). Thus, both EWD and antiestrogens
expand the luminobasal subpopulation. The regulatory role for E
in this transition was confirmed by switching line 2 between E
and EWD conditions (Fig. S1D). Line 8, grown in the mouse
without hormone, was enriched for luminobasal cells (90–100%)
in vitro with E or under EWD conditions (EWD-8; Fig. 1E).
EWD also promoted luminobasal-cell expansion from tumor-
derived BT474 cells, but not MCF-7 cells (Fig. S1 B and C).
These results reflect development of hormone resistance in
patients (13) and attest to the fidelity of the models.
In 3D cultures, line EWD-3, a mixture of luminal and lumi-

nobasal cells, developed remarkable colonies with the lumino-
basal CK5+ cells clustered in a central core, surrounded by the
ER+ luminal subpopulation (Fig. 1Ea). Despite ER positivity,
the EWD-3 luminal outer ring cells were PR−, apparently due to
absence of E (Fig. 1Eb), confirming the E-dependence of this
important marker of ER activity in breast cancers (15). The E-3,
EWD-3, and EWD-8 colonies were further evaluated for estab-
lished markers of basal and luminal breast epithelium (16, 17).
The basal markers CK5, EGFR, and p63 colocalized to the
luminobasal EWD-3 core and EWD-8 colonies (Fig. 1E) and
were absent in the luminal E-3 and EWD-3 ring cells. Luminal
markers MUC1, GATA3, FOXA1, and CK18 (Fig. S2A) were
restricted to E-3 cells and EWD-3 ring cells and absent in CK5+

luminobasal cells. Unlike PR (Fig. 1E), these luminal markers
are E-independent. Luminobasal cells lack myoepithelial lineage
markers CK14, α-smooth muscle actin, and vimentin (17) and are
HER2− (Fig. S2B). We conclude that despite their luminal ori-
gin, luminobasal cells resemble TN basal-like breast cancer cells
and expand within luminal tumors if E signaling is prevented.

Despite Their Luminal Cell Derivation, theGene Signature of Luminobasal
Cells Matches TN Basal-Like and Claudin-Low Breast Cancer Subtypes.
Expression of basal-like markers suggested that luminobasal cells
had launched a gene expression program associated with basal-
like TN disease. To verify this, pure luminal (E-3) and lumino-
basal (EWD-8) lines were expression profiled, and gene sets
were compared with those of established breast cancer cell lines
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Fig. 1. Luminobasal cells in clinical breast cancers and derivation of models
with varying luminal/luminobasal ratios. (A) Primary tumors from 72 patients
(14) were stained by IHC for CK5 (pink) and PR (brown). Four representative
tumors are (a) pure luminal, (b) pure basal, and (c and d) mixed luminal/
luminobasal. (Scale bars, 50 μm.) (B) CK5 (red) and ER (green) dual IHC in
xenografts grown from MCF-7 or T47D luminal breast cancer cells. Cells (106)
were injected into mammary glands of ovx’d mice supplemented with E.
(Scale bars, 20 μm.) (C) Western blots of CK5, ER, and PRA or PRB isoforms in
seven cell lines grown independently from T47D xenografts. Cells were
cultured >45 d in 1 nM E or EWD media (Table S1). (D) Line 1 cells stained by
ICC for CK5 (red) and PR (green) after culturing for >45 d in E or EWD media,
or in E plus 100 nM Tam or Fulv. Percentage CK5+ luminobasal content is
shown. *P < 0.01. (Scale bars, 20 μm.) (E) 3D colonies of lines E-3 (pure lu-
minal), EWD-3 (mixed), and EWD-8 (pure luminobasal) were sectioned and
stained by dual IHC for CK5 (pink) and luminal markers ER (a), PR (b, brown);
or basal markers EGFR (c), p63 (d, green). (Scale bars, 20 μm.)
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and primary breast cancers. Analysis of 16,934 genes showed that
EWD-8 cells clustered with the parental T47D and E-3 lines
(Fig. S3A), confirming the luminal and T47D origin of the cells.
Their T47D origin and genetic similarity were also demonstrated
by short tandem repeat analysis, karyotyping, and genotype array
analysis (SI Materials and Methods). Using a two-class signifi-
cance analysis of microarrays and a false discovery rate of 0 (SI
Materials and Methods), 1,298 genes were identified that defined
a “luminobasal signature” (Dataset S1). Using a 50-gene subset
(Fig. 2A) or all 1,298 signature genes (Fig. S3B), cluster analysis
demonstrated that EWD-8 clusters with TN MDA231, SUM159,
and SUM149 cells, whereas E-3 clusters with luminal MCF-7 and
parental T47D breast cancer cells. Both were distinct from the
HER2+ SKBR3 cell line. These results were confirmed (Fig.
S3C) using the larger 51-cell-line database of Neve et al. (18).
We conclude that the T47D-derived, EWD-8 line has acquired
a basal-like TN profile, while retaining the broader signature of
its luminal origins.

