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Introduction

Abstract

Biological invasions are constantly gaining recognition as a significant compo-
nent of global change. The Mediterranean fruit fly (medfly) constitutes an ideal
model species for the study of biological invasions due to its (1) almost cos-
mopolitan geographic distribution, (2) huge economic importance, and (3) well-
documented invasion history. Under a common garden experimental set up, we
tested the hypothesis that medfly populations obtained from six global regions
[Africa (Kenya), Pacific (Hawaii), Central America (Guatemala), South America
(Brazil), Extra—Mediterranean (Portugal), and Mediterranean (Greece)] have di-
verged in important immature life-history traits such as preadult survival and
developmental times. We also tested the hypothesis that medfly populations from
the above regions exhibit different population growth rates. For this purpose, data
on the life history of immatures were combined with adult survival and reproduc-
tion data derived from an earlier study in order to calculate population parameters
for the above six populations. Our results clearly show that medfly populations
worldwide exhibit significant differences in preadult survival, developmental rates
of immatures and important population parameters such as the intrinsic rate of
increase. Therefore, geographically isolated medfly populations may share different
invasion potential, since population growth rates could influence basic population
processes that operate mostly during the last two stages of an invasion event, such as
establishment and spread. Our findings provide valuable information for designing
population suppression measures and managing invasiveness of medfly populations
worldwide.

traits of potential invaders (Kolar and Lodge 2001), features
of ecosystems susceptible to invasion (Levine 2000; France

Biological invasions represent one of the major components
of global change (Vitousek et al. 1996). Globalization in many
aspects of human activity, such as international trade, trans-
port, and travel during the latter half of the 20th century, has
resulted in an increasing number of nonindigenous species
breaching their natural dispersal barriers and becoming es-
tablished in new regions (Perrings et al. 2005). This spread
of exotic species in previously unoccupied areas poses a ma-
jor threat to global biodiversity, ecosystem structure and in-
tegrity, public health and economy (Lodge 1993; Mooney
and Cleland 2001; Pimentel et al. 2001, 2005). As the fre-
quency of biological invasions is constantly increasing, so
does the number of studies attempting to identify biological

and Duffy 2006), and finally the role of biogeographic, eco-
nomic, and demographic factors on the level of invasion
by alien species (Pysek et al. 2010). Furthermore, the eco-
nomic, ecologic, and social impacts of biological invasions
have launched strict legislative efforts to prevent the intro-
duction of invasive alien species (Hulme et al. 2009), and
large-scale eradication projects when prevention is impossi-
ble (Myers et al. 2000; Simberloff 2009).

Despite their negative effects, biological invasions offer
an excellent opportunity for evolutionary studies. Invading
populations of alien species are often subjected to differ-
ent selective regimes than those in their native range. Under
new abiotic and biotic conditions newcomers must survive,
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Invasiveness of Different C. capitata Populations

Figure 1. Male and female Mediterranean fruit flies.

breed successfully, compete with other native species of the
recipient community, avoid natural enemies and predators,
and finally promote further survival and reproduction by ex-
panding their range to suitable habitats (Carroll and Dingle
1996). Evolutionary response to these environmental chal-
lenges often leads to new life-history optima of the invading
population (Yoshida et al. 2007). Therefore, introduced pop-
ulations of an invasive species may ultimately diverge in im-
portant life-history traits as a response to selection pressures
of the novel environment. Divergence of a specific life-history
trait is a complicated biological process depending on the
frequency and the magnitude of invasions events, invasion
history, the force and direction of natural selection, and the
genetic architecture of the invading population (Diamantidis
et al. 2008a).

