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Abstract

Encapsulation of drugs within nanocarriers that selectively target malignant cells promises to 

mitigate side effects of conventional chemotherapy and to enable delivery of the unique drug 

combinations needed for personalized medicine. To realize this potential, however, targeted 

nanocarriers must simultaneously overcome multiple challenges, including specificity, stability, 

and a high capacity for disparate cargos. Here we report porous nanoparticle-supported lipid 

bilayers (protocells) that synergistically combine properties of liposomes and nanoporous 

particles. Protocells modified with a targeting peptide that binds to human hepatocellular 

carcinoma (HCC) exhibit a 10,000-fold greater affinity for HCC than for hepatocytes, endothelial 

cells, and immune cells. Furthermore, protocells can be loaded with combinations of therapeutic 

(drugs, siRNA, and toxins) and diagnostic (quantum dots) agents and modified to promote 

endosomal escape and nuclear accumulation of selected cargos. The enormous capacity of the 

high-surface-area nanoporous core combined with the enhanced targeting efficacy enabled by the 

fluid supported lipid bilayer allow a single protocell loaded with a drug cocktail to kill a drug-

resistant HCC cell, representing a 106-fold improvement over comparable liposomes.

Targeted delivery of drugs encapsulated within nanocarriers1-2 can overcome problems 

exhibited by conventional ‘free’ drugs, including poor solubility, limited stability, rapid 

clearing, and, in particular, lack of selectivity, which results in non-specific toxicity to 

normal cells3 and prevents the dose escalation necessary to eradicate malignant cells4. 

Passive targeting schemes rely on the enhanced permeability of tumor vasculature and the 

decreased draining efficacy of tumor lymphatics (the so-called enhanced permeability and 

retention, or EPR, effect)5-6 to direct accumulation of nanocarriers at tumor sites, but the 

lack of cell-specific interactions needed to induce nanocarrier internalization decreases 

therapeutic efficacy and can result in drug expulsion and induction of multiple drug 

resistance (MDR)7. Furthermore, not all tumors exhibit the EPR effect5-6, and passively-

targeted nanocarriers are no more effective at treating blood cancers than free drugs8. 

Selective targeting strategies employ ligands that specifically interact with receptors 

expressed on the cell surface of interest to promote nanocarrier binding and internalization9. 

This strategy requires that receptors are highly over-expressed by cancer cells (104-105 

copies/cell) relative to normal cells in order to maximize selectivity and therapeutic 

efficacy1. Multiple copies of a targeting ligand can be conjugated to the nanocarrier surface 

to promote multivalent binding effects10, which result in enhanced affinity11 and more 

efficient drug delivery through receptor-mediated internalization pathways that help 

circumvent MDR efflux mechanisms12. However, high ligand densities can promote non-

specific interactions with endothelial and other non-cancerous cells and increase 

immunogenicity, resulting in opsonization-mediated clearance of nanocarriers13. Modifying 

the nanocarrier surface with hydrophilic polymers, such as polyethylene glycol (PEG), 

increases circulation times by reducing interactions with serum proteins and mitigating 

uptake by phagocytic cells; such strategies invariably reduce targeting specificity, 

however13. The major challenge for targeted nanocarriers is to simultaneously achieve high 

targeting specificity and delivery efficiency, while avoiding non-specific binding and 

entrapment by the body's defenses.
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Here we report a new class of nanocarrier that synergistically combines features of 

mesoporous silica particles14-19 and liposomes20-22 to address the multiple challenges of 

targeted delivery. Fusion of liposomes to a spherical, high-surface-area, nanoporous silica 

core23-26, followed by modification of the resulting supported lipid bilayer (SLB) with 

multiple copies of a targeting peptide, a fusogenic peptide, and PEG results in a nanocarrier 

construct (the ‘protocell’) that, compared to liposomes, the most extensively-studied class of 

nanocarriers20-22, improves upon capacity, selectivity, and stability and enables targeted 

delivery and controlled release of high concentrations of multicomponent cargos within the 

cytosol of cancer cells (see Fig. 1 and Supplementary Methods for experimental details). 

Specifically, due to its high surface area (> 1000 m2/g), the nanoporous silica core (Fig. 2a) 

possesses a higher capacity for therapeutic and diagnostic agents than similarly-sized 

liposomes. Furthermore, due to substrate-membrane adhesion energy, the core suppresses 

large-scale bilayer fluctuations (see Supplementary Fig. 3a and references 27-32), resulting 

in greater stability than unsupported liposomal bilayers. Interestingly, the nanoporous 

support also results in enhanced lateral bilayer fluidity compared to that of either liposomes 

or SLBs formed on non-porous particles. As we will demonstrate, this synergistic 

combination of materials and biophysical properties enables high delivery efficiency and 

enhanced targeting specificity with a minimal number of targeting ligands, features crucial 

to maximizing specific binding, minimizing non-specific binding, reducing dosage, and 

mitigating immunogenicity.