We next asked how the luminobasal signature of EWD-8 relates
to subtype classification of clinical breast cancers. Using a com-
bined dataset of 516 primary tumors (Materials and Methods), we
find that overexpressed (Fig. 2B) or underexpressed (Fig. 2C)
luminobasal genes matched those of basal-like or claudin-low
tumors and differed from luminal or HER2+ tumors. This pattern
was confirmed using the independent NKI265 dataset (Fig. S3D).
In related analyses, the luminobasal signature genes correctly
clustered breast tumors according to their luminal, HER2, or
basal-like TN status in the 516 and NKI265 datasets (Fig. S4). The
similarity of gene expression patterns between our lines and pri-
mary tumors of patients suggests that malignant breast cells follow
a conserved genetic path to establish a luminal vs. basal-like fate
that we can now model.

Luminobasal Cells Exhibit Aggressive, E-Independent Growth in vivo.
Compared with luminal breast cancers, TN basal-like tumors are
more aggressive (3). To compare the aggressiveness of lumi-
nal and luminobasal cells, we injected our cell lines into mammary
glands of immune-compromised ovariectomized (ovx’d) mice sup-
plemented with placebo or E-releasing pellets (Fig. 3A). The
study was terminated early because EWD-3 and EWD-8 tumors
were highly aggressive, reaching allowable size limits in less than
half the time of parental T47D cells. Tumor growth was pro-
portional to the luminobasal population, with EWD-8 the fastest
and capable of rapid and extensive E-independent growth (Fig.
3A). Nonetheless, E further stimulated growth of all three lines,
perhaps reflecting ER expression below the detection threshold
of our standard IHC assays.
Luminobasal cells were rare (≈1%) in E-treated E-3 tumors

but represented ≈10% of cells in EWD control tumors (Fig. 3B).
E-treated EWD-3 tumors contained ≈20% luminobasal cells,
which increased to ≈50% in EWD mice. EWD-8 tumors were
>90% luminobasal regardless of treatment (Fig. 3B). These
studies confirm in vitro (Fig. 1 C and D) and patient data (13)
reporting luminobasal cell expansion in EWD conditions.
Analysis of T47D and MCF-7 tumors confirmed that most tumor
cells exhibit either basal or luminal features (Fig. 3C and Fig.
S5). However, rare cells (<1%) failed this clear-cut distinction
and instead were dual (yellow) CK8/18+CK5+ (Fig. 3C, arrows)
or GATA3+CK5+ (Fig. S5); a pattern attributed to luminal
progenitor cells (10). We conclude that our models exhibit the
extensive cellular heterogeneity observed in clinical samples of
luminal breast cancers (Fig. 1A), and that the luminobasal cell
subpopulation behaves aggressively in vivo and survives and
expands under prolonged E-suppressive conditions.