The Mediterranean fruit fly (medfly), Ceratitis capitata
(Wiedeman) (Fig. 1) holds an impressive record of successful
invasions promoted by the growth and development of inter-
national fruit trade. Medfly is also considered as one of the
most destructive pests in global production of fresh fruit and
vegetables with a host range that exceeds 300 plant species
(Liquido et al. 1991). C. capitata, as other frugivorous tephri-
tids, possesses a typical set of morphological, physiological,
and demographic traits that contribute to its great invasive-
ness (Yuval and Hendrichs 2000). Larval development takes

480

A. D. Diamantidis et al.

place within the sheltered environment of host fruit, min-
imizing thus mortality risk from predators and parasites.
Furthermore, medfly larvae have the ability to recognize, mi-
grate to, and exploit fruit parts of supreme nutritional value
(Zucoloto 1987, 1991). Once their development is complete,
medfly larvae abandon host fruit in order to pupate in small
depths within soil, following a specific daily rhythm that again
reduces predation risk (Yuval and Hendrichs 2000). Medflies
devote a significant amount of their life span seeking and
feeding on highly nutritional substrates, containing protein
and carbohydrates, which contribute to a high reproductive
output. Finally, by analyzing more than 1000 individual re-
productive patterns, Novoseltsev et al. (2004) concluded that
female fecundity during the maturity stage in medfly follows
a constant rate of egg laying.

Taking into consideration these features that ensure biolog-
ical success and adaptation in ecologically diverse habitats, it
is not surprising that medfly is considered as a global invader
that today exhibits an almost cosmopolitan geographic distri-
bution. The genetic structure and affinity among medfly pop-
ulations worldwide has been investigated in a series of detailed
studies conducted during the past 20 years (Malacrida et al.
1998; Bonizzoni et al. 2000; Gasperi et al. 2002; Malacrida
et al. 2007). Despite the fact that the above studies lack con-
crete evidence for the African continent as a whole, they pro-
vide evidence that medfly originates from the sub-Saharan
East region of Africa (Kenya). From its area of origin in cen-
tral east Africa, medfly continued the route of its global inva-
sion by establishing populations progressively to the Iberian
Peninsula and then to other coastal and eastern Mediter-
ranean regions (Gasperi et al. 2002). Medfly invasion to
Australia represents probably a secondary colonization event
from Mediterranean regions (Bonizzoni et al. 2004), whereas
the establishment in many regions of the New World is mainly
attributed to the growth and development in global fruit trade
and increased human mobility (Malacrida et al. 2007).

It is clear that besides its great contribution to aging and
demographic research (Carey 2003), medfly constitutes an
ideal model species for the study of biological invasions due
to its (1) almost cosmopolitan geographic distribution, (2)
huge economic importance, and (3) well documented, by
numerous historical records, invasion history outside the
African core range (De Breme 1842; Fimiani 1989; Carey
1996; Myers et al. 2000). Medfly life history has been thor-
oughlyinvestigated during the past few decades mainly within
the frameworks of population biology and pest management
(Diamantidis et al. 2008, and references therein). Earlier
studies, utilizing mostly laboratory-adapted medfly popu-
lations, and few wild ones from a limited number of geo-
graphic localities, generally assume a rather similar demo-
graphic profile. However, in a series of previous studies we
demonstrated that medfly populations from different global
regions have diverged in (1) important adult life-history traits
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(Diamantidis et al. 2009), (2) sexual signaling patterns
(Diamantidis et al. 2008b), and (3) demographic aspects of
domestication to captivity (Diamantidis et al. 2011). Here
we test the hypothesis that, apart from adult survival and
reproductive patterns, medfly populations from six global
regions have also diverged in vital life-history traits of imma-
tures, such as preadult survival and immature developmental
period. We also test the hypothesis that medfly populations
from the above regions exhibit different population growth
rates. This fact may affect the invasion potential of differ-
ent medfly populations, since population growth rates may
influence basic population processes that operate during in-
vasion events (Liebhold and Tobin 2008). For this purpose,
data on the life history of immatures are combined with adult
survival and reproduction data derived from an earlier study
(Diamantidis et al. 2009) in order to calculate population pa-
rameters for the above six populations as a mean of gaining
insights on the invasive potential of this important pest.