Protocells are synthesized via liposome fusion to high-surface-area spherical silica particles 

characterized by an isotropic, worm-like nanoporosity (see Fig. 2a and Supplementary Fig. 

1). To demonstrate that SLBs formed on particles with surface-accessible nanopores have 

unique long-range fluidity, we performed temperature-dependent fluorescence recovery after 

photobleaching (FRAP) of DPPC bilayers supported on either a nanoporous or solid (i.e. 

non-porous) silica particle (see Fig. 2b). We observe that fluorescence in the photobleached 

region begins to recover abruptly at 35°C (± 1°C) for the SLB formed on a nanoporous 

particle, as compared to 41°C (± 1°C) for the SLB formed on a solid particle; 41°C is the 

gel-to-fluid transition temperature (Tm) of DPPC, as well as the Tm reported for unilamellar 

DPPC liposomes33. These data indicate that the nanoporous support results in a substantial 

reduction (6°C) in Tm. We reason that this melting point suppression and the resulting 

enhancement in bilayer fluidity, also observed for nanoporous particle-supported DOPC 

bilayers (see Supplementary Fig. 3b), are consequences of unique physical constraints that 

exist at the interface between the bilayer and the nanoporous support. The underlying 3D 

porosity and corresponding periodic roughness of the particle surface, which is composed of 

nanoscopic patches of silica and water, generate localized, nanoscale gradients in adhesion 

and lateral tension that enhance long-range, in-plane fluidity without introducing roughness 

or appreciably changing the SLB's average packing density (determined by us previously via 

neutron reflectivity of lipid bilayers supported on planar nanoporous supports34). This 

conclusion is reinforced by previous experimental and theoretical studies, which found that 

the support suppresses all but nanoscopic, out-of-plane bilayer fluctuations35-36, as well as 

small angle neutron scattering (SANS) data, which indicate that the protocell SLB perfectly 

conforms to the underlying nanoporous silica support (see Supplementary Fig. 3a). 

Furthermore, based on simple thermodynamic arguments, we expect particle curvature to 
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influence bilayer fluidity only for R ≪ (κ/2ε)1/2, where R is the particle radius, κ is the 

bending modulus, and ε is the adhesion energy. Given that κ = 1020 J for DOPC or DPPC 

and ε = 10-3 – 10-5 J/m2, this condition is only met when R ≪ 100-nm, as demonstrated by 

recent studies that report very slight increases in the fluidity of bilayers supported on 

nanowires less than 50-nm in diameter37. Overall, our data provide experimental evidence 

for previous theoretical predictions of the effect that nanoscale topography has on supported 

bilayer conformations32,38. As described below, the enhanced fluidity of nanoporous 

particle-supported lipid bilayers enables protocells modified with a minimal number of 

targeting peptides to selectively bind to and become internalized by cancer cells, while their 

enhanced stability vis-à-vis liposomes prevents drug leakage upon exposure to simulated 

body fluids.

The schematic in Figure 3 depicts the mechanism by which targeted protocells deliver 

encapsulated cargo specifically to a cancer cell of interest; successive steps of binding (step 

1), internalization (step 2), endosomal escape (step 3), and nuclear targeting of desired 

cargo(s) (step 4) are individually described below. Protocells are synthesized via fusion of 

liposomes to spherical, nanoporous silica cores (100-150 nm in diameter after size 

separation; see Fig. 1, Fig. 2a, and Supplementary Fig. 1a and 1d) that are pre-loaded via 

simple immersion in a solution of the desired cargos. Based on optimization studies (see 

Supplementary Fig. 5) that aimed to maximize colloidal stability and cargo retention in 

simulated body fluids and minimize non-specific interactions with serum proteins and non-

cancerous cells, we utilized the following SLB composition in all surface-binding, 

internalization, and cargo delivery experiments: DOPC (or DPPC) with 5 wt% DOPE (or 

DPPE), 30 wt% cholesterol, and 5 wt% 18:1 (or 16:0) PEG-2000 PE (see Fig. 1 and 

Supplementary Fig. 4 for lipid structures). Using a heterobifunctional crosslinker with a 

PEG (n = 24) spacer, SP94 peptides (H2N-SFSIILTPILPLGGC-COOH, identified via 

filamentous phage display to have an affinity for unknown receptor(s) expressed by human 

HCC39) were covalently conjugated to DOPE (or DPPE) moieties in the SLB (see Fig. 1) at 

concentrations ranging from 0.002 wt% (1 peptide per particle, on average) to 5.0 wt% 

(2048 peptides per particle, on average – see Supplementary Table I). 120-nm liposomes 

with identical bilayer compositions were synthesized for comparative purposes.

Dissociation constants (Kd, where Kd is inversely related to affinity) were used to quantify 

surface binding of SP94-targeted protocells and liposomes to HCC cells (Hep3B), normal 

hepatocytes, endothelial cells, and immune cells. All Kd values were determined at 4°C to 

prevent nanocarrier internalization (see Supplementary Fig. 6 and Supplementary Methods). 

