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We develop a unique algorithm implemented in the program
MOSAICS (Methodologies for Optimization and Sampling in Com-
putational Studies) that is capable of nanoscale modeling without
compromising the resolution of interest. This is achieved by mod-
eling with customizable hierarchical degrees of freedom, thereby
circumventing major limitations of conventional molecular model-
ing. With the emergence of RNA-based nanotechnology, large
RNAs in all-atom representation are used here to benchmark our
algorithm. Our method locates all favorable structural states of
a model RNA of significant complexity while improving sampling
accuracy and increasing speed many fold over existing all-atom
RNA modeling methods. We also modeled the effects of sequence
mutations on the structural building blocks of tRNA-based nano-
technology. With its flexibility in choosing arbitrary degrees of
freedom as well as in allowing different all-atom energy functions,
MOSAICS is an ideal tool to model and design biomolecules of the
nanoscale.

hierarchical sampling ∣ junctions ∣ molecular simulation ∣
Monte Carlo ∣ nanostructure

Computational modeling is an important aspect of biology and
nanotechnology. In silico design and manipulation of nano-

structures often precedes experimental validation (1, 2), while
effective computational structure prediction of biomolecules paves
the way for biomolecular design (3). Most molecular modeling
packages are either general but inefficient in modeling large
molecular systems or designed to be effective for modeling only
specific types of systems (e.g., coarse-grained modeling of DNA
as an elastic rod) and are therefore not general purpose. These
limitations are mainly a consequence of two major obstacles to
computational modeling: (i) the high dimensionality of the systems
studied and (ii) the complexity of the potential energy surface guid-
ing the simulation. When attempting to model nanoscale systems
at all-atom resolution, the combination of these two factors often
leads to intractable complexity.

A wide range of methods has been proposed to remove obsta-
cles presented by high dimensionality (4–6) and complex energy
surfaces (7–12), but none of these studies has considered both
limitations in the same context. The difficulty of such a unified
approach is that limitations arising from both obstacles are re-
lated in that reducing dimensionality often results in a more com-
plex energy surface. For example, conformational sampling using
dihedral angles, which is a common solution to the high dimen-
sionality problem of macromolecular assemblies, often results in
a more complex energy surface with energy barriers that could
have been easily avoided in Cartesian space. The algorithm [im-
plemented in MOSAICS (13)] proposed here overcomes the pro-
blem of high dimensionality without increasing the complexity of
the underlying energy surface. This is achieved by sampling with
hierarchical variables: Degrees of freedom that introduce large
conformational changes are combined with degrees of freedom
that allow for local rearrangement. The former help overcome
obstacles raised by large dimensionality while the latter soften
the resultant energy surface. Such degrees of freedom may break
the molecular chain and even spoil stereochemistry. To prevent
this, we have coupled hierarchical modeling with a stochastic
chain-closure algorithm (6), permitting extensive in silico manip-

ulation of large molecular structures at all-atom resolution with-
out compromising chain connectivity or stereochemistry.

Our algorithm is general and therefore can be applied to di-
verse types of molecular structures. However, to benchmark our
technique, we turn our attention to molecular junctions, a mole-
cular topology pervasive in biology (14) and electronics (15–17).
Given the recent emergence of RNA-based nanotechnology (1),
we focus on junctions found in RNA and compare our technique
with other RNA computational modeling approaches. Naturally
occurring RNA molecules are important in biology as they carry
out a variety of roles in gene regulation while synthetically de-
signed RNA nanostructures have increasingly been promoted
as possible candidates for drug delivery (1). RNAmolecules often
fold in a hierarchical fashion, with the sequence determining
stable base-pairings (secondary structure) that are preserved
when these base-paired regions rearrange into tertiary or qua-
ternary forms (18); RNA nanostructures are usually designed
based on this premise and through the use of specific RNA struc-
tural motifs (2). Hence the hierarchical structural elements we
used (see below) to define degrees of freedom for modeling RNA
are natural physical descriptors of RNA (19). We emphasize that
our method is general as the hierarchical organization of RNA
assemblies is only one example of a more general phenomenon
manifested in nanotechnology, where nanostructures are built
from basic blocks that are themselves built hierarchically [e.g.,
nucleic acids (20, 21) or oxide nanostructures (22)].