Materials and Methods
Experimental conditions and flies used

The experiments were conducted in the laboratory of Ento-
mology and Agricultural Zoology at the University of Thes-
saly during summer 2005—autumn 2008, at 25 + 1°C, 65 £
5% R.H., and a photoperiod of L14:D10 with photophase
starting at 0700 h. Light was provided by daylight fluores-
cent tubes and by natural light from four windows with the
intensity inside the test cages ranging from 1500 to 2000 Lux.

We tested six medfly populations originating from the fol-
lowing global regions: (1) Extra—Mediterranean (Portugal,
Madeira, lat: 32.74, lon: -16.98, host: Prunus persica), (2)
Africa (Kenya, Nairobi, lat: -1.27, lon: 36.8, host: Coffea ara-
bica), (3) Mediterranean (Greece, Chios, lat: 38.47,lon: 25.99,
host: Citrus aurantium), (4) Central America (Guatemala,
Antigua, lat: 14.56, lon: -90.74, host: C. arabica), (5) Pacific
(Hawaii, Kauai, lat: 22.03, lon: -159.32, host: C. arabica), and
(6) South America (Brazil, Petrolina, lat: -9.40, lon: -40,49,
host: Psidium guajava). Details on the climatic conditions
prevailing in the above regions are given in Diamantidis et al.
(2009). Collections of wild medflies from the above fruit hosts
were made by harvesting infested fruits and allowing the lar-
vae to pupate under laboratory conditions. Pupae retrieved
were transported by a courier agency to our laboratory in
Volos, Greece. A total of 500-100 pupae were introduced
for each medfly population. Since several medfly traits may
be affected by host fruit species (Krainacker et al. 1987), we
reared all six populations for one generation under iden-
tical laboratory conditions and used the F; generation for
the comparison among medfly populations. Rearing of wild
flies was accomplished by keeping adults, after emergence, in
groups of about 100 individuals in wooden, (30 “ 30 30 cm),
wire-screened cages provided with water and a standard adult
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diet consisting of a mixture of yeast hydrolysate, sugar, and
water (YS) at 4:1:5 ratio, respectively. Females were allowed
to oviposit on 5-cm-diameter hollow, plastic hemispheres of
red color (domes) that were artificially punctured with 40-50
evenly distributed holes on their surface. Eggs were deposited
on the inner surface of the dome. Each dome was fitted in a
5-cm-diameter hole made on the cover of a 5.5-cm-diameter
plastic petri dish. Water was placed in the base of the petri dish
in order to maintain humidity levels beneath the dome ade-
quate enough for female oviposition (Boller 1985). A plastic
cup containing 0.5 mL of orange juice was also placed in the
base of the petri dish to stimulate oviposition.

On a previous study, under a common garden experimen-
tal approach, we demonstrated that the above populations
have evolved different survival and reproductive schedules
(Diamantidis et al. 2009). Female cohorts were classified into
either short lived (Guatemala, Hawaii, and Kenya) or long
lived (Portugal, Brazil, and Greece). Males on the other hand
were grouped differently with only the Guatemalan popu-
lation being short lived and the remaining five forming a
group of long-lived populations. Although lifetime fecundity
rates were similar among populations, large differences were
observed in their age-specific reproductive patterns.

Immature traits

Immatures of each medfly population were reared individu-
ally (3 mL of food per individual) on an artificial diet (Boller
1985) in order to avoid density-dependent effects that occur
under crowded conditions. Eggs were collected with artifi-
cial oviposition substrates (domes) offered to the six med-
fly populations for a 2-h period (0700-0900 h). For all six
populations used 200-225 eggs were collected. Eggs were ob-
served at 2-h intervals under a binocular stereoscope (Leica
MZ 12, Leica Microsystems, Wetzlar, Germany. Objectives:
PLAN APO 1.0X, Eyepieces: 10x/21B, Zoom Factor: 0.8-10x)
to determine hatching percentage and duration of embry-
onic development for all populations. Developing larvae and
pupae were observed three times a day to determine the du-
ration of larval and pupal stage, respectively. Overall, the
following data were collected: (1) stage-specific survival (%)
for all stages of immature development, and duration of (2)
embryonic (egg), (3) larval, (4) pupal, and (5) total immature
(egg-adult) development.

