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Despite recent advances in both surgery and chemoradiotherapy, mortality rates for advanced cancer remain high. There is a
pressing need for novel therapeutic strategies; one option is systemic oncolytic viral therapy. Intravenous administration affords
the opportunity to treat both the primary tumour and any metastatic deposits simultaneously. Data from clinical trials have
shown that oncolytic viruses can be systemically delivered safely with limited toxicity but the results are equivocal in terms of
efficacy, particularly when delivered with adjuvant chemotherapy. A key reason for this is the rapid clearance of the viruses from
the circulation before they reach their targets. This phenomenon is mainly mediated through neutralising antibodies, complement
activation, antiviral cytokines, and tissue-resident macrophages, as well as nonspecific uptake by other tissues such as the lung, liver
and spleen, and suboptimal viral escape from the vascular compartment. A range of methods have been reported in the literature,
which are designed to overcome these hurdles in preclinical models. In this paper, the potential advantages of, and obstacles to,
successful systemic delivery of oncolytic viruses are discussed. The next stage of development will be the commencement of clinical
trials combining these novel approaches for overcoming the barriers with systemically delivered oncolytic viruses.

1. Introduction

Cancer remains a major health problem and is the 5th
leading cause of death worldwide [1]. There have been many
advances in the last few decades both in surgical care and
chemoradiotherapy regimes. Certainly this has contributed
to improved survival rates for commonly occurring cancers.
However, relapse and disease progression are still all too
common occurrences in modern medical practice. A variety
of novel adjuvant therapies have been developed over the
last decade, and oncolytic viruses have been particularly
promising members of this cohort.

Oncolytic viruses came to medical prominence in the
19th century when coincidental viral infections were ob-
served to cause regression of some forms of haematological
malignancies. Rabies inoculation was also demonstrated to
regress a patient’s advanced cervical carcinoma [2]. A succes-
sion of studies in the 1950s and 60s were unable to establish
oncolytic viral therapy as a viable anti-cancer modality. As
a result, the field remained a medical curiosity until the
advent of genetic engineering in the late 1980s. In the last
decade, there have been rapid advancements in the oncolytic

viral therapy field. Naturally occurring oncolytic viruses
have been identified such as Vaccinia virus, Reovirus, and
Newcastle disease virus. These viruses naturally preferentially
infect tumour cells whilst sparing normal tissue. However,
other viruses have been identified that once attenuated
are also successful oncolytic agents such as herpes simplex
virus type 1 and Adenovirus. These viruses have then been
engineered to be more tumour specific and less pathogenic
to normal tissues [2]. This has been achieved by a variety
of modifications [3]. Herpes simplex virus has had two of
its latency genes deleted (ICP0 & ICP4) and only has one
copy of its virulence factor, γ134.5, remaining. As a further
level of safety its thymidine kinase gene has been deleted.
Deletion of the thymidine kinase gene means that viruses
can only replicate efficiently in cells with upregulation of the
EGFR/Ras signalling pathway, which is commonly the case in
tumour cells [4, 5]. This approach has been widely employed
successfully with Vaccinia virus developed for clinical trial
use. Adenoviruses used in clinical trials have E1B 55 K gene
deleted, which is involved in late viral RNA export and
restricts E1B 55 K-deleted adenovirus replication in normal
primary cells [6]. All of these modifications are designed
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to make the oncolytic viruses more tumour specific since
these gene deletions do not hamper their ability to replicate
in the dysregulated tumour environment; however, they
prevent replication in adjacent or distant normal tissue.

A yet more exciting development over the last decade
has been the incorporation of transgenes into these viruses
allowing expression of a variety of exogenous agents in the
tumour microenvironment raising the very real prospect of
truly immunomodulatory oncolytic viral therapy, and now
the discussion has moved onto which transgenes might be
the most effective [7].