Figures 4a and 4b plot Kd values of SP94-targeted protocells and liposomes for Hep3B and 

hepatocytes as a function of average peptide density. Protocells with SLBs composed largely 

of DOPC (in a fluid state at 4°C) have a high specific affinity (Kd < 1 nM) for Hep3B, and, 

over the range of 6 to 2048 peptides per particle, their Kd values are consistently low (0.94 – 

0.08 nM) and relatively independent of peptide density. This trend is not observed for 

DOPC liposomes, where Kd values strongly depend on peptide density and are more than 

10-fold greater than those of comparable DOPC protocells. Similarly, protocells and 

liposomes with bilayers composed of DPPC (in a gel-like state at 4°C) have Kd values that 

are more than 10-fold greater than corresponding DOPC protocells and exhibit a strong 
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dependence on peptide density. We attribute the ability of DOPC protocells to bind to HCC 

with high affinity at low peptide densities to recruitment of multiple SP94 peptides to the 

cancer cell surface. Peptide recruitment is enabled by the fluid SLB and promotes 

multivalent interactions between the protocell and the target cancer cell. For DPPC 

protocells and liposomes, multivalent binding and correspondingly high specific affinity can 

only be realized at high peptide densities because non-fluid bilayers impart kinetic 

constraints on the lateral mobility of targeting peptides. The importance of SLB fluidity in 

promoting the peptide recruitment process is vividly illustrated in Figure 4c. DOPC or 

DPPC liposomes were fused to planar nanoporous substrates (with a 3D pore structure 

comparable to that of the protocell core40-41), and the resulting SLBs were modified with a 

low density (∼0.015 wt%, equivalent to ∼6 peptides per particle) of SP94 peptides. Upon 

addition of Hep3B to the supported planar bilayers, we observed rapid recruitment of SP94 

to the cancer cell surface when peptides were displayed on a fluid SLB but no measurable 

recruitment when peptides were displayed on a non-fluid SLB. This result explains the 100-

fold lower Kd value of DOPC protocells versus DPPC protocells, when both display ∼6 

peptides per particle (see Fig. 4a and the following discussion).

The ability of targeting peptides, when displayed in low densities on a fluid SLB, to be 

recruited and multivalently bind to surface receptor(s) is crucial to enhance specific affinity, 

reduce non-specific interactions, and direct receptor-mediated endocytosis of nanocarriers, 

all of which maximize selective delivery of cargo. Concerning this point, it is important to 

note the influence of bilayer fluidity and stability on the peptide density-dependent affinity 

of SP94-targeted protocells and liposomes for HCC (Fig. 4a) and normal hepatocytes (Fig. 

4b). Non-fluid DPPC protocells and liposomes have a low affinity (Kd ≥ 1 μM) for 

hepatocytes at high SP94 densities. However, their affinity for Hep3B (Kd = ∼ 1 – 100 nM) 

is substantially lower than that of DOPC protocells (Kd < 1 nM) at all peptide densities, and 

their Kd values for Hep3B more rapidly increase with decreasing peptide density. DOPC 

protocells and liposomes have a similar affinity for hepatocytes at all SP94 densities (see 

Fig. 4b), but the Kd values of DOPC liposomes for Hep3B are between 10 and 200 times 

greater than those of DOPC protocells modified with the same number of peptides (see Fig. 

4a). We attribute these observations to the enhanced fluidity of nanoporous particle-

supported DOPC bilayers, which enables multivalent peptide recruitment to the Hep3B 

surface, combined with the ability of the nanoporous core to suppress the large-scale bilayer 

fluctuations that, for DOPC liposomes especially, appear to act as a steric barrier to high 

avidity binding. The result is that DOPC protocells modified with ∼6 copies of the SP94 

peptide have a differential Kd value (HCC/hepatocytes) of 2.25 × 104, which exceeds that of 

SP94-targeted DPPC protocells, DPPC liposomes, and DOPC liposomes by > 102. DOPC 

protocells, additionally, have a 104-fold higher affinity for HCC than for other control cells, 

including human endothelial cells, mononuclear cells, B lymphocytes, and T lymphocytes 

(see Supplementary Fig. 7). Also, the Kd value of DOPC protocells for Hep3B is 200-fold 

lower than that of free SP94 for Hep3B and nearly 50,000-fold lower than that of 

unmodified protocells for Hep3B (see Supplementary Fig. 7). If sub-nanomolar affinity is 

undesirable (e.g. results in reduced tumor penetration), the Kd values of SP94-targeted 

protocells can be precisely modulated by incorporating various amounts of fluid and non-

fluid lipids into the SLB (see Supplementary Fig. 8).
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DOPC protocells are uniquely able to target HCC at low peptide densities, and their 

dramatic differential affinity for HCC translates into selective internalization when the 

experimental temperature is raised from 4°C to 37°C. DOPC protocells modified with a low 

density of SP94 peptides (∼0.015 wt%) are efficiently endocytosed by Hep3B but not by 

hepatocytes, as demonstrated by the representative confocal fluorescence microscopy 

images shown in Figures 4d and 4e; see also Supplementary Table II, which lists average 

numbers of SP94-targeted protocells and liposomes internalized by Hep3B and hepatocytes. 