Results and Discussion
Benchmarkingwith an RNA Four-Way Junction.We show that accurate
sampling of a large RNA structure with all-atom representation
and secondary structure constraints is impossible with currently
available approaches. Specifically, they fail to generate diverse and
canonical ensembles (Fig. 1). Regular Monte Carlo, molecular dy-
namics, and natural moveMonte Carlo (4, 6) are generally confined
to local structural basins close to the initial model (Fig. 1A). Frag-
ment assembly, which is designed to generate a diverse set of con-
formations and commonly used for RNA (3, 23) and protein
modeling (24), does not generate a canonically weighted ensemble
of conformations because the preference for certain structures
may depend on the particular fragment libraries used. As a result,
thermodynamic observables cannot be calculated from such ensem-
bles. Two state-of-the-art implementations of fragment assembly,
Macromolecular Conformations by SYMbolic programming or
MC-Sym (23) and Rosetta (3), produce differently biased distance
distributions (Fig. 1 B and C). Both distributions feature unphysical
cusps and additionally for MC-Sym, symmetry is not preserved. By
contrast, our method, hierarchical natural move Monte Carlo as
implemented in MOSAICS (13), has been designed to efficiently
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model large molecules and produce the canonical distribution of
observables, regardless of starting structure (Fig. 1D).

Our hierarchical natural move Monte Carlo first generates a
complex move of the molecular system by ignoring molecular
connectivity, such that the system is likened to a collection of in-
dependent nucleotides, which are sequentially moved based on
the user-defined degrees of freedom (a collection of independent
sets of moves, Li). This complex move may result in spoiling
stereochemistry and chain breakage between any neighboring nu-
cleotides, but these are corrected by our all-atom chain-closure
algorithm (6) that adjusts a small number of dependent variables
(Ld) before the actual energy evaluation and acceptance/rejec-
tion of the complex Monte Carlo move along Li take place.
(If chain closure is unsuccessful, the proposed complex move
is immediately rejected.) Therefore the degrees of freedom used
are the combination of both Li and Ld.

For nucleic acids, an obvious degree of freedom is one that
describes the position, orientation, and internal flexibility of each
nucleotide (set L1; Fig. 2A and ref. 6). Although such a set of

natural moves uses a small number of essential degrees of free-
dom to reduce dimensionality [by an order of magnitude com-
pared to Cartesian coordinates (6)], high dimensionality and
energy surface complexity still present major challenges for large
macromolecules. It may seem possible to avoid the dimensional-
ity problem by introducing new degrees of freedom (L2) that
move larger parts of the structure. In the case of RNA, these de-
grees of freedom could describe the relative orientation and ab-
solute position of all its rigid base-paired helices (Fig. 2A).
Unfortunately, sampling helices as rigid bodies alone is inade-
quate: Tight packing of two helices may be prevented by the ar-
tificially high energy barriers that arise from the lack of flexibility
within these rigid bodies.

To overcome this limitation we embed the smaller, local moves
as described by L1 into the more global sampling by L2 moves;
i.e., our complex independent move Li is a combination of moves
from L1 and L2. In this way each RNA helix is no longer com-
pletely rigid and nucleotides within each helix are allowed to
move. Sampling along collective degrees of freedom (L2) solves

Fig. 1. Sampling a simple four-way RNA junction using four different protocols. The distributions of the four color-coded distances between the ends of
helices are shown (secondary structure in Fig. S1 and additional distances in Fig. S2). If sampling is unbiased, these distributions should be smooth and identical.
(A) Sampling with the natural move Monte Carlo (NM-MC) (4, 6) method produces smooth distributions, but they are not identical because convergence is not
reached within the total number of iterations. (B) Fragment assembly by MC-Sym (FA-MC-Sym) (23) explores conformational space more effectively than NM-
MC but cannot be used for thermodynamic sampling. MC-Sym builds RNA structures cyclically: After placement of the last helix, the acceptance criterion does
not include chain connectivity but only distance constraints. Hence, the distributions for the first three distances are identical because they were derived from
the same fragment libraries while the fourth distance (labeled in red) is not. (C) Identical distributions are obtained in the fragment assembly implementation
of Rosetta (FA-Rosetta) (3), but there are nonphysical cusps in the distributions likely due to the use of native RNA fragments. (D) Sampling with our new
hierarchical natural move Monte Carlo (HNM-MC) as implemented in MOSAICS (13) gives distance distributions that are identical and smooth. In all cases,
results for 50,000 iterations are shown. Hard sphere all-atom potentials were used for both NM-MC and HNM-MC.

Fig. 2. Effects of adding hierarchical degrees of freedom on sampling a large symmetric RNA structure. (A) Hierarchical moves used. A system of this complex-
ity has many possible collective motions. Here seven sets of independent degrees of freedom (L1 to L7) are defined. The base-pairs and individual nucleotides
have their natural degrees of freedom (L1). Regions of continuous base-pairing form helices (represented by rectangles), and these helices can be regarded as
rigid bodies moving either independently (L2), as pairs of helices (L3), or as groups of three (L4) or more helices (L5 to L7). Rigid body (gray) motion requires the
definition of rotation centers shown as red dots. These centers are selected to preserve the symmetry of the system. (B) Convergence is accelerated by higher
order rigid body moves. When nested hierarchical moves L1 to L7 were used, rapid convergence to the limiting distribution (horizontal dashed line showing the
limiting “symmetry deviation” as defined in Materials and Methods) is reached within 2 × 104 iterations (vertical dashed line labeled *). Sampling with fewer
nested hierarchical moves (L1-L4 and L1-L5) did not converge with 2 × 105 iterations, suggesting that at least a 10-fold speedup is achieved by using the addi-
tional sets L5 to L7. Inset in B shows individual distributions of end-to-end distances between pairs of full arms (see Materials and Methods) with 2 × 104