A range of delivery methods have been employed for
these novel agents, chief amongst them has been intratu-
moural delivery. A broad range of oncolytic viruses have
been delivered via intratumoural injection with a measure
of success in treating easily reachable solid tumours [8, 9].
However, death from cancer is often the result of inaccessible
or metastatic disease. In this context, oncolytic viruses
delivered intratumourally rely on viral replication at the
tumour site and then systemic dissemination to the distant
sites. However, this is transient and often ineffective due to
the development of immune responses to the viral infection.

Systemic delivery of oncolytic viruses (OVs) affords the
opportunity to treat both the primary tumour and any overt
or undiagnosed metastatic deposits simultaneously. As a
result, this method of delivery is a very attractive option for
the treatment of patients with advanced/metastatic disease
or patients with inaccessible disease such as those with
pancreatic cancer or brain cancer due to physiological
barriers, such as blood-brain barrier.

2. Clinical Trials

There have been many clinical trials of a variety of OVs
delivered systemically, as summarised in Table 1. Oncolytic
adenovirus was one of the first oncolytic viruses to be
developed and licensed for treatment of cancer [8, 24]. The
first generation of oncolytic adenovirus, ONYX-015 (also
known as dl1520, H101 in China), is a genetically modified
adenovirus with deletion of the 55 kD gene in the E1B region.
Nemunaitis et al. [10] in 2001 performed a dose escalation
study using this agent in patients with advanced carcinoma
with lung metastases. They demonstrated that ONYX-015
was safe to deliver systemically with no toxicity up to doses
of 2× 1013 particles, but the study was not designed for
objective tumour responses. Also commencing in 2001, a
succession of studies delivered ONYX-015 via hepatic artery
infusion for the treatment of metastatic colorectal carcinoma
with liver deposits [11–13]. In the first of these trials, a phase
I dose escalation study, one patient (9%) responded after
combination therapy with conventional chemotherapy and
two patients (18%) had stable disease lasting several months
[11]. In a larger phase II follow-up trial, three patients (11%)
had partial responses, nine (33%) had stable disease, and
eleven (41%) patients had progressive disease [12]. A final
phase II trial by this group demonstrated similar results to
the previous studies with overall median survival of 10.7
months with two patients (8%) having a partial response

and a further eleven (46%) having stable disease [13]. Of
those with stable disease the median survival was prolonged
to nineteen months. In a different study, Small et al. [14]
treated patients with hormone-refractory metastatic prostate
cancer using a single intravenous infusion. Unlike ONYX-
015, the adenovirus (CG7870) in this trial was modified so
that E1A was under the control of the rat probasin promoter
and E1B was under the control of the PSA promoter-
enhancer, thus making it prostate specific. Results from
this trial were disappointing with no complete nor partial
responses, although five patients (22%) did have a 25% to
49% reduction in their serum PSA values.

PV701 is a naturally attenuated Newcastle disease virus,
which has been used systemically in a number of clinical
trials between 2002 and 2007 [15–18]. Three of these
trials were phase I studies in patients with a variety of
advanced/metastatic solid tumours [15, 16, 18]. In the Pecora
et al. [15] study in 2002, 62 patients were assessed for
a tumour response and two patients (3%) had a major
response and 14 patients (23%) had stable disease for 4–30
months. Hotte et al. [18] performed a small phase I study
and although not designed to assess efficacy, four major
(22%) and two minor (11%) responses to the treatment
were observed. A similarly sized trial by Laurie et al. [16]
in 2006 reported stable disease in four patients (25%) for
greater than six months. Freeman et al. [17] investigated
the safety of using Newcastle disease virus in patients with
recurrent glioblastoma multiforme and as with the other
studies the treatment was well tolerated but the efficacy was
again disappointing with only one patient (7%) having a
complete response.

NV1020 is a Herpes Simplex virus type 1 with deletions
of the latency factors ICPO and ICP4, and only one copy
of its virulence factor y134.5. Another element of safety
is the insertion of the α4 promoter to control the HSV-1
TK gene expression, which sensitises the virus to antiviral
drugs such as acyclovir. One phase I trial [19, 20] delivering
NV1020 via hepatic artery infusion in patients with hepatic
metastases from colorectal primaries refractory to first-
line treatment reported seven patients (58%) with stable
disease and two patients showing a partial response. Median
survival in this group was 25 months. Another trial by
Geevarghese et al. [21] in 2010 again delivered NV1020 by
hepatic artery infusion in patients with advanced metastatic
colorectal carcinoma but this time followed by conventional
chemotherapy. After completion of the combined approach,
there was a 68% response rate, with one patient with a partial
response and fourteen patients with stable disease. Median
survival in this study was 11.8 months.