The efficacy with which targeted protocells are internalized by Hep3B depends largely on 

binding affinity, which can be modulated by changing bilayer fluidity and ligand density. 

However, it also depends on nanocarrier size (see Supplementary Fig. 9), with 50-nm 

protocells being most efficiently internalized (∼1800 particles per cell). This result provides 

evidence that internalization occurs via an endocytotic pathway, given that membrane 

wrapping occurs most efficiently for particles 30-nm to 60-nm in diameter11. Despite this 

observation, we use protocells 100-150-nm in diameter for targeted delivery, since the 

increased cargo capacity, which we measure to be proportional to the cube of the particle 

radius, more than compensates for the slightly reduced internalization efficiency.

To demonstrate that high affinity surface binding followed by receptor-mediated 

endocytosis enables targeted delivery of multicomponent cargos, we loaded four 

fluorescently-labeled surrogates, similar in size and charge to common therapeutic and 

diagnostic agents, within the protocell core. Figure 5a shows simultaneous encapsulation of 

a low molecular weight drug mimic (calcein), a siRNA mimic (dsDNA), a protein toxin 

mimic (RFP), and a model nanoparticle (water-soluble CdSe/ZnS quantum dots), all within 

a fluorescently-labeled porous silica particle that is completely encased in a fluorescently-

labeled DOPC bilayer; a protocell 10-μm in diameter was employed in this experiment to 

enable optical imaging. The confocal slice (z = 5 μm) demonstrates that the multiple cargos 

are uniformly distributed throughout the silica core and that the SLB is intact and coherent.

As illustrated schematically in Figure 3 and confirmed by hyperspectral confocal 

fluorescence microscopy (Figs. 5b - 5d), delivery of encapsulated cargo to HCC using SP94-

targeted DOPC protocells is achieved via the following successive steps: (1) multivalent 

binding of SP94 to HCC surface receptor(s) initiates receptor-mediated endocytosis, an 

internalization pathway that helps to circumvent MDR42. Peptide recruitment to the cell 

surface promotes the multivalent effects that enhance specificity. (2) As evidenced by the 

appearance of punctuate regions containing co-localized lipid, silica, and cargo in Figure 5b, 

protocells are rapidly endocytosed (t½ = 15 minutes) by Hep3B cells and reach a saturating 

intracellular concentration (∼500 protocells per Hep3B cell; see Supplementary Table II) 

within an hour. Given that the SP94 peptide directs protocells to lysosomes upon 

endocytosis by Hep3B (see Supplementary Fig. 10), we further modified the SLB with 

0.500 wt% of a histidine-rich fusogenic peptide (H5WYG, H2N-

GLFHAIAHFIHGGWHGLIHGWYGGGC-COOH43), which, in addition to preventing 

degradation of sensitive cargos in endolysosomes, promotes endosomal escape of protocells 

and cytosolic dispersion of encapsulated cargos (see Supplementary Fig. 11). (3) Endosome 

acidification destabilizes the SLB (see Supplementary Fig. 12), enabling encapsulated cargo 

to diffuse out of the nanoporous core. Additionally, protonation of imidazole moieties (pKa 

= 6.0) in the fusogenic peptide initiates osmotic swelling and membrane destabilization of 
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endosomes via the ‘proton sponge’ mechanism44. As shown in Figure 5c, these events allow 

the four surrogate cargos, along with lipid and silica moieties of the protocell to become 

distributed throughout the cytosol within 4 hours. (4) Cargos modified with a nuclear 

localization sequence45 become concentrated in the nucleus, since the NLS promotes 

transport through the nuclear pore complex. Figure 5d demonstrates that NLS-modified 

calcein and dsDNA become localized in the nuclei of Hep3B cells within 12 hours, whereas 

RFP and quantum dots (not modified with the NLS) remain concentrated in the cytosol.

We have utilized the above sequence of events to deliver high payloads of various cytotoxic 

agents to HCC, including drugs and drug cocktails, siRNA cocktails (see Supplementary 

Figs. 13 and 14), and protein toxins (see Supplementary Figs. 15 and 16) without affecting 

the viability of hepatocytes and other control cells. Figure 6 compares the cargo capacity, 

time-dependent release characteristics, and selective cytotoxicity of SP94-targeted protocells 

and liposomes loaded with the chemotherapeutic drug, doxorubicin (DOX). Protocells, due 

to the high surface area and porosity of their nanoporous cores, have a 1000-fold higher 

capacity for DOX than similarly-sized liposomes (loaded via an ammonium phosphate 

gradient-based approach46) and can be engineered to release nearly 90% of their 

encapsulated DOX in a bioactive form upon endocytosis by HCC (see ‘Effective Capacity’ 

in Fig. 6a, left axis). Additionally, DOPC protocells exhibit long-term stability when 