iterations for three different sets of hierarchical moves: L1-L4 (blue), L1-L5 (green), and L1-L7 (red). The y axis is the normalized frequency; the x axis is
the distance in Å.
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the dimensionality problem, while the increased complexity of the
energy surface is circumvented by introducing internal flexibility
within rigid bodies (see Materials and Methods).

Analogously for protein complexes, global moves of protein
domains (say L3) can be incorporated with moving secondary
structure elements in each domain independently (L2). Further
flexibility can be added with residue-level degrees of free-
dom (L1).

Improving Sampling Efficiency by Adding Hierarchical Degrees of Free-
dom. As an illustration of the effects of modeling with different
embedded degrees of freedom, consider a biomolecular assembly
with many levels of hierarchical complexity like the large sym-
metric RNA system with multiple junctions illustrated in Fig. 2A.
We can define seven arbitrary independent sets of degrees of
freedom, L1 to L7. We use the distance between the ends of
neighboring full arms that consist of four helices each as our
physical observable. By symmetry, all distance distributions are
expected to converge to the same distribution; the overlap
between distributions is a quantitative indicator of reaching con-
vergence with unbiased sampling (see Materials and Methods).
Fig. 2B shows that successive incorporation of degrees of freedom
that introduce additional collective global rearrangements sys-
tematically reduces the number of Monte Carlo iterations needed
to reach convergence. Specifically, sampling with sets L1 to L7

leads to convergence using at least an order of magnitude less
computational effort than sampling with only sets L1 to L4. The
effects of introducing additional degrees of freedom appear to
gradually saturate, as judged by the similarity between sampling
with L1 to L6 and L1 to L7. This suggests that additional sets are
not required.

Application 1: Modeling RNA Nanostructure Flexibility. While we
made use of synthetic four-way RNA junctions as model systems
to benchmark our technique, four-way junctions are common in
naturally occurring biological nucleic acids. For instance, during
homologous recombination, four-way DNA Holliday junctions
are formed and have preferential stacking and orientations (14).
The flexibility of RNA junctions has strong influence on its
dynamics and fold and affects the RNA’s functionality and cap-
ability to bind to different ligands (25). Therefore understanding
the behavior of nucleic acid junctions has important biological
implications and our method facilitates extensive in silico study
of the physics of such systems.

Beyond naturally occurring systems, nucleic acid junctions are
also important in bionanotechnology. There has been extensive
research on DNA and RNA nanostructures because of their
potential in a variety of fields like drug delivery (1), material
science [e.g., DNA nanotubes (26)], biomolecular computing
[e.g., algorithmic self-assembly (27)], and nanoelectronics (1, 27).
Nanostructures consist of basic motifs of different junction types
to design appropriate bends and kinks that are assembled into
large and complex structures. The flexibility of these motifs typi-
cally depends on sequences of the single stranded regions con-
necting the helices and/or the presence of tertiary contacts that
help stabilize the RNA/DNA junctions to particular conforma-
tions. From a practical standpoint related to experimental synth-
esis, it is important to understand the effects of specific sequences
on the flexibility of the motif as the yield and stability of large
nanostructures is affected by the flexibility of its smaller building
blocks. For example, it was shown that a tRNA-square (four
tRNA monomers connected via kissing loops to form a square;
see Fig. 3) was less stable when its individual monomers carried
sequence mutations that negated the tertiary interaction likely
crucial in maintaining the right-angle motif within the monomer
(28). This series of mutations also resulted in a decreased yield of
the tRNA-square, instead facilitating formation of smaller dimers
or trimers (28).

Using hierarchical move-sets and a simple base-pairing “po-
tential” (see Materials and Methods) we show that single muta-
tions of the tertiary contact do not strongly affect the angular
distribution of the junction within each tRNAmonomer (Fig. 3A).
However, when both mutations U15G and C16G are made in
concert, the tRNA monomer has significantly higher flexibility
(see Fig. 3A), which could result in an increased ability to form
complexes of different order, thereby decreasing tRNA-square
yield. Further, based on thermal melting experiments, it was
found that the same mutations affect the tRNA-square stability
after it forms (28). Our simulations of the tRNA-square suggest
that double mutations on each monomer result in more distorted
squares than in the absence of any mutations (Fig. 3B). These
distortions could lead to strains on the kissing loops that connect
individual monomers, thereby decreasing the stability of the mu-
tated tRNA-square relative to the native. Distortions in the
tRNA-square could then propagate and result in lower yield
and/or distortions of larger assemblies (such as a one-dimensional
ladder).