Targeting the Luminobasal Population Through Notch. The Notch
pathway has been implicated in regulating lineage and differ-
entiation decisions in the normal breast (19, 20). We noted many
Notch pathway genes in the luminobasal gene signature, in-
cluding Notch1 receptor and multiple Notch ligands (Fig. S6A).
To analyze this, sections of primary breast tumors (Fig. 4Aa) and
xenografted luminal tumors (Fig. 4Ab) were costained for CK5
(red) and Notch1 (green). Notch1 was specifically coexpressed
with CK5 in the luminobasal cell subpopulation of both patient
samples and xenografts (Fig. 4A) and 3D colonies (Fig. S6B).
Consistent with these results, Notch1 transcripts were elevated in
basal-like/claudin-low, ESR1− tumors (Fig. S6C), and strong
constitutive Notch-dependent transcriptional activity was detec-
ted in the Notch1 expressing EWD-8 luminobasal cells (Fig.
S6D). This transcriptional activity could be specifically sup-
pressed by three different GSIs: DAPT, compound E (CpdE),
and XIX (all defined in Table S1 legend) (Fig. S6D). Notch1 also
plays a functional role in the expansion of CK5+Slug+GATA3−

luminobasal cells during EWD. The low number (0.8%) of
luminobasal cells in the E-3 line rose to 57.9% under EWD
conditions plus a scrambled shRNA, but this expansion was
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significantly suppressed (1.4%) by a Notch1-targeted shRNA
(Fig. 4B).

GSIs Maintain a Luminal Cell Phenotype Responsive to Endocrine
Therapies. GSIs are in early clinical trials as monotherapy for
breast cancers because of the putative role of Notch in breast
stem cells (21). We speculated that additionally, GSIs could target
the Notch1-expressing luminobasal subpopulation. To test this,
tumor-derived MCF-7 cells were treated 2 wk with DAPT, and

the CK5+ fraction was assessed by flow cytometry (Fig. 4C) and
ICC (Fig. S7A). DAPT significantly decreased MCF-7 lumino-
basal cell number from 3.8% to 0.29% (Fig. 4C). To show
whether GSIs prevent expansion of the CK5+ luminobasal cell
subpopulation in response to endocrine therapies, line 3 was
propagated directly from tumors in the presence of E or EWD, or
under EWD conditions supplemented with DAPT or CpdE (Fig.
4D). Notably, the GSIs had no quantifiable impact on growth of
the EWD cultures, which entered and exited crisis synchronously.
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In the presence of E (E-3), pure ER+PR+ luminal colonies were
observed. EWD yielded mixed colonies (EWD-3), with expansion
of luminobasal core cells readily apparent. However, under the
same EWD conditions, DAPT and CpdE suppressed outgrowth
of the luminobasal subpopulation, allowing maintenance of ER
(Fig. 4Da). Interestingly, E-independent, heterogeneous PR ex-
pression was also observed, demonstrating PR up-regulation by E-
independent pathways (Fig. 4Db). Similar results were observed
in line 7 cells (Fig. S7B).
Preservation of the ER+ luminal phenotype by Notch1-

shRNA or GSIs under EWD conditions was confirmed by ab-
sence of luminobasal markers (CK5, Notch1, Slug, EGFR) and
maintenance of luminal markers (GATA3, FOXA1; Fig. 4B and
Fig. S7C). To show whether the ER+ cells were responsive to
hormone therapies under these conditions, E-3, EWD-3, and
EWD-3/GSI lines were treated with Fulv to degrade the ER
protein (22) (Fig. 4E, Inset). Proliferation was quantified by
BrdU incorporation. In E-dependent, pure luminal E-3 controls,
Fulv suppressed growth, as expected. The mixed luminal/lumi-
nobasal EWD-3 line was relatively insensitive to Fulv, but Fulv
sensitivity was maintained by DAPT or CpdE cotreatment (Fig.
4E). We propose that for patients afflicted with luminal disease,
hormone therapies in combination with a Notch inhibitor to
maintain the ER+ luminal state could provide greater benefit
than E/ER-targeted therapies alone.