maintained in a simulated body fluid (pH 7.4) at 37°C, whereas DOPC liposomes leak 90% 

of their encapsulated DOX within 72 hours and have a release profile comparable to that of 

the nanoporous core with no SLB. Thus, the fluid lipids that enable selective targeting at low 

peptide densities cannot be used in liposomal drug formulations, since pre-mature release of 

encapsulated cargo results in undesired toxicity to non-cancerous cells. Stable formulations 

of liposomal drugs require the use of fully saturated, high Tm lipids (e.g. DSPC, Tm = 55°C) 

and high concentrations of cholesterol, which act cooperatively to increase the lipid packing 

density and limit diffusion of the drug across the bilayer47. Even the stability of ‘gold 

standard’ liposomal doxorubicin (e.g. DSPC with 30 wt% cholesterol and 5 wt% PEG) 

remains limited, however, as up to 25% of the drug is released within 72 hours when 

exposed to a simulated body fluid at 37°C (see ‘DSPC Liposomes’ in Fig. 6b).

Exposing protocells to a pH 5.0 buffer, which simulates the endosomal environment and 

destabilizes the SLB (see Supplementary Fig. 12), promotes rapid release of drugs loaded 

within the nanoporous core; DOPC protocells release 99% of their encapsulated DOX 

within 12 hours (see Fig. 6c). DSPC and DOPC liposomes release nearly all of their 

encapsulated DOX upon exposure to a pH 5.0 buffer for 4 hours (see Fig. 6c). Differences in 

absolute cargo capacities must be taken into account, however, to accurately compare the 

drug delivery capabilities of targeted protocells and liposomes. DOPC protocells release 

∼50% of their encapsulated DOX within 4 hours, which corresponds to a drug concentration 

of nearly 500 μM when the protocell concentration is maintained at 1010 particles/mL. In 

comparison, 1010 liposomes release only ∼ 1 μM of DOX in the same period of time. It is 

important to note that the DSPC liposomes referred to in Figure 6 have a similar capacity for 

DOX (∼1.1 μM per 1010 particles, which corresponds to a drug:lipid ratio of 0.113:1) as 

other PEGylated liposomal doxorubicin formulations, including Doxil® (drug:lipid ratio of 

0.125:1)47.
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The unique properties of drug-loaded DOPC protocells modified with a minimal number of 

targeting peptides solve the conundrum of simultaneously achieving high targeting 

specificity, high cytotoxicity to the target cell, and low collateral damage to non-cancerous 

cells. Figure 6a (right axis) plots the number of DOX-loaded DOPC protocells, DSPC 

liposomes, and DOPC liposomes needed to kill 90% of Hep3B (LC90) with an induced 

MDR1 phenotype. We find that 105 fewer DOX-loaded protocells are necessary to achieve 

this LC90 value when compared to DOX-loaded DSPC or DOPC liposomes. Figure 6d (left 

axis) plots the percentage of Hep3B and hepatocytes that remain viable after exposure to 

either free DOX or to DOX encapsulated within DOPC protocells, DSPC liposomes, or 

DOPC liposomes for 24 hours at 37°C; here the total DOX concentration was normalized to 

9.6 μM, which is the concentration of free DOX necessary to kill 90% of MDR1+ Hep3B 

within 24 hours. We observe that DOX-loaded DOPC protocells maintain greater than 90% 

hepatocyte viability, while killing nearly 97% of MDR1+ Hep3B. In comparison, DOX-

loaded DSPC and DOPC liposomes are less efficient at killing HCC and cause significant 

cytotoxicity to non-cancerous cells. Figure 6d (right axis) shows the number of MDR1+ 

Hep3B that remain viable after incubation with a lower concentration (2.3 μM, the LC50 

value of free DOX) of free DOX, DOX-loaded protocells, or DOX-loaded liposomes. This 

data is included to clearly demonstrate the enhanced killing efficacy of DOX-loaded 

protocells when compared to both free DOX and DOX-loaded liposomes, an observation 

that is further supported by the fact that DOX-loaded protocells decrease the LC90 value of 

free DOX (9.6 μM) to ∼145 nM. We attribute the striking differences shown in Figures 6a 

(right axis) and 6d to the 1000-fold higher capacity (Fig. 6a, left axis), the enhanced binding 

affinity (Fig. 4a), and the greater long-term stability (Fig. 6b) of DOPC protocells. These 

factors synergistically combine to provide dramatic improvements in selective cytotoxicity 

of cancer, while limiting undesired toxicity to normal hepatocytes. Protocells can, 

furthermore, be easily loaded with multicomponent cargos by simply soaking the 

nanoporous core in a solution of the desired cargos prior to fusion of the SLB. Figures 6a 

(right axis) and 6d show that, when loaded with a cocktail of DOX, 5-fluorouracil, and 

cisplatin (a chemotherapeutic drug cocktail known to be particularly effective against drug-

resistant HCC48), as few as one SP94-targeted DOPC protocell is sufficient to kill a Hep3B 

cell with an induced MDR1 phenotype while maintaining > 90% hepatocyte viability. 