Application 2: Interpreting Limited Experimental Data with Modeling
Results.Another application of our algorithm is to run simulations
with appropriate selection of degrees of freedom to aid the inter-
pretation of experiments. As an example, we made use of unique
move sets to identify the relative orientation of two-stacked he-
lices within an RNA four-way junction (Fig. 4), specifically an
RNA four-way junction derived from the hairpin ribozyme with
its helix D stacked on A and its helix C on B. These two sets of
stacked helices can orient in parallel or antiparallel, as deter-
mined by the direction of continuous RNA strands (pointing
in the same or opposite directions, respectively) (14). The inter-
helical angle θ is 0 for the extreme parallel structure and 180° for
the antiparallel equivalent. For 0 < θ < 180°, the junction can
take either a left- or right-handed form (Fig. 4A). Using distance
measurements between the ends of helices determined by fluor-
escence resonance energy transfer (FRET), experimentalists
identified this junction as preferring the antiparallel conforma-

Fig. 3. Effects of sequence mutations on the flexibility of nanostructure
building blocks. (A) The double mutation (MT) significantly increases the
flexibility of the tRNA monomer compared to the wild type (WT). The initial
starting structures are shown in solid while 10 randomly selected models
from our simulations are shown in the background. The right-angle tRNA
motif preferentially explores lower angles (θ) when both mutations U15G
and C16G are done in concert. The increased flexibility of the monomer could
facilitate formation of dimers or trimers, thereby decreasing the yield of the
tRNA-square. (B) Based on our simulations, the double-mutant tRNA-square
is more likely to explore distorted squares (extreme structure boxed in red;
matching maximum Δθ shown in histogram plot) than its wild-type equiva-
lent (most common structure boxed in blue), which could increase the strain
on the kissing loop motifs that connect tRNA monomers together. This
may explain the reduced stability of the double mutant tRNA-square found
experimentally (28).
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tion in the presence of Mg2þ, but the handedness of the anti-
parallel form could not be determined from this experimental
FRET data (29). In the same set of experiments, it was found
that switching of the four-way junction from its antiparallel form
to its corresponding parallel form does not take place in the
absence of helix unstacking (i.e., rotation of stacked helix BC
relative to AD is not sufficient).

In our RNA simulations (see Materials and Methods) that con-
served the stacking of helix D on A and B on C, starting from left-
and right-handed conformations, we found that the two types of
handedness can be easily distinguished (Fig. 4B): With helices
kept stacked, the left-handed form can rotate between parallel
and antiparallel types, while the right-handed form is confined
to mostly antiparallel conformations. It appears that steric and
connectivity constraints imposed by the junction prevent the
right-handed antiparallel conformation from rotating to its cor-
responding parallel type. Therefore, conversion from the right-
handed antiparallel conformation to the right-handed parallel
conformation requires more than a simple rotation of stacked
helices, and helix unstacking may be necessary. Our results indi-
cate that a right-handed antiparallel conformation is most con-
sistent with the FRET data. Subsequent gel electrophoresis
experiments showed that this four-way junction indeed prefers
the right-handed antiparallel form (30).

Conclusion
We are currently applying our algorithm in the field of structural
biology to model biological complexes with limited/low-resolu-
tion experimental information (such as cryoelectron microscopy
and small-angle X-ray scattering density maps). A good ensemble
of structures is required for such modeling, and our algorithm
allows us to generate this ensemble even for large molecular sys-

tems. Moreover, due to the generality in our implementation, we
can model structures with any scoring or energy function derived
either from experimental input or by a physics-based or knowl-
edge-based potential. Hence our hierarchical natural move Monte
Carlo technique can be used in structure prediction of RNA and
protein or else to assess the quality of molecular modeling force
fields by comparing observables derived from in silico ensembles
to experimentally determined ones. We are currently combining
hierarchical natural move Monte Carlo with continuous sequence
space sampling (treating the fractional presence of each type of
nucleotide at each sequence position as an additional independent
variable) so as to allow simultaneous exploration of sequence-
structure space. We hope these approaches pave the way for large
scale design of nanostructures (1, 2, 31) or molecules that mimic
biological processes (3).

Materials and Methods
Descriptions about modeling the tRNA nanostructure and four-way junction
derived from the hairpin ribozyme are provided in SI Text.

