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Abstract
We introduce an automated and probabilistic method for subject-specific segmentation of sheet-
like fiber tracts. In addition to clustering of trajectories into anatomically meaningful bundles, the
method provides statistics of diffusion measures by establishing point correspondences on the
estimated medial representation of each bundle. We also introduce a new approach for medial
surface generation of sheet-like fiber bundles in order too initialize the proposed clustering
algorithm. Applying the new method to a population study of brain aging on 24 subjects
demonstrates the capabilities and strengths of the algorithm in identifying and visualizing spatial
patterns of group differences.

Introduction
Analysis of diffusion-weighted MR imaging enables in vivo study of human brain integrity
to assess the neurodegeneration and de-myelination of white matter fiber tracts. Developing
computational tools to extract quantitative information from diffusion MRI is, therefore, of
great interest to the clinical community. Early methods for quantitative DTI analysis were
based on the analysis of scalar diffusion measures, either within a region of interest (ROI) or
at each acquired voxel. More recent variants incorporate tractography models to increase
specificity. In [4], ROIs are constructed based on identified tracts, whereas TBSS [11] aligns
subjects based on tract skeletons onto which scalar measures are then projected. However,
these methods still suffer from some limitations. The former does not preserve the local
variations and the latter ignores tract orientation and thus cannot always distinguish between
adjacent tracts.

To overcome these limitations, recent tract-based quantitative methods analyze diffusion
measures for a group of trajectories that belong to the same fiber tract and report the
statistics along a descriptive model (e.g., tract skeleton) [9,7,15]. These methods have two
main components: clustering and model construction. Within a single subject, clustering of
fiber trajectories into groups that correspond to macroscopic fiber tracts (bundles), greatly
improves the quality of tract-based analysis as it eliminates outlier trajectories [7,13]. Across
subjects, clustering ensures that the measurements are performed on the same tract in all
subjects. By building a representative geometric model for each bundle (e.g., a medial
curve), these methods provide a reference system for quantitative analysis of diffusion
measures along the clustered trajectories. Statistics of these measures projected onto the
medial model typically have lower variance across subjects and result in higher statistical
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power compared with voxel-wise analysis. On the other hand, unlike ROI-based methods,
tract-oriented analysis allows studying of local variation along the bundle, as dimensionality
reduction is constrained to the directions perpendicular to the model.

Most tract-based methods proposed so far are limited to tubular-shaped tracts, such as the
cingulum bundle (CB), which can be represented by medial curves [1,9,7]. Although this
one-dimensional model has been successfully used for population studies [9,8], important
tracts such as the body of the corpus callosum (CC) and the rostral part of corticospinal tract
(CST) are not tubular and two-dimensional models are more appropriate for these sheet-like
bundles. A medial representation for sheet-like fiber bundles has previously been proposed
in [15] but that method used manual clustering of fiber trajectories in the group-averaged
tensor data. Our method, by contrast, incorporates automatic clustering of the trajectories
extracted in the subject space.

In this paper, we address problems of probabilistic clustering, geometric modeling, and
quantitative analysis of sheet-like fiber bundles. Clustering is achieved by solving a mixture
model on the distances between fiber trajectories and bundle medial surfaces. A novel
composite distance measure incorporates spatial distance and orientation difference between
trajectories. To our knowledge, this paper is the first to address the probabilistic clustering
of sheet-like bundles. We also present a novel method for generating the medial surface
models of such bundles. Statistics of diffusion measures for a bundle of interest are achieved
by establishing point correspondences between trajectories and medial surface model. We
demonstrate the proposed method by identifying spatial patterns of group differences
between 12 young and 12 elderly subjects in a brain aging study for the right CST (rCST)
and CC as examples of sheet-like tracts.

Method
Our method has three main steps: initial medial surface generation, clustering with surface
evolution, and quantitative analysis, as detailed in the next subsections.

2.1 Orientational Medial Surface Generation
For each sheet-like fiber tract, a medial surface model is constructed as a triangular mesh.
For each vertex in the mesh, we store the orientation of fiber trajectories at that location.
Each vertex is thus described by a tuple (μ, ε), where μ ∈ ℝ3 is its location and ε ∈ ℝ3 is the
local fiber orientation. This orientational medial surface is generated from a binary tract
segmentation in an atlas or in a reference subject and serves as the initial tract model, which
is then evolved by the clustering algorithm.