Similar results cannot be achieved using DOPC and DSPC liposomes, since liposomes 

cannot be loaded with drug cocktails using transmembrane pH gradient-based loading 

strategies. A cocktail of DSPC liposomes that individually encapsulate DOX, 5-FU, or 

cisplatin was employed as a control but failed to substantially improve upon the selective 

cytotoxicity of DOX-loaded DSPC liposomes (see Figs. 6a and 6d).

We have demonstrated that targeted protocells possess the high specificity, enhanced cargo 

capacity, and long-term stability necessary to deliver a variety of chemically disparate 

therapeutic and diagnostic agents to cancer cells with minimal non-specific binding and 

toxicity to normal cells. We have, furthermore, shown that the nanoporous core can be 

adapted to release encapsulated cargo within 24 hours or over the course of several weeks 

(see Supplementary Fig. 2) and that the SLB can be modified with a variety of ligands, 

including peptides, antibodies, and glycoproteins, in order to promote specific affinity for a 

target cell (see section 2 in Supplementary Figures and Legends). To date, no other 
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nanoparticle-based delivery vehicle has been reported that possesses all of these attributes, 

making protocells the first example of a nanocarrier that simultaneously addresses the 

complex requirements of targeted, multicomponent delivery. Perhaps the most striking 

feature of protocells is their ability to deliver high concentrations of diverse cargos and 

‘cocktails’ of chemically disparate components. For example, Supplementary Figures 13 and 

14 report preliminary data regarding the killing efficacy of SP94-targeted protocells loaded 

with a siRNA cocktail that silences expression of epidermal growth factor receptor (EGFR), 

vascular endothelial growth factor receptor-2 (VEGFR-2), and platelet-derived growth 

factor receptor-α (PDGFR-α). Protocells encapsulate 1000-fold more siRNA than similarly-

sized liposomes with the same bilayer composition and, when targeted with the SP94 

peptide, induce apoptosis in 50% of Hep3B within 36 hours without affecting the viability of 

hepatocytes. Another distinctive characteristic of protocells is that the enhanced fluidity and 

stability of the SLB support multivalent peptide recruitment to surface receptors expressed 

by the target cell, which suggests that displaying two or more types of ligands on the 

protocell surface might enable complex binding interactions. We, therefore, expect that 

modifying the protocell SLB with ligand(s) that bind to surface receptor(s) uniquely or over-

expressed by the target cell along with a ligand that promotes internalization (e.g. the 

octaarginine peptide, which stimulates macropinocytosis49) would enable both selective 

targeting and intracellular delivery for cancers where cell-specific receptors are not normally 

endocytosed.

Methods Summary

Nanoporous silica particles were synthesized and characterized as described previously26,50 

and as detailed in Supplementary Figure 1 and the Supplementary Methods section. Particles 

larger than ∼150-nm in diameter were removed via differential centrifugation or size-

exclusion chromatography (see Supplementary Figs. 1a and 1d). Protocells were formed by 

fusing ∼120-nm liposomes to the nanoporous core as reported previously23-25, and the 

composition of the SLB was optimized to reduce non-specific binding associated with 

cationic and, to a lesser extent, anionic lipids51 (see Supplementary Fig. 5). Zwitterionic 

lipids (DOPC or DPPC) with 5 wt% phosphatidylethanolamine (DOPE or DPPE, 

respectively), 5 wt% PEG-2000 PE (18:0 or 16:0, respectively), and 30 wt% cholesterol 

were used in all further studies; PEGylated lipids were incorporated into the liposomes used 

for fusion and are, therefore, expected to be present on both the inner and outer leaflets of 

the SLB. The size of the nanoporous core was also optimized to attain a balance between 

achievable cargo capacity and the rate of protocell internalization (see Supplementary Fig. 

9); nanoparticles 100- to 150-nm in diameter were employed in the delivery of drugs, drug 

cocktails, siRNA cocktails, and protein toxins. The nanoporous cores were soaked in a 10 

mM solution of cargo(s) for 1-12 hours prior to liposome fusion; individual components of 

the surrogate cargo mixture (Fig. 5) and the drug cocktail (Fig. 6) were loaded into 

nanoporous cores simultaneously (as opposed to sequentially). The rates of cargo release 

were optimized by incorporating various percentages of AEPTMS, an amine-containing 

silane, into the sol used to form nanoporous cores (see Supplementary Fig. 2). Particles 

containing 15 wt% AEPTMS were used to deliver drugs and drug cocktails (Fig. 6), while 

particles containing 20 wt% AEPTMS were used to deliver the multicomponent mixture 
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(Fig. 5), the siRNA cocktail (Supplementary Figs. 13 and 14), and diphtheria toxin A-chain 