Sampling with Embedded Hierarchical Moves. The typical objective of sampling
is to obtain the expectation value and distribution of system specific obser-
vables over a phase space (Ω) of interest that is described by a probability
distribution function, f :Ω → R (function f maps elements from phase space
Ω to real numbers R). Then, for any observable, α:Ω → R, the expectation
value is defined as

hαi ¼
Z
Ω
dLαðLÞf ðLÞ [1]

where L spans Ω. In the case of the canonical ensemble, the probability
distribution function f is given by the Boltzmann distribution, fðLÞ ¼
expð−βEðLÞÞ∕Q, where the function E:Ω → R represents the energy of the
system, β ¼ 1∕kT (k is the Boltzmann constant and T the temperature) and
Q is the partition function defined as Q ¼ ∫ ΩdL expð−βEðLÞÞ. Therefore,

hαi ¼ 1∕Q
Z
Ω
dLαðLÞ expð−βEðLÞÞ [2]

A common method for obtaining hαi is to average over all states visited by
a Markov chain Monte Carlo procedure sampling from probability distribu-
tion f . In a brute force approach, such sampling is performed along a parti-
cular set of independent degrees of freedom, Lf , covering phase space, Ωf ,
(i.e., Lf spans Ωf ) with Ωf ⊂ Ω (Ωf is a proper subspace of Ω). In many practical
applications, however, we are interested only in a proper subspace, Ωs ⊂ Ωf

spanned by a small number of generalized degrees of freedom, Ls (Ls spans
Ωs). For example, consider a long polymer chain modeled by an energy func-
tion. If the observable of interest is the end-to-end distance of the polymer, a
convenient choice for Ωs is the space spanned by the dihedral angles about
single bonds (torsion angle space with constant bond lengths or angles). On
the other hand, Ωf , would be the space spanned by the Cartesian degrees of
freedom, which do not constrain bond lengths or angles. Because displace-
ments from ideal bond angles and lengths are governed by stiff harmonic
forces, hαif and hαis (the expectation values of α inferred from Markov chain
Monte Carlo in spaces Ωf and Ωs, respectively) should both provide suffi-
ciently good approximations to hαi. However, the number of iterations re-
quired to reach convergence to give reliable expectation values and
distributions of observables may vary significantly. In practical implementa-
tions, the large number of iterations required to sample the larger confor-
mational space Ωf makes the evaluation of Eq. 1 impractical.

While confining sampling to Ωs circumvents most challenges posed by
high dimensionality, it may make the energy surface more difficult to ex-
plore: The energy surface in phase space Ωs might be more rugged than that
in Ωf . As a result it is likely that the probability of moving from one state to
another in subspaceΩs is much smaller than that in subspaceΩf . For instance,
in the previous polymer example, the difficulty in attaining practical Markov
chain Monte Carlo acceptance rates when sampling dihedral angles is mainly
due to the rough energy surface present in torsion angle space. However,
augmenting Ωs (our subspace of interest) with sufficiently small additional
phase space volume elements from Ωf ∩ Ω⊥

s (the subspace of Ωf that is ortho-
gonal to Ωs, where Ω⊥

s refers to the orthogonal complement of Ωs) may elim-
inate the sampling limitations arising from the rough energy surface in phase

Fig. 4. Determining four-way junction handedness. The thorough sampling
achieved by different types of hierarchical moves and constraints facilitates
direct comparisons between modeling and experiments. (A) Experimental
distances by fluorescence resonance electron transfer (FRET) indicated that
a particular four-way junction preferentially has its helix D stacked on A and
C (green) on B (yellow). The stacked helices are preferentially oriented in an
antiparallel form (θ > 90°), but the distance measurements are unable to dis-
tinguish between the left- and right-handed antiparallel forms. The experi-
mental data further showed that switching between antiparallel and parallel
forms of the four-way junction does not take place in the absence of helices
AD and BC unstacking. (B) Constrained sampling (helices kept stacked) start-
ing from the left- and right- handed antiparallel forms (90° < θ < 180°) indi-
cates that the left-handed form was able to switch between parallel and
antiparallel conformations (crossing θ ¼ 90°) without the unstacking of he-
lices. Conversely, the right-handed form was mostly confined to only antipar-
allel conformations. Models were superimposed relative to helix AD (gray)
and each stacked helix BC is shown as a thin rod (yellow to green). For clarity,
only results for 2,000 randomly chosen models are shown. (C) The distribu-
tions of rotation angles (θ) of helix BC relative to helix AD, as defined in A.
When starting from a left-handed conformation the system easily switches
between parallel (θ < 90°) and antiparallel (90° < θ ≤ 180°) forms. However,
starting from a right-handed conformation, transitions between parallel and
antiparallel forms were not observed in the absence of helix unstacking.
Thus, our in silico results indicate that the right-handed antiparallel form
of this four-way junction is most consistent with the FRET data (29).
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space Ωs and so allow energy barriers to be overcome more easily. An exam-
ple of such a phenomenon is the softening of the torsion energy surface by
adding bond angle degrees of freedom (6).

