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Abstract
The ability to localize visual objects is a fundamental component of human behavior and requires
the integration of position information from object components. The retinal eccentricity of a
stimulus and the locus of spatial attention can affect object localization, but it is unclear whether
these factors alter the global localization of the object, the localization of object components, or
both. We used psychophysical methods in humans to quantify behavioral responses in a centroid
estimation task. Subjects located the centroid of briefly presented random dot patterns (RDPs). A
peripheral cue was used to bias attention towards one side of the display. We found that although
subjects were able to localize centroid positions reliably, they typically had a bias towards the
fovea and a shift towards the locus of attention. We compared quantitative models that explain
these effects either as biased global localization of the RDPs or as anisotropic integration of
weighted dot component positions. A model that allowed retinal eccentricity and spatial attention
to alter the weights assigned to individual dot positions best explained subjects’ performance.
These results show that global position perception depends on both the retinal eccentricity of
stimulus components and their positions relative to the current locus of attention.

Introduction
In the natural course of a day, humans localize complex visual objects by integrating
position information from object components, such as edges, contours, and other structural
elements. Often, this localization is accurate, for instance when subjects make eye
movements that are reliably close to the centroid (i.e., center of mass) of an extended
stimulus (He & Kowler, 1991; Kowler & Blaser, 1995). However, accurate localization of
visual targets is not a ubiquitous finding. Rather, localization of visual objects can be biased
by many aspects of the relevant stimulus, including its spatial configuration (Denisova,
Singh, & Kowler, 2006; Landy, 1993; Landy & Kojima, 2001; McGowan, Kowler, Sharma,
& Chubb, 1998; Morgan, Hole, & Glennerster, 1990; Rose & Halpern, 1992; Vishwanath &
Kowler, 2003), its motion trajectory (Krekelberg, 2001; Krekelberg & Lappe, 2001), and
retinal eccentricity (Müsseler, van der Heijden, Mahmud, Deubel, & Ertsey, 1999).

When targets are presented briefly in the periphery, localization is biased in the direction of
the fovea. This bias is evident for both single point stimuli (Mateeff & Gourevich, 1983;
O’Regan, 1984; van der Heijden, van der Geest, de Leeuw, Krikke, & Musseler, 1999) and
for spatially extended stimuli (Stork, Musseler, & van der Heijden, 2010). Notably, this bias
increases in magnitude for more spatially extended stimuli (Müsseler, van der Heijden,
Mahmud, Deubel, & Ertsey, 1999; Ploner, Ostendorf, & Dick, 2004; but see Kowler &
Blaser, 1995), and the gradient of this effect across increasing eccentricities is steeper for
spatially extended stimuli compared to single point stimuli (Müsseler et al.,1999). This
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suggests that localization of an object may result from an imperfect eccentricity-dependent
integration of its component parts. However, McGowan and colleagues (1998) examined
differential weighting of the components in a random dot pattern (RDP) and failed to find
any significant differences in the utilization of dot components based on retinal eccentricity
or relative to target center. In contrast, Drew and colleagues (2010) showed differential
weighting of target components based on the distance relative to the target center. In that
study, however, the effects of retinal eccentricity were not investigated. A key aim of our
study was to understand and quantify the role of retinal eccentricity in this potentially
imperfect spatial integration process.

In addition to the aforementioned stimulus variables, spatial localization is also affected by
internal variables such as visual spatial attention. Directed attention can improve the
accuracy (Bocianski, Müsseler, & Erlhagen, 2010; Fortenbaugh & Robertson, 2011) and
reliability (Prinzmetal, Amiri, Allen, & Edwards, 1998) of localization but can also
introduce systematic errors (Kosovicheva, Fortenbaugh, & Robertson, 2010; Suzuki &
Cavanagh, 1997; Tsal & Bareket, 1999). Since these studies measured performance only for
single targets, how spatial attention alters the integration of information when judging the
location of a spatially extended object remains unknown. Previous studies have focused on
subjects’ abilities to select specific target components using feature-based attention. These
studies have shown that attention can be used to select features of a display and make
reliable localization judgments on a subset of components (Cohen, Schnitzer, Gersch, Singh,
& Kowler, 2007; Drew, Chubb, & Sperling, 2010). To our knowledge, however, there are no
behavioral studies that have determined whether spatial attention influences object
localization before or after integration of target components. Therefore, the second aim of
our study was to understand how spatial attention modulates the integration of position
information specifically in target localization and determine whether the effects of spatial
attention influence the components of a target or the localization of the target as a whole.

To better understand position perception, integration, and the roles of retinal eccentricity and
spatial attention in these processes, we developed quantitative, descriptive models of visual
target localization. We then used these models to analyze behavioral data from an
experiment in which human observers localized the centroid of RDPs. While an RDP is not
a natural stimulus, it has a complexity between that of single dots and true extended objects,
and is well suited to study spatial integration in a quantitative manner. Our results showed
that subjects indicated the centroid of the RDPs reliably, but also had systematic,
eccentricity-dependent biases in this localization process. Moreover, exogenous attention
introduced its own bias and shifted the centroid toward the locus of attention. Our modeling
results showed that both the effect of eccentricity and the effect of attention are explained
most parsimoniously by assuming that the location of an extended object is determined as
the weighted sum of its components. Each subject assigned weights to the components that
varied with eccentricity; either higher or lower weights near the fovea. In addition, an
exogenous cue led to a local increase in weights combined with an overall gradient toward
the hemifield with the cue. This is consistent with the idea that attention acts on a
representation of component positions (i.e., the dots), and not only on the outcome of the
spatial integration process (i.e., a centroid estimate). Taken together these data suggest that
spatial integration and its attentional modulation may take place in early visual
representations.