Interrogation of the various clinical trial registration sites
(http://clinicaltrials.gov/, WHO trials register, https://www
.clinicaltrialsregister.eu/, http://www.controlled-trials.com/)
reveals that there are no ongoing nor pending trials sys-
temically delivering Adenovirus, Newcastle disease virus, or
Herpes Simplex virus type 1.

Reolysin is a type 3 Dearing Reovirus in its wild-
type form. Vidal et al. [23] completed the only trial using
systemic delivery in 2008. They performed a phase I dose
escalation study assessing the safety of a variety of doses.

http://clinicaltrials.gov
https://www.clinicaltrialsregister.eu/
http://www.clinicaltrialsregister.eu/
http://www.controlled-trials.com/
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As such they observed no dose-limiting toxicity, and they
further comment that antitumour activity was observed both
radiologically and by tumour markers. However, no objective
radiologic responses were observed in terms of Response
Evaluation Criteria in Solid Tumours. Despite this they
did report that eight patients showed disease stabilisation.
There are also two phase II trials and one phase III trial
that have been registered (NCT01166542, NCT01199263,
NCT01280058). The phase III trial is in patients with
metastatic or recurrent squamous cell carcinoma of the head
and neck, whereas the two phase II trials are in recurrent
ovarian/fallopian tube cancer and recurrent pancreatic can-
cer, respectively. All these trials are still recruiting (Table 2).

JX-594 is a Vaccinia virus based on the Wyeth strain with
a thymidine kinase (TK) deletion and the insertion of human
granulocyte macrophage colony stimulating factor (hGM-
CSF) gene and Lac-Z into the TK-deleted region. These
transgenes are under the control of pE/L and p7.5 promoters,
respectively. Jennerex Biotherapeutics Inc. has reported the
results of one trial using this agent systemically in patients
with unresectable primary hepatocellular carcinoma. They
performed a phase I safety study delivering JX-594 initially
systemically then intratumourally with subsequent sorafenib
treatment. Seven out of nine of their patients were suitable
to be assessed: in six patients (67%), the tumours necrosed,
and of these five patients (56%) had stable disease and one
patient (11%) had a partial response. They have recently
reported the results of another dose escalation study using
JX-594 in patients with metastatic solid tumour disease,
which was refractory to conventional therapy. The treatment
was well tolerated and at higher doses of virus (1 × 107 to
3 × 107 PFU/kg), and they demonstrated that JX-594 can
selectively infect, replicate, and express transgene products in
target tumour tissue whilst sparing normal tissue. Although
the study was not designed for efficacy, one patient had
partial response [22]. Jennerex Biotherapeutics Inc. has two
trials pending with respect to this agent, the details of which
are illustrated in Table 2.

In general these clinical trials have shown that oncolytic
viruses can be delivered systemically with limited toxicity
and latency. However, what they have not shown, and indeed
were not powered to show, is that these agents are efficacious
at treating either the primary tumour or metastatic disease.
There is a complete lack of appropriately powered phase
IIb or phase III trials using OVs delivered systemically,
although there are a few pending for Reovirus. The data
that are available demonstrate that systemically delivered
oncolytic viruses offer only modest improvements, if at all,
over and above conventional second-line therapy. Clearly if
intravenously delivered OVs are to play a part in the future
treatment of advanced cancer, there needs to be dramatic
improvement.