In general, additional degrees of freedom needed to smooth the rough
energy surface of Ωs can be chosen to exploit the hierarchical nature of bio-
logical/inorganic structure. Efficient sampling can be achieved with collective
moves that change conformations at a higher hierarchical level while still in-
cluding moves at lower levels. Thus by embedding moves of different levels,
dimensionality is reduced without significantly changing the ruggedness of
the energy surface. To do this, embedded subspaces of increasing sizes are
defined, fromΩs toΩf such thatΩs ¼ Ωn ⊂ Ωn−1::::: ⊂ Ω1 ¼ Ωf , with each sub-
space representing a desired level of the hierarchy.

Fig. 5 illustrates an example with three embedded subspaces (n ¼ 3): Ω1,
Ω2, and Ω3. The large symmetric RNA junction as discussed in the main text
(Fig. 2) is a physical analog of such a scenario. In the full Ωf ¼ Ω1 space (ana-
logous to moving in the volume of the whole cube), each nucleotide is flex-
ible and free to move independently (Fig. 5A). Two examples of smaller
nested subspaces are moving helices as rigid bodies independently (Ω2, ana-
logous to moving in the titled plane abcd) or moving each full arm consisting
of four helices simultaneously (Ω3, analogous to moving along the diagonal
line cb).

These integrals are illustrated geometrically andmathematically in Fig. 5B.
The first integration is along the line cb, whereas the second integration ex-
tends over the plane abcd. As a result, the final integration is over a volume
of space (red mesh) much smaller than that of the full cube. Sampling within
these embedded subspaces greatly improves efficiency: Less computational
time is spent exploring conformations in phase space with negligible prob-
ability of occurrence. Using a smaller but more important region for integra-
tion solves the problem of high dimensionality.

Furthermore, augmenting spaces Ω3 with Ω2 and Ω1 ensures that addi-
tional physically reasonable solutions (beyond just rigid body motions) are
explored and we avoid the rough energy surface problem arising due to con-
fining sampling to Ωs ¼ Ω3.

While integrating along Ω3 (to obtain hαi3) gives a good initial approxi-
mation to hαi1 (that is evaluated from a full integral overΩ1), a more accurate
approximation hαi3;2;1 is obtained by extending the domain of integration

into Ω2 and subsequently into Ω1 around the local neighborhood of Ω3. This
integral requires a more confined phase space exploration (red mesh op-
posed to full cube or space Ω1), thereby significantly reducing the number
of iterations needed to give converged averages of observables. All these
lead to the main objective of our algorithm: hαi3;2;1 is not only obtained more
efficiently than hαi3, it is also a more accurate estimate of hαi.

Sampling a Small Symmetric Four-Way Junction RNA. A small symmetric four-
way junction RNA (Fig. S1) was chosen to benchmark different sampling
methods. Only secondary structure information was used in both fragment
assembly approaches [MC-Sym (23) and Rosetta (3)]. A local version of MC-
Sym was implemented, and because we were only interested in the distance
distribution between ends of neighboring helices, small chain discontinuities
in the RNA were not corrected either by chain closure or minimization. Ro-
setta 3.0 was used, with default parameters, and its built-in minimization
phase using a high resolution RNA potential.

Natural move Monte Carlo and hierarchical natural move Monte Carlo
sampling were both done using the MOSAICS (13) software package. The in-
itial starting structure consisted of four perfect A-form helices (from the
make-na server) stitched together using MC-Sym and a short (100 steps)
all-atom “relaxation” procedure [minimization using the AMBER 99 force
field (32) and the Generalized Born treatment of electrostatics (33) with
an inverse Debye–Hückel length of 0.19 Å−1 as implemented in Nucleic Acid
Builder (34)]. This approach efficiently restored chain connectivity and local
stereochemistry, while not perturbing base-pair interactions significantly.

In both natural move Monte Carlo and hierarchical natural move Monte
Carlo sampling, we are interested in obtaining distance distributions of a
symmetric RNA. A hard sphere potential was used to increase the efficiency
of exploring the conformational space using the all-atom representation. To
prevent unnatural distortions of the A-form helices due to the hard sphere
potential, base-pairs were only allowed to move as single units except in
chain closure. The same starting structure was used to run 50 independent
Markov chain Monte Carlo trajectories, and the last 1,000 conformations
from each of these independently equilibrated runs were used to generate
statistics for Fig. 1 and S2.