Population increase parameters

Adults obtained from the above immatures were used to de-
termine the survival and fecundity patterns of the above six
medfly populations (Diamantidis et al. 2009). These data
(not given here) were combined with those on developmen-
tal times and survival rates of immature stages to compute
population parameters following standard methods (Carey
1982, 1984, 1993; Papadopoulos et al. 2002).
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Statistical analyses

Since normality tests failed for all duration of immature
stages variables (Kolmogorov—Smirnov test used), survival
analysis methodology was followed for all time to event data.
Kaplan—Meier estimators of embryonic (egg), larval, pupal,
and egg to adult developmental periods were calculated for
each population. Pairwise comparisons of the respective peri-
ods between populations were conducted using the log-rank
(Mantel-Cox) test. Effects of population on the duration of
immature stages were assessed using the Cox proportional
hazards model, A(t) = Aq(t) e”X) (1) (Collett 2003). The
estimated Cox model with population as covariate is given
by (1) where 1;(X;) = Bipopulationl; + S,population2; +
Bspopulation3; + Bypopulationd; + Bspopulation5; (la)
is the linear component of the model, A(¢) denotes the
probability of an individual reaching the next stage at any
given time conditional on the observed covariates and Ay (t)
the respective probability for the individual with baseline
characteristics. All covariates are indicator functions with
populationl;, population2;, population3; population4;, and
population5; = 1 when subject originated from Guatemala,
Greece, Brazil, Portugal, and Hawaii, respectively (else 0), so
that Kenya forms the baseline. The covariate effects on egg,
larval, pupal, and egg to adult developmental periods are
measured by the beta coefficients in the linear component of
the model. A c? test was conducted to analyze the survival
rates of immature stages with the application of the Bonfer-
oni correction for multiple per two comparisons (Sokal and
Rohlf 1995). Confidence intervals for population parameters
were estimated based on the 2.5 and 97.5 percentiles of a
bootstrap distribution resampled 1000 times (Davison and
Hinkley 1997). Data analyses were performed using the SPSS
17.0 (SPSS Inc., Chicago, IL, USA) and the R 2.10 version
(www.r-project.org).

Results
Immature traits

Significant differences in immature survival were observed
among the six populations tested for all stages apart from the
pupal one (Table 1). Egg to adult survival ranged between
67.5% (Portugal) and 82.5% (Greece). The lowest mortality
was observed during the pupal stage for all populations ex-
cept for flies originating from Greece (Table 1). Embryonic
and larval survival was greater than 79% for all populations
(Table 1).

The differences among populations in the duration of
preadult stages were significant as well (Table 2). For ex-
ample, the difference in egg to adult developmental time
between Kenyan and the Guatemalan population was almost
three days (Table 2). Immature stage-specific comparisons
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Table 1. Survival of immature stages of six medfly populations reared
on an artificial diet in the laboratory (25°C).

Population Survival (%)
Egg Larvae Pupae Egg-Adult

Kenya 82.3Db 87.8 ab 96.0a 69.5 b
(n=210) (n=173) (n=152)

Portugal 84.0b 84.7 b 94.8 a 67.5b
(n=219) (h=184) (n = 156)

Greece 96.5a 90.6 ab 94.2 a 82.5a
(n = 200) (n=193) (n=175)

Hawaii 89.0 ab 86.5b 99.3a 76.5a
(n = 200) (n=178) (n = 154)

Brazil 793 b 96.0a 95.8a 729 a
(n=222) (n=176) (n=169)

Guatemala 95.0a 86.5b 98.8 a 81.2a
(n=202) (n=192) (n = 166)

c? 46.8274 14.8972 10.3614 12.3906

df 5 5 5 5

P <0.001 0.01 0.06 0.02

Percentages within the same column followed by the same letter are not
statistically significantly different (c? test, P > 0.05, comparisons per two
followed by Bonferoni correction for multiple comparisons).

indicated that medfly populations differed most notably (~
2 days) in larval duration and least in egg duration (Table 2).