Discussion
Luminal breast cancers, the majority of tumors diagnosed in
women, are now defined by presence of at least 1% ER+ or PR+

cells (11). This raises questions about the biology and origin of the
remaining, often the bulk, receptor-negative cells in luminal dis-
ease. We used established ER+PR+ breast cancer lines to develop
models of luminal tumor heterogeneity that address these ques-
tions. These models generate not only the classic ER+PR+CK5−

luminal cell subpopulation, but also a subset of ER+PR− cells
(Fig. 4Db) that often puzzle clinicians, as well as the
ER−PR−CK5+ luminobasal cells (Fig. 1 Ac and Ad) resembling
TN basal-like disease we describe here. That established luminal
cell lines (23) retain the ability to yield such extensive cellular
heterogeneity without genetic manipulation is evidence of their
plasticity. Here we characterize the ER−PR−CK5+ luminobasal
subpopulation found in more than half of luminal breast tumors.

Luminobasal Cells and Hormone Resistance. We demonstrate that
ER− luminobasal cells survive and expand in the absence of E
(Fig. 3B), the principal therapeutic modality for patients with lu-
minal disease. EWD clearly favors outgrowth of cells with TN
profiles, consistent with observations in primary tumors (24),
including patients treated with neoadjuvant Tam or aromatase
inhibitors (13). We propose that therapies targeting the pro-
liferative actions of E can have the unintended consequence of
promoting outgrowth of an ER− luminobasal cell subpopulation.
Other studies support a role for ER− cells in hormone resistance.
Creighton et al. (24) assessed expression profiles of ER+ breast
cancers before and after letrozole therapy. In 18 tumors defined
as ER+ by IHC and candidates for aromatase inhibition, only 9
had pretreatment gene expression profiles consistent with luminal
disease, demonstrating that ER alone is insufficient to define this
tumor subtype (4). After letrozole, four of the nine luminal tumors
changed to a claudin-low profile; a switch also observed in patients
treated with neoadjuvant docetaxel (24).
The global gene signature of luminobasal-rich EWD-8 cells

clusters with the parental luminal T47D cells (Fig. S3A), attest-
ing to the overall cytogenetic stability and identity of the two
lines. However, the luminobasal-specific signature clusters with
genes expressed in TN basal-like cell lines, and with claudin-low
or basal-like breast cancers (Fig. 2A), suggesting that under
therapeutic pressures a restricted (≈7.7%), highly conserved

gene expression program transitions luminal cells to the more
aggressive basal-like/claudin-low state. We speculate that this is
epigenetically driven because the same plasticity is demonstrable
in multiple independent lines and primary tumors (Fig. 1A) and
because the cell types show significant genetic similarity by kar-
yotype and SNP profiling (SI Materials and Methods). Without
complete genome sequencing information, however, positive
selection for cells with de novo mutations cannot be entirely
excluded. Because they have not been genetically manipulated,
these lines should be important models for defining mechanis-
tically, the pathways taken by breast cancer cells as they transi-
tion among various intrinsic subtypes.

Origins of the Luminobasal Phenotype and Notch Signaling. It has
been suggested (4) that the breast cancer subtypes segregate
along a mammary epithelial cell differentiation hierarchy, with
claudin-low tumors resembling mammary “stem cells” (MaSC),
basal-like tumors resembling “luminal progenitors,” and luminal
A and B tumors resembling “mature” luminal cells. Accordingly,
we find that the luminobasal signature is most similar to that of
the MaSC fraction identified in the normal breast by Lim et al.
(10). Claudin-low tumors exhibit features (4) analogous to cells
that have undergone dedifferentiation through an epithelial to
mesenchymal transition (EMT) (25). Two prominent mesenchy-
mal transcription factors, Slug (SNAI2; 100.2-fold) and Twist1
(10.6-fold), are up-regulated in the luminobasal signature. Ex-
pression levels of Slug and Twist1 are highest in claudin-low
tumors of the 516-tumor dataset, and both genes identify letro-
zole-resistant disease (24). Slug overexpression (Fig. 4B) is
particularly interesting considering recent reports of Slug accu-
mulation in basal-like tumors associated with BRCA1 mutations
(26). Notch signaling may also foster Slug accumulation, because
coexpression of Notch1 and Jag1 leads to Slug overexpression
in breast cancer cells (27), and Notch1 depletion prevented Slug
accumulation in our studies (Fig. 4B).
Our model describes a Notch-dependent mechanism enabling