Fig. 5. Sampling with embedded subspaces by appropriate choice of hierarchical degrees of freedom constrains phase space exploration. (A) An illustration of
the different integration subspaces with Ω3 ⊂ Ω2 ⊂ Ω1 : Ω1 spans the volume of cube (red), Ω2 spans the plane abcd (green) and Ω3 spans the line cb (blue). The
corresponding analogous subspaces defined by different move sets for a large symmetric RNA are also shown. Sampling full arms as rigid bodies (Ω3 space)
explores a wide range of conformations, but close proximity of these full arms (with internal helices kept rigid) could be unfavorable due to steric clashes. These
clashes could be readily alleviated through independent movement of helices (in space Ω2). Introducing nucleotide-level movement within helices (in space Ω1)
adds flexibility that could further smooth the sampling energy landscape. (B) Phase space Ω1 is described by a probability distribution function, f :Ω1 → R and
α: Ω1 → R is the observable of interest. The expectation value, hαi is defined by an integral overΩ1, thus hαi can be referred to as hαi1. If α is primarily dependent
on the relative orientations of major arms, then the integrals shown are increasingly more accurate approximations to the expectation value, hαi. The in-
tegration volume for L2 is dΩ2ðL3Þ⊥Ω3; it is centered on L3 and is orthogonal to Ω3, while its size depends on the properties of the function f (or equivalently
on the topology of the corresponding energy surface). The integration volume for L1 is dΩ1ðL2Þ⊥Ω2; it is centered on L2 and is orthogonal to Ω2.
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Hierarchical Natural MoveMonte Carlo Sampling of a Large Symmetric RNA. The
conformational sampling protocol for the large symmetric RNA was similar
to the one for the symmetric four-way junction RNA. MC-Sym was used to
assemble the starting structure from perfect A-form helices of eight and
four base-pairs, respectively, and the chain connectivity was repaired with
the “relaxation” procedure described above. Data for Fig. 2 and Fig. S3 were
generated using the last 4,000 conformations of 50 independently equili-
brated simulations sampled using a hard sphere potential.

Measuring Interhelical Distances. To facilitate the calculation of interhelical
distances, we determined the origins and ends of all helices within the
RNA. A perfect A-form RNA helix of the same length was superimposed
to each base-paired region of the model (using C4′, C2, C4, and C6 atoms),
and its helix origin and end were determined using the program X3DNA (4).

For the large symmetric RNA, the distance distributions between full arms
were based on the average positions of the distal four-way junction (aver-
aged over the positions of three helices of four base-pairs, and one helix
of eight base-pairs).

Symmetry Deviation Metric. By symmetry, the four distributions of distances
between neighboring full arms of the large symmetric RNAwere expected to

converge to identical distributions. Therefore, a metric to measure deviation
from symmetry was defined as

Deviation ¼ ∑
4

j¼1;j≠i
∑
4

i¼1
∑
Nbins

d¼1

ðyiðdÞ − yjðdÞÞ2

where yiðdÞ is a histogram distribution of Nbins distance bins for the ith set
of distances. This metric quantitatively measures the degree of deviation
from the expected symmetric conformational distribution. The horizontal
dashed line in Fig. 2 indicates the limiting deviation achieved by sampling
the large symmetric RNA with move-sets L1 to L7.

ACKNOWLEDGMENTS. We thank the Jaeger Lab for generously sharing their
tRNA nanostructure models used in our simulations, the Levitt Lab for useful
discussions, and S. Doniach and J. A. Izaguirre for careful reading. Computa-
tions were done on Stanford’s Bio-X2 computers (National Science Founda-
tion award CNS-0619926). A.Y.L.S. is funded by the Agency of Science,
Technology, and Research, Singapore. This work was supported by National
Institutes of Health Grant GM041455 and by a Human Frontier Science Pro-
gram grant to M.L. M.L. is the Robert W. and Vivian K. Cahill Professor of
Cancer Research.

1. Guo P (2010) The emerging field of RNA nanotechnology.Nat Nanotechnol 5:833–842.
2. Shapiro BA, Bindewald E, Kasprzak W, Yingling Y (2008) Protocols for the in silico de-

sign of RNA nanostructures. Methods Mol Biol 474:93–115.
3. Das R, Karanicolas J, Baker D (2010) Atomic accuracy in predicting and designing non-

canonical RNA structure. Nat Methods 7:291–294.
4. Lu XJ, OlsonWK (2008) 3DNA: A versatile, integrated software system for the analysis,

rebuilding and visualization of three-dimensional nucleic-acid structures. Nat Protoc
3:1213–1227.

5. Minary P, Levitt M (2008) Probing protein fold space with a simplifiedmodel. J Mol Biol
375:920–933.

6. Minary P, Levitt M (2010) Conformational optimization with natural degrees of free-
dom: A novel stochastic chain closure algorithm. J Comput Biol 17:993–1010.

7. Hansmann UHE (1997) Parallel tempering algorithm for conformational studies of bio-
logical molecules. Chem Phys Lett 281:140–150.