Yushkevich et al. [14] used a Voronoi skeleton as an initial parametric medial model, which
was then fitted to the binary segmentation of the structure using a deformable model. Here,
we leverage the fact that sheet-like fiber tracts are thin-walled shapes and propose an
alternative approach. The method is based on the chordal axis transform (CAT) [10],
wherein the chordal (i.e., medial) surface of a thin-wall-ed shell structure is estimated by
connecting the mid-planes of its tetrahedral mesh elements [5].

Figure 1 illustrates the steps to estimate the medial surface of CC. Starting with the binary
segmentation (Fig. 1a), which can be supplied by an atlas of fiber tracts [12], we first extract
the surface mesh (Fig. 1b) using the marching cubes algorithm [6]. We then construct a
single-layer volumetric hexahedral mesh (Fig. 1c), using the publicly available IA-FEMesh
[3]. From the single-layer hexahedral mesh, we generate the chordal surface mesh by
connecting the patches of each hexahedron mid-plane. This requires the cut direction to be
determined. For each hexahedron, we first identify the two facing facets that are not shared

Maddah et al. Page 2

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2012 February 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



with other hexahedrons. The cut is the mid plane between these two facets. This leads to a
quadrilateral surface mesh, represented as a QuadEdgeMesh structure [2], which is then
triangulated (Fig. 1d) to facilitate the use of InsightToolkit (ITK) libraries. Optionally, mesh
smoothing and decimation are performed to increase the quality of the chordal mesh.
Finally, we add orientation information at each point on the surface by storing the principal
eigenvector of the diffusion tensor at that point, computed from the atlas or reference subject
tensor volume.

2.2 Trajectory-Surface Distance Measure
Each trajectory (i.e., every streamline produced by tractography) is treated as a uniformly-
sampled 3-D curve, which is mapped from the subject space into the template space, for
example via an affine transformation computed by image registration. Each sample on a
trajectory is represented by its coordinate, r ∈ ℝ3, and its unit-length local orientation e ∈
ℝ3 . A trajectory is a collection of these samples, i.e., (ri, ei) = [(rij, eij)]j=1,…,J(i) where J(i)
is the number of samples on the i-th trajectory. We calculate the trajectory’s local orientation
at each point from its 3-D representation. Alternatively, the principal diffusion eigenvector
can be used as eij, but explicit vector re-orientation is then needed when the trajectories are
mapped into the reference space.

Each cluster (i.e., each fiber bundle) is represented by a medial surface, initially generated as
described in the previous subsection and evolved throughout the algorithm. For each
trajectory, distances to all cluster medial surfaces are calculated. We define the distance
measure between the i-th trajectory and the k-th cluster medial surface representation as a
combination of Euclidean distance and orientation dissimilarity. The Euclidean distance can
be calculated efficiently by constructing a distance map from each cluster medial surface.

For each trajectory-surface pair, the spatial distance measure is ,
where Dk (x) is the value of the Euclidean distance map for cluster k at point x.

Orientation dissimilarity is calculated from the angle between the local orientation of the
trajectory points and the orientation stored for their corresponding points on the medial
surface. The point correspondences are obtained by generating a Voronoi diagram, Lk (x),
for each cluster medial representation, which provides the index of the closest sample on the
k-th cluster medial surface for a given point x in the space. In an ideal point correspondence,
the local orientation of a trajectory point and its closest point on the medial surface should
match. The orientation dissimilarity between trajectory i and cluster medial representation k
is defined as

(1)

where εk,Lk(rij) is the orientation at the corresponding sample on the k-th cluster medial
representation to the point rij, u (·) is the unit step function, and τ is the threshold of
acceptable misorientation, i.e., a user-defined minimum bound on the cosine of the angle
between each closest-point pair. We define the combined dissimilarity measure, dik, between
trajectory i and cluster k as

(2)

where λik is a weight factor to correct for the scale difference between the orientation
dissimilarity and the distance. Here, we simply set λik =dE(ri, μk).
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2.3 Probabilistic Clustering
The trajectories in a subject can be clustered based on their calculated distances to each
cluster medial representation. To this end, we follow the gamma mixture model approach
proposed in [7]1. Assuming that each dik is drawn from a gamma distribution, we estimate
the unknown parametersand the expected value of the hidden data, which indicates the
membership probabilities. Specifically, pik denotes the membership probability of trajectory
i to cluster k.