3. Barriers to Systemic Delivery of
Oncolytic Viruses

There are many obstacles to successful systemic delivery of
viruses; host defences limit most oncolytic viruses’ ability

to infect tumours after systemic administration. Blood cells,
complement, antibodies, and antiviral cytokines [25], as well
as nonspecific uptake by other tissues such as the lung, liver
and spleen, tissue-resident macrophages, and additionally
poor virus escape from the vascular compartment [3] are
the main barriers to systemic delivery of oncolytic viruses
(Figure 1). Clearly, in order for this method to be effective,
the virus must persist in the circulation without depletion or
degradation while selectively infecting tumour cells.

4. Neutralising Antibodies

Preexisting immunity is a major problem for systemically
delivered viruses whether this has developed due to the
ubiquitous nature of the virus, previous immunization, or
prior oncolytic viral therapy. Vaccinia virus was used in
the worldwide immunisation program for the eradication
of smallpox and so many people who are now developing
cancer have a preexisting immunity to this OV. Reovirus is
universally present within the environment and as a result
many people have immunity to it [26, 27]. Furthermore,
White et al. [28] have demonstrated that the antibody titre
to Reovirus increases dramatically after systemic delivery
and others have shown that the presence of these antibodies
significantly impairs effective intravenous administration
[29, 30]. One simple strategy for overcoming this problem
has been to sequentially deliver related viruses with different
serotypes or chimeric viruses [31].

Nature has already provided several solutions when
considering the significant hurdles to effective systemic
delivery with regards to Vaccinia virus, which can poten-
tially be delivered systemically [32] since the Extracellular
Enveloped Virus (EEV) form shrouds itself in a host cell-
derived envelope and thus can evade both complement and
neutralising antibodies [33–36]. Indeed, strains of Vaccinia
virus can be engineered that produce more of this immune-
evasive form [37]. However, in the clinical setting, it is the
intracellular mature virion (IMV) form of the virus that
will potentially be injected systemically, and it is this form
that must successfully reach the target tissue before any
EEV form can be produced. IMV—unlike EEV—is highly
immunogenic and is rapidly cleared from the organism if
intravenously delivered.

Clearly methods need to be developed that can overcome
this acquired immunity. One such strategy is the so-called
“Trojan Horse” technique, where cells are taken from the
model organism infected with the OV ex vivo and then
reinfused. Yotnda et al. created transgenic cytotoxic T lym-
phocytes (CTL), which were transduced with the adenoviral
E1 gene under the control of the cell activation-dependent
CD40 ligand promoter. The CTLs were transduced ex vivo
with a conditionally replicating chimera of Adenovirus 5
with the fiber protein of Ad35. This was added as the
Ad35 fiber protein can infect cells through a coxsackie and
adenovirus receptor-(CAR-) independent method this is
required as there is low expression of CAR on CTLs. The
transgenic CTL was specifically targeted, and upon bind-
ing and subsequent activation, Adenovirus was produced.
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Systemic delivery of
viruses

Blood vessel Uptake by lung, liver,
spleen, and other organs

Tumour
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Figure 1: Hurdles of systemic delivery of oncolytic viruses to tumour cells. After intravenous injection, viruses are neutralised by pre-
existing antibodies and complement activation. Oncolytic viruses also interact with blood cells. Sequestration into other organs and the
reticuloendothelial system is a particular problem, often with resulting toxicities. Macrophages in the lung, liver (aka kupffer cells), and
spleen are major players to clear oncolytic viruses after systemic delivery. From the blood stream, viruses have to pass through a mixture of
extracellular matrix and cells (including normal and immune cells) before reaching the tumour. The connective tissue of the tumour matrix
is important in the regulation and creation of the tumour vasculature; the tumour vasculature itself and interstitial pressures are also key
factors involved in the ability of the virus to penetrate the tumour mass.