8. Minary P, Levitt M (2006) Discussion of “equi-energy sampler” by Kou, Zhou and
Wong. Ann Stat 34:1636–1641.

9. Minary P, Martyna GJ, Tuckerman ME (2003) Algorithms and novel applications based
on the isokinetic ensemble. I. Biophysical and path integral molecular dynamics. J
Chem Phys 118:2510–2526.

10. Minary P, Tuckerman ME, Martyna GJ (2004) Long time molecular dynamics for en-
hanced conformational sampling in biomolecular systems. Phys Rev Lett 93:150201.

11. Wales DJ, Scheraga HA (1999) Review: Chemistry—global optimization of clusters,
crystals, and biomolecules. Science 285:1368–1372.

12. Minary P, TuckermanM,Martyna G (2008) Dynamical spatial warping: A novel method
for the conformational sampling of biophysical structure. SIAM J Sci Comput
30:2055–2083.

13. Minary P (2007) Methodologies for Optimization and SAmpling In Computational Stu-
dies (MOSAICS), version 3.8., http://csb.stanford.edu/~minary/MOSAICS.html.

14. Lilley DM (2000) Structures of helical junctions in nucleic acids. Q Rev Biophys
33:109–159.

15. McCreery RL (2004) Molecular electronic junctions. Chem Mater 16:4477–4496.
16. Reddy P, Jang SY, Segalman RA, Majumdar A (2007) Thermoelectricity in molecular

junctions. Science 315:1568–1571.
17. Terrones M, et al. (2002) Molecular junctions by joining single-walled carbon nano-

tubes. Phys Rev Lett 89:075505.

18. Tinoco I, Bustamante C (1999) How RNA folds. J Mol Biol 293:271–281.
19. Westhof E, Masquida B, Jossinet F (2010) Predicting and modeling RNA architecture.

Cold Spring Harb Perspect Biol 3:a003632.
20. Chworos A, et al. (2004) Building programmable jigsaw puzzles with RNA. Science

306:2068–2072.
21. Mao CD, et al. (2008) Hierarchical self-assembly of DNA into symmetric supramolecular

polyhedra. Nature 452:198–201.
22. Ren ZF, Lao JY, Huang JY, Wang DZ (2004) Hierarchical oxide nanostructures. J Mater

Chem 14:770–773.
23. Parisien M, Major F (2008) The MC-Fold and MC-Sym pipeline infers RNA structure

from sequence data. Nature 452:51–55.
24. Bradley P, Misura KM, Baker D (2005) Toward high-resolution de novo structure pre-

diction for small proteins. Science 309:1868–1871.
25. Bailor MH, Sun X, Al-Hashimi HM (2010) Topology links RNA secondary structure with

global conformation, dynamics, and adaptation. Science 327:202–206.
26. Yin P, et al. (2008) Programming DNA tube circumferences. Science 321:824–826.
27. Condon A (2006) Designed DNA molecules: principles and applications of molecular

nanotechnology. Nat Rev Genet 7:565–575.
28. Severcan I, Geary C, Verzemnieks E, Chworos A, Jaeger L (2009) Square-shaped RNA

particles from different RNA folds. Nano Lett 9:1270–1277.
29. Hohng S, et al. (2004) Conformational flexibility of four-way junctions in RNA. J Mol

Biol 336:69–79.
30. Goody TA, Lilley DM, Norman DG (2004) The chirality of a four-way helical junction in

RNA. J Am Chem Soc 126:4126–4127.
31. Shapiro BA, Kasprzak W, Bindewald E, Kim TJ, Jaeger L (2011) Use of RNA structure

flexibility data in nanostructure modeling. Methods 54:239–250.
32. Wang JM, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic

potential (RESP) model perform in calculating conformational energies of organic
and biological molecules? J Comput Chem 21:1049–1074.

33. Tsui V, Case DA (2000) Theory and applications of the generalized Born solvation
model in macromolecular simulations. Biopolymers 56:275–291.

34. Macke TJ, Case DA (1998) Modeling unusual nucleic acid structures. ACS Sym Ser
682:379–393.

Sim et al. PNAS ∣ February 21, 2012 ∣ vol. 109 ∣ no. 8 ∣ 2895

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

SE
E
CO

M
M
EN

TA
RY

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1119918109/-/DCSupplemental/pnas.1119918109_SI.pdf?targetid=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1119918109/-/DCSupplemental/pnas.1119918109_SI.pdf?targetid=SF3
http://csb.stanford.edu/~minary/MOSAICS.html
http://csb.stanford.edu/~minary/MOSAICS.html
http://csb.stanford.edu/~minary/MOSAICS.html
http://csb.stanford.edu/~minary/MOSAICS.html