The estimation of beta coefficients of the model (1a)
shows a significant effect of population on the dura-
tion of egg (> = 371.8, df = 5, P < 0.001) (see
Appendix S1 in supporting information), larval (x? = 354.8,
df =5, P < 0.001) (see Appendix S2), pupal (x> = 147.7, df =
5, P < 0.001) (see Appendix S3), and egg to adult (c* = 528.3,
df=5, P <0.001) (Table 3) developmental periods. The neg-
ative values of the beta coefficients (Table 3) denote that an
individual originating from Guatemala, Greece, Brazil, Por-
tugal, and Hawaii reached adulthood significantly later than
an individual from Kenya (baseline).

Population increase parameters

Data on the life-history traits of immatures were combined
with earlier ones on adult demography of the above six
populations (Diamantidis et al. 2009) to obtain population
parameters. Our analysis, combining preadult survival and
developmental rates, adult female survival, and female fe-
cundity revealed significant differences among medfly pop-
ulations tested in population growth (r) (Table 4). The
population from Kenya scored the highest intrinsic rate of
increase compared to the remaining five populations. The
highest net reproductive rate was estimated for flies origi-
nating from Greece, followed by the Guatemalan, Hawaiian,
Kenyan, Brazilian, and Portuguese flies, respectively (Table 4).
Mean generation time among all populations tested ranged
between approximately 42 days (Kenya) and 63 days (Greece)

© 2011 The Authors. Published by Blackwell Publishing Ltd.
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Table 2. Mean duration (days) of immature stages (males and females) of six medfly populations reared on an artificial diet in the laboratory (25°C).

Mean developmental time (days + SE)

Population Egg Larvae Pupae Egg-Adult
Kenya 1.96+£0.01c 571+0.02e 9.20+0.03d 16.87 £0.04d
Portugal 1.97 £0.01 ¢ 6.26 +0.06 C 9.92+0.03b 18.16 £0.06 ¢
Greece 2.01+001b 6.98+0.08 b 9.76 £ 0.03 ¢ 18.76 £0.08 b
Hawaii 2.01+001b 592 +0.04d 10.4+£0.04 a 18.32 £ 0.04 bc
Brazil 2.02+001b 6.13+0.04c 9.60 + 0.04 ¢ 17.83 £0.06 ¢
Guatemala 2.25+0.01a 7.43+£0.03a 10.0+0.03b 19.68 £0.04 a

Averages within the same column followed by the same letter are not statistically significantly different (log-rank test; P > 0.05).

Table 3. Variables of the Cox proportional hazards model on the effect
of population (covariate) on the duration of total immature development
(egg—adult) of six medfly populations reared on an artificial diet in the
laboratory (25°C). Individuals from Kenya form the baseline.

Source of variation B SE Exp(B) P

Populations <0.001
Portugal —1.905 0.127 0.149 <0.001
Greece —2.277 0.130 0.103 <0.001
Hawaii —1.708 0.124 0.181 <0.001
Brazil —1.520 0.122 0.219 <0.001
Guatemala —2.989 0.133 0.050 <0.001

with the difference being significant only between the above
two populations. Overall, population parameters in our study
were in general agreement with the ones reported by previ-
ous studies (Carey 1982; Vargas et al. 2000). The expected
stable age distribution of the six populations tested under

stable conditions in the laboratory (25°C) is shown in Figure
2. For all six populations tested, immature stages represent
the largest part of the theoretical stable age distribution (Fig.
2). However, considerable variation among populations was
observed in the expected proportion of adults. For example,
while the expected proportion of adults was ~ 9% for pop-
ulations from Kenya and Guatemala, it reached almost 19%
for the Brazilian one (Fig. 2).

Discussion

Our results demonstrate that medfly populations from six
global regions exhibit differences in important life-history
traits such as preadult survival and duration of immature
stages. This result combined with differences in adult survival
and reproductive schedule (Diamantidis et al. 2009) account
for divergence among populations in key parameters such
as the intrinsic rate of population increase. This fact implies

Table 4. Population parameters of six medfly populations reared on an artificial diet in the laboratory (25°C). 95% confidence intervals were obtained
by bootstrap. Data regarding adult demographic traits were derived from Diamantidis et al. 2009.