This occurred since upon activation of the CTL by its
specific antigen, the AKNA transcription factor is transiently
expressed driving CD40 and E1A expression. Thus by this
mechanism, Adenovirus production is tightly linked to CTL
activation by its specific tumour-associated antigen resulting
in a tumour-specific delivery of Adenovirus [38]. Work by
Ilett et al. [39, 40] has shown that dendritic cells loaded
in vitro with Reovirus will “deliver” the virus successfully
to melanoma cells in the presence of neutralising serum.
Furthermore, they have shown that Reoviruses loaded into
mature dendritic cells are able to infect tumour sites
effectively in vivo despite preexisting viral immunity. Other
cells have been used as potential viral carriers in preclinical
models such as cytokine-induced killer (CIK) cells [41],
monocytes [42], endothelial cells [42], mesenchymal stem
cells [43–45], T-cells [40, 46, 47], dendritic cells [40], and
tumour cells [48–50]. Also, stimulated peripheral blood
cells, infected with oncolytic Measles virus, have successfully
infected Raji lymphomas or hepatocellular carcinoma in
the presence of neutralizing antibodies [42]. However, the
“Trojan Horse” strategy may not be effective for brain
tumours, for which some carrier cells are not able to pass
physiological barriers, such as the blood-brain.

Another interesting approach has been developed by
Yotnda et al. [51] in which they encapsulated a conditionally
replicating competent plasmid based on ONYX-015 in a
liposome. They showed that despite circulating Adenovirus

antibodies, the liposome-coated viruses were able to infect
subcutaneous tumours in mice.

Fontanellas et al. [52] have attempted to overcome the
host immunity which develops after repeated administration
of Adenovirus by inhibition of T cells and depletion of
B-cells with anti-CD20 antibody. Although this study was
not targeted at cancer therapy, they demonstrated that this
immunosuppressive regime was successful in facilitating
gene transfer to hepatocytes despite preexisting Adenoviral
immunity.

Another immunosuppressive strategy is to use cyclo-
phosphamide to modulate antiviral immunity in combina-
tion with intravenous Reovirus. This has been evaluated in
a preclinical murine model by Qiao et al. [53], in which
they reported delivery of 1 × 107 plaque-forming units per
milligram of tumour with this regime with only mild toxicity
to the mice, whereas without cyclophosphamide, effective
seeding of the tumour was not achieved. For this particular
regime, cyclophosphamide is often used at a lower dose
and would not result in significant side effects while it is
combined with oncolytic viruses.

5. Complement Activation

Complement activation is an important antiviral mecha-
nism. Vaccinia virus in its EEV form incorporates host
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proteins within its membrane that may well prevent com-
plement activation [36]. Furthermore, it has long been
established that Vaccinia virus secretes a variety of immune-
modulating molecules. One of the major secreted proteins
is Vaccinia complement control protein (VCP), which binds
and inactivates C4b and C3b [54–56] thus inhibiting the
classic and alternative pathways of complement activation.
Furthermore, there is compelling evidence from a variety of
viral infection models that complement activation induces
various elements within the adaptive immune system [57–
62]. Recent work has suggested that VCP dampens viral
antibody responses and reduces the accumulation of CD4+
and CD8+ cells at the site of infection in a complement-
dependent manner [63]. This has led to at least one
group using VCP to perturb complement activation outside
the context of a Vaccinia infection [64] and raises the
possibility of using it in combination with other OVs to block
complement activation.

Herpes simplex virus type 1 has also evolved strategies to
prevent complement activation. HSV-1 secretes glycoprotein
E that acts as an IgG Fc receptor and effectively blocks
both IgG Fc-mediated complement activation and antibody-
dependent cellular cytotoxicity [65]. Also HSV-1 produces
glycoprotein C that binds C3b and is also critical in
preventing C5 activation [66].

Adenovirus activates the complement system by various
mechanisms but recent in vivo pre-clinical data suggests
that this activation can be effectively reduced by shielding
Adenovirus with polyethylene glycol [67]. Another approach
to ameliorate complement activation, undertaken in Aden-
ovirus, is to make the virus express soluble CD59 [68] and
thus prevent deposition of the membrane attack complex.

6. Antiviral Cytokines

Viral infections stimulate a variety of cytokines to be
produced (for review see Randall 2008 [69]). These include
type 1 interferons (IFN), type 2 IFN, and type 3 IFN [70,
71]. Although these molecules have pleiotropic functions,
the main effects are to promote apoptosis in virus-infected
cells and induce cellular resistance to viral infection in
noninfected cells [72]. Additionally, they recruit elements of
the adaptive immune system, such as dendritic cells, leading
to potentially lasting immunity [73]. Most oncolytic viruses
express proteins that block these IFNs [74–76], or their
downstream targets, but the anti-viral response is often still
sufficient to prevent intra-tumoral spread of the OV.