(Supplementary Figs. 15 and 16).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic illustration of the nanoporous particle-supported lipid bilayer, depicting the 
disparate types of therapeutic and diagnostic agents that can be loaded within the nanoporous 
silica core, as well as the ligands that can be displayed on the surface of the SLB
Targeting and fusogenic peptides are chemically conjugated to phosphatidylethanolamine 

(DOPE or DPPE), present in the SLB at 1-5 wt%, via a heterobifunctional crosslinker with a 

polyethylene glycol (PEG) spacer arm (n = 24). The SLB, composed of either fluid (DOPC) 

or non-fluid (DPPC) zwitterionic lipids with 30 wt% cholesterol, is further modified with 5 

wt% PEG-2000 PE to enhance colloidal stability and decrease non-specific interactions.
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Figure 2. Physical and biophysical characteristics of protocells
(a) Cryogenic TEM image of the protocell, showing the nanoporous core and the SLB (∼4-

nm thick). Particle sizes reflect those naturally generated by the aerosol-assisted self-

assembly process26; particles were separated into a narrow distribution centered around 

∼100-nm for all surface binding, internalization, and delivery experiments (see 

Supplementary Fig. 1). Scale bar = 25 nm. (b) Temperature-dependent FRAP of NBD-

labeled DPPC bilayers (green) supported on nanoporous (○) or solid (●) spherical silica 

particles. Inset: normalized fluorescence recovery in the photobleached region (blue circle) 

was determined by dividing the fluorescence intensity (FI) in region of interest 1 (ROI1) by 

the FI in ROI2 to account for photobleaching that occurred during the recovery period. Scale 

bar = 5 μm.
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Figure 3. Schematic depicting the successive steps of multivalent binding and internalization of 
targeted protocells, followed by endosomal escape and nuclear localization of protocell-
encapsulated cargo
DOPC protocells [1] bind to HCC with high affinity due to recruitment of SP94 targeting 

peptides (magenta) to the cell surface, [2] become internalized via receptor-mediated 

endocytosis, and [3] release their cargo into the cytosol upon endosome acidification and 

protonation of the H5WYG fusogenic peptide (blue). Cargos modified with a NLS are 

transported through the nuclear pore complex and become concentrated in the nucleus [4].
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Figure 4. Selective binding and internalization characteristics of SP94-targeted protocells
(a) and (b) Dissociation constants (Kd) of SP94-targeted protocells and liposomes for 

Hep3B (a) and hepatocytes (b) as a function of the average number of SP94 peptides per 

particle (average SP94 wt% is in parentheses). All surface binding experiments were 

conducted at 4°C to prevent internalization of targeted protocells and liposomes. All error 

bars in (a) and (b) represent 95% confidence intervals (1.96 σ) for n = 5. (c) Recruitment of 

Alexa Fluor® 647-labeled SP94 peptides (white) to the surface of a Hep3B cell when 

peptides are displayed on a NBD-labeled SLB (green) composed of DOPC (○) or DPPC 

(●). These data were collected at 4°C to replicate the conditions used to determine Kd 

values in (a) and (b). Hep3B cells were labeled with CellTracker™ Red CMTPX (red) and 

Hoechst 33342 (blue). Inset scale bars = 5 μm. (d) and (e) Confocal fluorescence 

microscopy images of Hep3B (d) and hepatocytes (e) incubated with SP94-targeted 

protocells for 1 hour at 37°C. Protocells were prepared with Texas Red®-labeled DHPE 

(red) and Alexa Fluor® 647-labeled nanoporous cores (white); cells were stained with 

CellTracker™ Green CMFDA (green) and Hoechst 33342 (blue). Cells shown in (d) and (e) 

are representative of the entire cell population (see Supplementary Table II for population-

based internalization data); single cells were selected to enable 3D imaging. Plan (left and 

center images) and cross-sectional (right image) views of the 3D projection are shown for 

(d), while the plan view alone is shown for (e). For (d), the merged plan view (left) is shown 

without the green channel (center) to enable better visualization of lipid (red) and silica 

(white) moieties. It is important to note that plan views of collapsed projections superimpose 

all slices in the z-direction, giving the misleading appearance of protocells in the nucleus of 
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(d); this is not the case, however, as is evident in an orthogonal view of the projection 

(image not shown). All scale bars = 10 μm.
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Figure 5. Targeted delivery of multicomponent cargos to the cytosol and nuclei of HCC cells
Alexa Fluor® 532-labeled nanoporous silica cores (yellow) were loaded with a 

multicomponent mixture of four surrogate cargos: calcein (green), an Alexa Fluor® 647-

labeled double-stranded DNA oligonucleotide (magenta), red fluorescent protein (orange), 

and CdSe/ZnS quantum dots (teal). Cargos were sealed in the cores via fusion of Texas 

Red®-labeled DOPC liposomes (red) that contained 30 wt% cholesterol and 5 wt% 

PEG-2000 PE, and the resulting SLBs were modified with 0.015 wt% SP94 and 0.500 wt% 