Populations
Parameters Kenya Portugal Greece Hawaii Brazil Guatemala
Intrinsic rate of increase (r) 0.122 0.086 0.087 0.110 0.082 0.108

[0.110, 0.151] [0.070, 0.107] [0.074, 0.104] [0.093, 0.125] [0.067,0.095] [0.093, 0.128]
Intrinsic birth rate (b) 0.144 0.108 0.091 0.124 0.103 0.113

[0.121, 0.176] [0.09, 0.141] [0.075, 0.110] [0.107, 0.155] [0.082, 0.131] [0.102, 0.140]
Intrinsic death rate (d) 0.022 0.022 0.004 0.014 0.020 0.005

[0.012, 0.033] [0.014, 0.033] [0.001, 0.009] [0.006, 0.022] [0.010, 0.033] [0.001, 0.009]
Net reproductive rate (Ro) 164.5 135.6 237.8 176.0 142.0 187.9

[129.6, 192.7] [100.8, 170.6] [192.9, 282.9] [142.6, 210.3] [110,8, 173,4] [151.6, 227.8]
Doubling time (DT) 5.66 8.03 7.94 6.29 8.38 6.40

[4.58, 6.26] [6.40, 9.81] [6.63, 9.28] [5.49, 7.40] [7.22, 10.25] [5.37, 7.41]
Mean generation time (T) 41.7 56.8 62.7 46.9 59.9 48.4

[32.2, 47 3] [42.6, 72.5] [50.6, 75.5] [39.4, 56.9] [49.3, 75.8] [39.0, 57.9]
Average age in stable population (&) 6.5 9.2 10.0 7.5 10.2 7.8
Stable percentage (cx) [5.04, 7.77] [6.6,11.2] [8.06, 12.3] [5.6, 8.7] [8.0, 12.7] [6.0, 8.7]
© 2011 The Authors. Published by Blackwell Publishing Ltd. 4383
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Figure 2. Expected stable age distribution 5 )

of six medfly populations reared under
stable conditions in the laboratory (25°C).
Data regarding adult demographic traits
were derived from Diamantidis et al. 2009.

Kenya

that colonizing medfly populations worldwide share different
invasion potential.

Medfly populations in our study differed in the duration
of immature development with the differences being more
pronounced during the larval stage. Kenyan flies reached
adulthood sooner than the other five populations tested.
Divergent selection in ecologically diverse habitats proba-
bly accounts for the observed differences in the duration
of immature development among medfly populations. To
date, little is known of the selective pressures shaping the
life history of immatures in geographically isolated medfly
populations. In a Swedish population of the speckled wood
butterfly Paparge aegeria, the emergence of females in a very
limited time window combined with nonoverlapping gen-
erations select for shorter immature development of males
and protandry, whereas the reverse was observed for a pop-
ulation originating from Madeira, Portugal, probably due to
overlapping generations (Gotthard et al. 1994). Since this
does not seem to apply to the case of medfly, future research
should focus on shedding light on the selective regimes that
shape the life history of immatures in different medfly pop-
ulations. On the other hand, the fact that Kenya represents
the source area of this species, as shown by previous genetic
studies (Malacrida et al. 1998), may explain why flies from
this region complete their preadult development sooner than
the other populations tested. Medfly is expected to have the
highest diversity of pathogens and specialized predators in
this region. Therefore, the evolution of a shorter develop-
mental period, compared to the other populations, may be
part of the species strategy to minimize the risk or evade par-
asitism that operates during larval stage (Papadopoulos and
Katsoyannos 2003).