An Expectation Maximization formulation has been described in detail in [7] for both
maximum-likelihood and maximum-posterior estimation of the mixture-model parameters
given the observed data (i.e., dik). The clustering algorithm is an iterative process that
alternates between parameter estimation and medial surface evolution. At each iteration,
once the EM part has converged, the cluster medial surfaces are updated based on the new
membership probabilities assigned to the trajectories by the EM formulation. Each point on
the medial surface is updated as the weighted average of the corresponding points on the
trajectories that belong to that cluster. Note that due to partial overlap and fiber tractography
errors, it is possible to have trajectories that belong to a given cluster but contain portions
that do not resemble the shape of the tract. To exclude these portions, we use a threshold on
the mis-orientation between the trajectory points and the corresponding points on the medial
surface, i.e.,

(3)

where wikj =1 − u (〈ei,nik(j), εkj〉 − τ). Here, nik (·) is the reverse lookup function on Lk (x),
which returns the closest corresponding sample on the i-th trajectory to a given index on the
medial representation of k-th cluster, and t is the same mis-orientation threshold as in Eq.
(1). After each vertex on the mesh has been updated, the mesh is regularized by a Laplacian
smoothing filter, available in ITK.

The output of the clustering algorithm is the probabilistic assignment of the trajectories to
each cluster and medial representations of all clusters. Outliers are identified as those
trajectories that receive membership likelihood lower than a user-specified threshold from
all clusters, and these are removed from further processing.

To demonstrate the importance of using orientation information in the clustering, Fig. 2
shows the clustering of CC trajectories seeded from the ROI shown in Fig. 1a and the initial
medial surface shown in Fig. 1d. When orientation information is not used (Fig. 2a) some of
the CB trajectories are falsely assigned to the CC cluster. These trajectories are removed as
outliers when orientation information is used (Fig. 2b). In Fig. 2c clustering of the same
input trajectories is performed with three initial centers, adding initial medial curves for the
left and the right CBs. Note that the same EM formulation works for clustering of tubular
bundles given 3D curves as the initial medial representations. Figure 3 shows the clustered
trajectories of rCST in a single subject and compares visually the match between the
variation of FA along the clustered trajectories with the computed average value over the
estimated medial surface.

1http://www.nitrc.org/projects/quantitativedti/
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Experiments and Results
To demonstrate the capabilities of the proposed approach, we performed a preliminary
population study to quantify how the integrity of white matter fiber tracts is affected in
normal aging. Data were acquired from 12 young (age=25.5±4.34) and 12 elderly
(age=77.67±4.94) healthy subjects. Echo-planar DWI data was acquired with slice thickness
of 2.5mm, fifteen unique diffusion directions with b=860s/mm2, along with 5 baseline scans
with b=0. Images were corrected for eddy-current and B0 distortions, and tensors were
estimated using the Teem library.

The labeled tracts in the ICBM atlas2 were mapped to each subject space to seed the
tractography by applying the transformation computed from pairwise affine registration on
the FA volumes of the subject and the atlas using CMTK’s registration tool3. Streamline
tractography was performed using 3D Slicer, seeded from the mapped labeled regions of CC
and rCST (Fig. 4a), and terminated when an FA value less than 0.15, or maximum curvature
of 0.8 was reached. The quantitative parameters of interest, such as FA, were computed at
each point on the trajectories and stored for subsequent analysis. Subject-specific trajectories
were then back-transformed into the atlas space as shown in Fig. 4b. Given the orientational
medial surfaces of CC and rCST as initial surfaces, trajectories were successfully clustered
by the proposed EM algorithm (Fig. 4c) with minimum-likelihood threshold of 0.02 for
outlier rejection and the orientation threshold of τ=0.85 (allowing approximately 30 degrees
mis-orientation). Once the trajectories of all 24 subjects were clustered, for each subject
diffusion measure means were calculated for each vertex on the estimated medial surface of
the bundle. For subject s, let Is be the set of trajectory indices i that originate from that
subject. The weighted mean of the feature of interest for subject s at the j-th point on the k-th