the balance between luminal and basal-like disease. That lumi-
nobasal cells group together both clinically (Fig. 1A and Fig. 4A)
and experimentally (Fig. 1E) could be explained by feedback loops
activated between adjacent cells expressing Notch receptors and
ligands (Fig. S6A). Other indicators that the luminal/luminobasal
cell ratio is controlled byNotch signaling are as follows. (i) Notch1
receptor is detectable in cells expressing basal markers (Fig. 4 and
Fig. S6). (ii) Notch transcriptional activity is elevated under EWD
conditions in parallel with expansion of luminobasal cell number
(Fig. S6D). Analogous activation of Notch in basal-like breast
cancers (28, 29) andE suppression ofNotch inER+ luminal breast
cancer cells (30) have been reported. (iii) GSIs or anti-Notch1
shRNA maintains a luminal state (Fig. 4D and Fig. S7) despite E
deprivation. Thus, an ER+ luminal phenotype is preserved in the
face of EWD if Notch remains suppressed.
The origin of luminobasal cells in luminal tumors may be

analogous to the hierarchy in the epithelial compartment of the
normal breast, where cells that express basal features coexist with
committed luminal cells (17). Recent reports on BRCA1-related
basal-like disease conclude that basal tumors originate from
a luminal, not a basal, progenitor cell (10, 26, 31). Luminobasal
cells could also emerge from direct conversion or reprogram-
ming of the luminal cell state, a plasticity reminiscent of the
EMT (26). Our ability to derive a cell line (EWD-8) that fits the
core basal description (ER−PR−CK5+EGFR+; Fig. 1E) and
gene expression profile, exhibits E-independent, aggressive tu-
mor growth (Fig. 3) but is syngeneic with a classic, established
luminal ER+PR+CK5− parental cell line, supports a luminal
origin of basal-like cells. Rare cells in both T47D and MCF-7
tumors that are double positive for luminal and basal markers
(Fig. 3C and Fig. S5) are interesting in that regard. We speculate
that luminobasal cells sit at the nexus of the transition between
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luminal and basal-like cancers. In luminal disease, the balance
between luminal and luminobasal cells is reversible and regu-
latable by E and Notch signaling. However, once transition to the
basal-like/claudin-low state is complete (EWD-8 line) we find the
phenotype to be irreversible. Neither exposure to E nor GSIs can
restore the luminal state under these conditions (Fig. 3B),
analogous to failed attempts to restore a luminal phenotype to
TN cells by targeting MAPK (32).

Conclusions
The implications of our data are grave for the development of
resistance to ER-targeted endocrine therapies. They predict that
antiestrogens or aromatase inhibitors will raise the number of
ER− cells in resistant or recurrent disease, as reported in a
small neoadjuvant study (13). We suggest that outgrowth of the
luminobasal cell subpopulation is undesirable and demonstrate
that combination therapies targeting Notch with GSIs to main-
tain cells in an ER+ luminal state, while targeting ER or E with
endocrine therapies, could be highly effective. With regard to
Notch, combination therapy is essential because GSI mono-

therapy would not suppress tumor growth or kill cells. Addi-
tionally, better outcomes could be achieved if patients with ER+

tumors that contain luminobasal cell subpopulations were pro-
spectively identified. Considering our initial data (Fig. 1A), more
than half of patients with luminal disease fit into that category,
but ER and PR IHC is insufficient to detect these tumors.

Materials and Methods
Experimental methods are detailed in SI Materials and Methods. Methods
include xenografts and generation of tumor-derived lines, gene expression
profiling and genetic analyses, primary breast cancer data, and statistical
analyses. A complete list of reagents and antibodies is provided in Table S2.
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