Phenotypic plasticity in our experiment was eliminated
by design. Recent studies suggest that medfly exhibits some
level of phenotypic plasticity in terms of thermal tolerance
(Nyamukondiwa et al. 2010; Nyamukondiwa and Terblanche
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2010). However, in these studies the experimental protocols
used included medfly acclimation in temperatures that, in
many cases, are extreme for medfly survival (=5°C, 41°C).
Exposure in such extreme temperature regimes is indeed ex-
pected to induce high levels of phenotypic plasticity. How-
ever, in our study all six medfly populations were maintained
under stable temperature (25 & 1°C) that is considered very
close to optimal growth conditions, not only for medfly, but
for other tephritid species as well. Therefore, medfly popula-
tions under such optimal conditions are expected to exhibit
low levels of phenotypic plasticity compared to extreme envi-
ronmental regimes. In addition, the genetic differentiation of
geographically isolated medfly populations has been demon-
strated in a series of previous studies (Malacrida et al. 2007
and references therein). This genetic differentiation provides
strong indication that differences among medfly populations
worldwide in life-history traits, as observed in our study,
represent evolutionary responses. Furthermore, by using the
same common garden experimental approach (identical con-
ditions for all medfly populations) as in the current study, we
have demonstrated that medfly populations worldwide ex-
hibit significant differences in important life-history traits
such as: (a) sexual signaling (Diamantidis et al. 2008b), (b)
adult survival and reproduction patterns (Diamantidis et al.
2009), and (c) domestication in the laboratory (Diamantidis
et al. 2011). Therefore, we believe that the observed differ-
ences among medfly populations in our study represent evo-
lutionary responses as a result of adaptation to ecologically
diverse habitats.

Biological invasions are spatially and temporally dynamic
processes that can be divided into three distinct phases: (a)
arrival, (b) establishment, and (c) spread (Liebhold and
Tobin 2008). During the arrival phase, medfly life-history
traits, such as larval developmental duration and mortality
may affect propagule size and therefore the outcome of in-
vasion. During the critical period of establishment, invading

© 2011 The Authors. Published by Blackwell Publishing Ltd.
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medfly populations are affected by both demographic (Engen
et al. 1998; Sax and Brown 2000) and environmental stochas-
ticity that may ultimately lead small founder populations to
extinction due to negative growth rates (Simberloff 1988).
These negative effects may be intensified when combined
with the “Allee effect,” which is the minimum density of a
population that assures its persistence in a specific area. The
“Allee effect” is directly connected with propagule pressure
and its role during the establishment phase of biological in-
vasions is receiving increased attention (Taylor and Hastings
2005). It is clear that colonizing medfly populations world-
wide face the probability of extinction during their establish-
ment into new regions. Despite the fact that establishment
may require a different combination of life-history traits de-
pending on the nature of the invaded habitat (e.g., human-
disturbed vs. less altered) (Delatte et al. 2009), and traits
necessary for establishment may vary across invading insect
species (Sakai et al. 2001), it is widely recognized that rapid
demographic growth promotes the persistence of an invad-
ing population in a novel environment (Kneitel and Chase
2004). For example, Crawley et al. (1986) found that insect
species with the highest intrinsic growth rates, introduced as
biological control agents, exhibited a higher probability of
successful establishment. Therefore, the differential demo-
graphic growth potential of different medfly populations, as
observed in our study, may strongly affect their overall inva-
sion dynamics by affecting the probability of extinction dur-
ing the critical establishment phase of biological invasions.

Different growth rates among invading populations may
also affect their spread during the last phase of an invasion.
Invasive populations may follow different modes of spread.
For example, in the case of continuous spread, a colonizing
population moves along its front often following a simple dif-
fusion model, with the intrinsic rate of population increase
representing a critical factor regulating the rate of continu-
ous range expansion into neighboring regions (Andow et al.
1990). As a consequence, medfly populations with different
growth rates may also differ in their ability to spread into pre-
viously unoccupied areas. On the other hand, spread of invad-
ing insect populations may follow a more complicated pattern
of spread, with individuals being transferred over long-range
distances mediated mainly by anthropogenic activities. This
results in the formation of isolated colonies that ultimately
unite with the main population front (Liebhold and Tobin
2008). In this case population growth rates may play a cru-
cial role in the rate of dispersal, since both isolated colonies
formed by long-range dispersal and populations standing on
the boundaries of the population front are generally of low
density and therefore subjected to stochasticity and Allee ef-
fects as in the establishment phase of biological invasions
(Keitt et al. 2001; Taylor and Hastings 2005). Rapid demo-
graphic growth may promote the rate of spread by coun-
teracting such negative effects, while populations with low
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growth rates may face extinction resulting to a decelerating
speed of invasion since the spread phase may have to “start
from scratch” (Sakai et al. 2001). Hence, invading medfly
populations with differential growth rates may also exhibit
significant variation in invasion dynamics due to differences
in spread rates.