H5WYG. Protocells were incubated with Hep3B cells (labeled with CellTracker™ Violet 
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BMQC and Hoechst 33342) for 15 minutes, 4 hours, or 12 hours (respectively) at 37°C to 

collect the images shown in (b) – (d). (a) Hyperspectral confocal fluorescence microscopy 

slice (z = ∼5 μm) of a 10-μm protocell, demonstrating uniform loading of the nanoporous 

silica core and complete encapsulation of the core and cargos within the SLB. Particles 100 

times larger than those used for all surface-binding, internalization, and delivery studies 

were used in this experiment to enable optical imaging and have a 2.5 × 105-fold higher 

capacity for the multicomponent mixture than protocells (100-150 nm in diameter) used to 

collect the images shown in (b) – (d). Scale bar = 5 μm. (b) – (d): Hyperspectral confocal 

fluorescence microscopy was employed to individually track the lipid and silica moieties of 

DOPC protocells (100-150-nm multimodal core), as well as the four surrogate cargos within 

the cytosol (purple) and nuclei (blue) of Hep3B cells as a function of time. (b) Within 15 

minutes of exposing Hep3B to protocells loaded with the multicomponent mixture, the lipid, 

silica, and cargo moieties have a punctate appearance, indicating that protocells are localized 

within endosomes. (c) Within 4 hours, the H5WYG peptide promotes endosomal escape, 

thereby releasing the lipid, silica, and cargos into the cytosol of the Hep3B cells. (d) Within 

12 hours, calcein and the dsDNA oligonucleotide, both of which are modified with a NLS, 

become concentrated in the nucleus, while the RFP and quantum dots (not modified with a 

NLS) remain largely localized in the cytosol. Protocells used to collect the images shown in 

(b) – (d) have a high capacity for the multicomponent mixture: 1010 protocells encapsulate 

425 μM of calcein, 7.6 μM of the dsDNA oligonucleotide, 945 nM of RFP, and 1.98 × 1013 

quantum dots. Scale bars = 20 μm.
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Figure 6. Cargo capacity, time-dependent release profiles, and concentration-dependent 
cytotoxicity of SP94-targeted protocells and liposomes that encapsulate chemotherapeutic drugs
(a) Cargo capacity and cytotoxicity of protocells and liposomes loaded with doxorubicin 

(DOX). Left axis: the absolute and effective capacities of DOPC protocells, DOPC 

liposomes, and DSPC liposomes for DOX. Absolute capacity is defined as the concentration 

of DOX that can be physically encapsulated within 1010 particles, while effective capacity is 

the concentration of DOX that is released upon endocytosis by Hep3B in a form capable of 

intercalating nuclear DNA. DOPC protocells, when loaded with a cocktail of DOX, 5-

fluorouracil (5-FU), and cisplatin, retain their high absolute and effective capacities. The 

liposome cocktail is composed of equal volumes of DOX-loaded, 5-FU-loaded, and 

cisplatin-loaded DSPC liposomes. DSPC liposomes that encapsulate 5-FU have an absolute 

capacity of 765 nM (per 1010 particles) and were prepared using the reverse-phase 

evaporation method described by B. Elorza, et al.52. DSPC liposomes that encapsulate 

cisplatin have an absolute capacity of 980 nM (per 1010 particles) and were prepared using 

the technique described by T. Peleg-Shulman, et al.53. Right axis: the number of DOX-

loaded protocells or liposomes that must be added to 106 MDR1+ Hep3B cells to kill 90% of 

the cells in the population (LC90) within 24 hours. (b) The time-dependent release of DOX 

from DOPC protocells, DSPC liposomes, DOPC liposomes, and nanoporous silica cores 

when exposed to a simulated body fluid (pH 7.4) at 37°C for 21 days. (c) The time-

dependent release of DOX from DOPC protocells, DSPC liposomes, and DOPC liposomes 
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when exposed to a pH 5 citric acid buffer at 37°C for 12 hours. Acidic conditions, which 

mimic those of the endosome, destabilize the SLB and promote release of DOX from the 

protocell's nanoporous core. (d) Left axis: the number of MDR1+ Hep3B and hepatocytes 

that remain viable after exposure to 9.6 μM of free DOX, protocell-encapsulated DOX, or 

liposomal DOX for 24 hours at 37°C. 9.6 μM is the LC90 value of free DOX when exposed 

to Hep3B with induced MDR (MDR1+ phenotype) and was, therefore, selected as the 

standardized drug concentration. Cells were exposed to drugs and drug-loaded nanocarriers 

for 24 hours since the typical doubling time of HCC is 24-36 hours. Right axis: the number 

of MDR1+ Hep3B that remain viable after exposure to 2.4 μM of free DOX, protocell-

encapsulated DOX, or liposomal DOX for 24 hours at 37°C; 2.4 μM is the LC50 value of 

free DOX. Sytox® Green nucleic acid stain and Alexa Fluor 647®-labeled annexin V were 

used to distinguish viable (double-negative) from non-viable (single- or double-positive) 

cells. All error bars represent 95% confidence intervals (1.96 σ) for n = 3.
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