As has been mentioned earlier, the “Trojan horse”
strategy is a potentially powerful technique for delivering
oncolytic viruses systemically. Ahmed et al. demonstrated
that mesenchymal stem cells infected ex vivo with Adenovirus
and then subsequently reinfused had great advantages in
terms of delivery particularly with respect to attenuating the
IFN-gamma response at the tumour site since mesenchymal
stem cells suppress activated T-cells [77]. Another strategy to
overcome the antiviral cytokines is to pretreat with histone
deacetylase inhibitors, which induce epigenetic changes that
blunt antiviral cytokine responses at the tumour sites and

have been shown to greatly improve the effectiveness of OV
therapy [78, 79].

7. Nonspecific Uptake by Other Tissues Such as
the Liver and Spleen

It is known that many viruses are either filtered or taken
up by the lung, liver, or spleen thus reducing systemic
availability. Our group has demonstrated that the spleen
is pivotal in the early clearance of systemically delivered
Vaccinia virus (unpublished data by James Tysome et al.).
Furthermore, up to 90% of Adenovirus type 5 is sequestered
from the blood by Kupffer cells [80] and as a result this acts
as a major obstacle for the systemic delivery of Adenovirus.

With respect to Adenovirus, several lines of investigation
have developed strategies for improving its systemic avail-
ability. Shashkova et al. [25] demonstrated in a pre-clinical
model that pretreatment with warfarin followed by mul-
tiple doses of replication-defective Adenovirus successfully
depleted Kupffer cells and prevented hepatocyte binding,
thus improving the antitumour efficacy of a subsequent
single dose of oncolytic Adenovirus. Another important
factor involved in liver sequestration of Adenovirus 5 is
the binding of its hexon with blood coagulation factor X.
Zhang et al. [31] have developed a hexon-chimeric oncolytic
Adenovirus type 5 that has Adenovirus type 48’s hexon,
which only weakly binds factor X. They have demonstrated
that this chimera has a significantly reduced liver uptake.

8. Suboptimal Viral Escape from the
Vascular Compartment

Adenovirus is known to bind to human erythrocytes [81, 82],
and this reduces its therapeutic availability when delivered
systemically. Furthermore, it is well known that the neovas-
culature within solid tumours is very chaotic and abnormally
leaky with often markedly raised interstitial pressures leading
to reduced viral penetration of the tumour mass. Oncolytic
viruses are known to stabilize tumour vasculature directly
improving tumour penetrance [83]. Interestingly, other work
has shown that the addition of antiangiogenic agents with
oncolytic viruses can further normalise the vasculature and
improve viral delivery in preclinical models [84, 85]. There
is also emerging evidence that blockade of the Hedgehog
signaling pathway can affect tumour vasculature [86]. Thus a
Hedgehog antagonist may prove to be an effective treatment
in combination with a systemically delivered oncolytic virus
or indeed incorporated within one as a transgene. Another
potential agent that could be incorporated into an OV as a
transgene is histidine-rich glycoprotein (HRG) particularly
in the context of repeated systemic administrations of
OV. This protein has been shown to normalise tumour
vasculature through its ability to polarize macrophages from
M2-like TAM phenotype to M1-like tumour inhibitory
phenotype [87].
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9. Other Physical Methods to Enhance
Systemic Delivery

Microbubbles have been developed as a potential method
for enhancing the systemic delivery of a variety of agents
including oncolytic viruses. They were first developed to
help deliver small molecules to target tissues [88–91].
Microbubbles are ultrasound contrast agents that contain
high-molecular weight gases which are less soluble and
do not diffuse easily, and as a result the microbubbles
persist in the circulation for a few minutes passing through
the microcirculation several times [88]. Ultrasound-targeted
destruction of the microbubbles allows focused release of the
oncolytic virus at the tumour site, and a secondary effect is
transient and localised increased cellular permeability which
potentially can improve viral infection of the cancer cells
[92]. This technique has been used in vivo with Adenovirus
successfully delivering the virus to the tumour site in mice
[93, 94]. The technique has not yet been used with other
oncolytic viruses.