However, it should be borne in mind that a high intrinsic
rate of increase alone cannot define the outcome of inva-
sion (Lawton et al. 1986). In an elegant study involving a
comparison of life-history traits among endemic and succes-
sive invading fruit fly species in La Reunion Island, Duyck
et al. (2007) concluded that traits crucial for the success of
invasion were the ones that favored competition rather than
colonization. Another factor widely recognized as impor-
tant, especially during the spread phase of invasion, is habitat
variability. By thoroughly analyzing medfly capture data in
California, Carey (1996) concluded that mountain topogra-
phy, valleys, rivers, and shorelines may channel dispersal of
an established population through paths of least resistance.
Therefore, successful invasion depends not only on the life
history of the invader, but also on climatic, geographical, bi-
ological, and community barriers such as biodiversity and
ecosystems resistance (Harmon et al. 2009).

Our results show that the population from Kenya exhibits
the highest growth rate among the other populations tested,
as indicated by its intrinsic rate of increase under stable con-
ditions in the laboratory. Taking into consideration the loss
of genetic variability, the establishment of an insect colony
to the laboratory bears resemblance to the early phases of
an invasion event. In the latter case, a significant loss of ge-
netic variability may arise as the result of a limited number
of invading individuals (founders), and the small population
size in the following few generations (Dlugosch and Parker
2008). On the other hand, bottleneck effects that operate
during the initial stages of artificial rearing in the laboratory
may drastically decrease the genetic variability of the pop-
ulation (Miyatake 1998; Hoffmann et al. 2001). Adaptation
to a novel environment may be accomplished with very low
genetic variability (Zayed et al. 2007). However, it is widely
recognized that the adaptive ability of a population to a novel
environment is promoted by high within-population genetic
variability, which is related to both presence of multiple al-
leles and different allele combinations per locus (Ciosi et al.
2008). Mean expected heterozygosity represents also an im-
portant factor during adaptation processes since it affects the
dynamics of individuals to produce descendants with high
genetic variability (Futuyma 2005). There is mounting ev-
idence that populations derived from Kenya are the most
highly polymorphic in both terms of mean number of alle-
les per locus and mean expected heterozygosity (Malacrida
et al. 1998; Bonizzoni et al. 2000; Gasperi et al. 2002). There-
fore, it seems plausible that the highest growth rate of the
ancestral Kenyan population in stable laboratory conditions
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stems from its sufficient genetic load that provides flexibility
for better adaptation to captivity. However, this fact does not
necessarily confers to the Kenyan population an invasiveness
advantage over the other five populations, since the labo-
ratory represents just a single environment that is slightly
representative of the whole gamut of ecosystems that could
be potentially invaded by medfly.

In conclusion, our results clearly demonstrate that, apart
from divergence in adult survival and reproductive patterns
(Diamantidis et al. 2009), medfly populations worldwide ex-
hibit also significant differences in preadult survival, devel-
opmental rates of immatures and important populations pa-
rameters such as the intrinsic rate of increase. This fact may
affect invasion dynamics of invading medfly populations,
since population growth rates may influence basic popula-
tion processes that operate mostly during the last two stages
of an invasion event, such as establishment and spread. How-
ever, it should be noted that our results represent adaptation
under standardized conditions in the laboratory. Thus, it
would be of great interest to test the demographic response
of geographically isolated medfly populations under extreme
or marginal conditions to determine if such differences in
their invasive potential still exist. Such information may
be valuable in designing population suppression measures
and managing invasiveness of invading medfly populations
worldwide.
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