cluster medial surface was calculated as , where fi,nik(j) is the feature
sample at the closest corresponding point on trajectory i. At each point j on every cluster k

we performed group comparisons using the per-subject feature values . For each vertex
on the medial surface, we performed a two-sample Welch’s t-test, assuming unequal
variances, to calculate the statistical significance of the group differences. Since we perform
tractography in subject image space, as opposed to group-average tractography (e.g., [15]),
our method can identify the regions in which a given subject does not contribute to the
statistics as shown in Fig. 3 (regions in gray), adding to the reliability of the quantitative
analysis. The proposed framework also enables the user to control the extent of coherence in
the bundle of interest through probabilistic label assignments from the clustering. Moreover,
in the quantitative analysis step, the user has control over inclusion of contributing points in
the final statistics by adjusting a threshold of acceptable local orientation difference between
the corresponding points. Threshold adjustment capability is important for reliable statistical
analysis, because definition of tracts can be indefinite and subjective. Through visual
inspection as shown in Fig. 4d, the user can be confident of the region on which the derived
statistics are based. Fig. 5 illustrates the final medial representations of body of CC, colored
by the average FA of 12 young subjects (Fig. 5a) and 12 elderly subjects (Fig. 5b). In these
visualizations, one easily observes the local variation of the diffusion measure over the
medial surface and differences between the group means. Figs. 5c and 5d demonstrate the
results of our statistical analysis of FA for CC and CST. In general, we observed lower FA
and higher diffusivity in the elderly group than the young group, which is consistent with
findings in earlier diffusion MRI studies on aging.

2http://www.loni.ucla.edu/ICBM/
3http://nitrc.org/projects/cmtk/
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Conclusion
This work is the extension and generalization of [7] and enables probabilistic clustering and
quantitative analysis of sheet-like tracts, either in a single subject or in a population, while
still supporting tubular bundles. We also propose a novel method for estimating the
orientational medial surface of bundles, which then serve as initial tract models in the
proposed clustering scheme. Here, we start from segmentation provided in the ICBM atlas
but the method is general and could instead have been started from a manually segmented
region in a reference subject. Our experiments demonstrate the strengths of the presented
method in computing the spatial summary statistics of diffusion measures on the medial
representations of white matter fiber tracts.
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Figure 1. Steps to estimate the medial surface of a fiber tract
(a) Binary segmentation of the tract from an atlas [12], (b) surface mesh generation using
marching cubes algorithm, (c) single-layer volumetric hexahedral mesh generation, and (d)
the CAT-based medial surface estimation.
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Figure 2. The importance of orientation information for successful clustering
Clustering of the trajectories seeded from the ROI in Fig. 1a: (a) When orientation
information is not used, some CB trajectories are falsely assigned to CC. (b) These
trajectories are removed as outliers when orientation information is used. (c) Orientation
information enables successful clustering of CB trajectories that are spatially close to CC but
differ in shape.
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Figure 3. Projection of scalar measures onto the cluster medial surface enables reduction in the
dimensionality without loss of spatial information
Shown here is FA distribution in the rCST of a single subject. The clustered trajectories and
the medial surface are shown together in (a) to aid the visual comparison, and separately in
(b) and (c) to reveal more details. Note that we used the corticospinal ROI defined in [12]
which specifies a region substantially smaller than what is spanned by the trajectories.
Portions of the medial surface that do not have any contribution from the trajectories are
shown in gray.
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Figure 4. Group clustering of sheet-like bundles
(a) Body of CC and rCST as defined in the ICBM atlas, (b) trajectories of 24 subjects
transformed to the ICBM space, (c) successful clustering of CC and rCST; trajectories that
belong to other fiber tracts such as CB and pons have been correctly excluded. (d) Portions
of the clustered trajectories which meet the maximum mis-orientation threshold of 30
degrees, and therefore contribute to the final statistics on the estimated medial surfaces.
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Figure 5. Example of group-difference statistics
Each point on the medial representation of CC is colored with the weighted average FA over
all corresponding points on the clustered trajectories for (a) young and (b) elderly group.
The results clearly show the spatial variation of FA along the cluster and lower FA in the
elderly population. The corresponding p-value for the group difference in FA is shown in (c)
for CC and (d) right CST. Red corresponds to regions with high statistical significance (p ≤
0.001).
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