10. Tissue-Resident Macrophages

To date, most pre-clinical studies examining systemic deliv-
ery of Vaccinia virus have used nude mice bearing xenograft
tumours. It is now clear that there is a need to assess
systemic delivery in an immune-competent model as host
immunity is a major barrier. Indeed, results from our group
have demonstrated that while Vaccinia virus can effectively
infect tumour cells in nude mice after systemic delivery,
infection of tumour cells cannot be achieved at similar levels
in the immunocompetent model. Concurrently, work in our
group revealed that depletion of macrophages by clodronate
liposomes dramatically enhanced Vaccinia virus infection of
tumours in immunocompetent mice after systemic delivery
(unpublished data by James Tysome et al.). This almost
completely restored the antitumour potency to the level seen
in nude mice. However, clodronate liposomes nonselectively
deplete macrophages and therefore potentially diminish
any beneficial activity in the tumour microenvironment
unrelated to viral clearance. Consequently, this necessitates
a search for a novel, more selective agent that could interfere
transiently with macrophage function and thus enhance the
systemic delivery of Vaccinia virus.

In general, it should be possible to perturb macrophage
function at a variety of stages such as their development,
recruitment/migration, or blocking their phagocytic func-
tion. Several lines of evidence have highlighted an important
role for phosphatidylinositol 3-kinases (PI3K) [95–98] in
macrophage phagocytosis. These observations imply that
PI3K inhibitors may be potential therapeutic agents for
enhancement of systemic delivery of Vaccinia virus, and
other OVs, by blocking macrophage uptake/clearance of the
viruses. One caveat to this is that therapeutic interference in
the PI3K pathway may have to be targeted at individual or
groups of PI3K isoforms [99]. It is known that mammals
have eight isoforms of PI3K, but the specific isoforms of PI3K

involved in macrophage phagocytosis and Vaccinia, or other
OV, uptake have yet to be elucidated.

11. Conclusions

To date, the systemic delivery of oncolytic viruses has
been shown to be safe but not efficacious mainly due to
immunological factors that facilitate rapid clearance of these
agents. There is a range of novel methods that are being
developed at a pre-clinical level to overcome these hurdles
which have been reported to be successful in vivo mainly in
murine models.

However, we need to remember that mouse models are
just that—they are models, which offer opportunities to
investigate the effect of host factors on systemic delivery
of oncolytic virus in vivo. The major problem is that the
host immune responses to some oncolytic viruses in mice
are completely different from those in humans reflecting
their mutual genetic divergence 65 million years ago. Most
importantly, for some oncolytic viruses such as oncolytic
adenovirus, murine models of cancer are suboptimal as
murine tissue and cells do not support adenovirus replica-
tion. Therefore, the information derived from these models
about the host immune response to oncolytic adenovirus is
certainly different and nonrepresentative of the situation in
humans. Given these limitations, the next step will be the
commencement of clinical trials combining these methods
with systemically delivered oncolytic viruses, investigating
whether these strategies work in humans. Several agents
that can enhance the systemic delivery of oncolytic viruses
have been separately used or tested in clinical trials. It
is conceivable that a combination strategy to enhance the
systemic delivery of oncolytic viruses should and will be
employed in the near future. This strategy may provide
an effective therapeutic approach for treatment of primary
tumours, the metastatic deposits, and tumour entities, which
are not easily accessible for conventional therapeutic agents
because of physiological barriers. The blood-brain barrier
is one such obstacle, which it has been demonstrated that
several oncolytic viruses have been able to pass identifying
them as potential candidates in the treatment of brain
tumours.

In conclusion, if an optimal approach to enhance the
systemic delivery of oncolytic viruses can be achieved by
rationally targeting different factors, the outcome for treat-
ment of advanced cancers would be dramatically improved.
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