Methods
This study consisted of two main experiments. All experimental conditions assessed
centroid estimation, but each focused on a specific factor that could influence the final
centroid determination: retinal eccentricity (Experiment 1 – Bilateral-Cue), lateralized
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spatial attention (Experiment 1 – Unilateral-Cue), and motor-response bias (Experiment 2).
All experimental procedures were approved by the local Institutional Review Board and
followed the National Institute of Health’s guidelines for the ethical treatment of human
subjects. All subjects reported normal or corrected-to-normal vision and provided written
informed consent.

Participants
Nine subjects participated in Experiment 1. We excluded two subjects because they could
not complete the minimum number of trials (see Experimental Procedure) or could not
perform the task. The remaining seven subjects ranged in age from 18 to 34 years. Two
subjects were male and two subjects reported being left-handed. Subject 1 was an author
(JMW); all remaining subjects were naïve to the purpose of the experiment.

Four subjects participated in Experiment 2. Subjects ranged in age from 21 to 34 years. One
subject was female. All subjects were right-handed and two out of the four subjects also
completed Experiment 1. All four subjects were naïve to the purpose of the experiment.

Apparatus
Stimuli appeared on a Sony FD Trinitron (GDM-C520) CRT monitor at a refresh rate of 120
Hz using custom software, Neurostim (http://neurostim.sourceforge.net), and viewed from a
distance of 57 cm. The display measured 40° (width) by 30° (height) and had a resolution of
1024 × 768 pixels. A head-mounted Eyelink II eye tracker system (SR Research,
Mississauga, Canada) recorded eye movements by tracking the pupils of both eyes at a
sample rate of 500 Hz. Individually molded bite bars were used to reduce head movement.

Visual Stimuli
The main stimulus was a random dot pattern (RDP) consisting of 25 small white (50 cd/m2)
squares (0.16° × 0.16°) on a black (0.4 cd/m2) background. On each trial, 25 unique dot
positions were selected randomly from a grid of 712 possible dot positions within a radius of
15° from the fixation point. Each potential dot location in the grid was 1° away from its
nearest horizontal and vertical neighbor. In addition, no dots appeared within a 2° × 2°
square region surrounding the fixation point (Figure 1A). The actual centroids of the RDPs
across all trials approximated a normal distribution with a horizontal and vertical mean of 0°
and a standard deviation of 1.5°.

A green square outline (1° × 1°; line width: 0.12°) appeared at an eccentricity of 7.5° along
the horizontal meridian. This non-informative cue appeared to both the left and right of
fixation (Bilateral-Cue) or only on one side of the visual display (Unilateral-Cue) to cue
attention exogenously. The central fixation stimulus was a small green square (0.12° ×
0.12°), which remained visible for the duration of the trial at the center of the display.

Eye Tracking
Subjects were required to maintain fixation within a 3° × 3° square at the center of the
display for the duration of each trial, including the response epochs. Trials in which subjects
failed to fixate appropriately were terminated immediately and repeated randomly at a later
time within the block.

Trial Presentation
Each block consisted of 200 trials. Blocks of Bilateral-Cue trials were interleaved with
blocks of Unilateral-Cue trials within a session. Blocks of Unilateral-Cue trials contained
both Left-Cue and Right-Cue trials presented randomly within the block. Subjects
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completed blocks of trials from Experiment 2 in separate sessions. Typically, subjects
completed three blocks of experimental trials per hour. All subjects received between one to
two hours (three to six blocks) of training on the task prior to completing experimental trials.
Data collected during the training blocks were not analyzed.

Experimental Procedure
Experiment 1

The experimental task was to estimate the centroid of an RDP (Figure 1B). In the Unilateral-
Cue conditions, we examined the influence of exogenous attention on performance, and
cued subjects to one side of the visual display; either to the left (Left-Cue condition) or right
(Right-Cue condition) of fixation. The goal of the Bilateral-Cue condition in Experiment 1
was to assess effects of retinal eccentricity on centroid estimation. Therefore, we balanced
the allocation of exogenous attention across both sides of the visual display by presenting
non-informative cues simultaneously to the left and right of fixation. We presented bilateral
cues instead of no cues to keep the visual display and the temporal structure of the task as
similar as possible between the Unilateral- and Bilateral-Cue conditions.

Each trial began when the subject fixated the central fixation point. After a variable delay,
the attentional cue(s) appeared for 67 ms (8 frames) just prior (134 ms) to the appearance of
the RDP. This cue-target interstimulus interval was chosen to maximize effects of
exogenous attention on behavioral performance (Cheal & Lyon, 1991; Muller & Rabbitt,
1989). The RDP remained visible for 75 ms (9 frames). A cursor (white cross-hair; 50 cd/
m2, 0.51°) appeared at fixation 750 ms after target offset. Subjects were instructed to locate
the centroid, i.e. average position, of all dots presented on a trial by moving a cursor to the
centroid using a computer mouse in their right hand (regardless of handedness) and then
clicking the left button.

All subjects completed a minimum of 600 experimental trials for the Bilateral-Cue condition
and 800 experimental trials for each of the Left- and Right-Cue conditions.

Experiment 2
Experiment 2 re-examined centroid estimates using a different mode of behavioral response
(i.e., two-alternative forced choice). The procedure was identical to the Unilateral-Cue trials
in Experiment 1 except that instead of a cursor appearing 750 ms after target offset, a green
probe line extending the full height of the display (0.04° width) appeared briefly (250 ms) to
the left or right of the actual centroid of the RDP (offsets: −4°, −2.5°, −1.5°, −0.75°,
−0.25°, 0.25°, 0.75°, 1.5°, 2.5°, 4°). Subjects indicated whether the perceived centroid was
to the left or right of the probe line (Question A) by pressing the left or right arrow keys on
each trial, respectively. To control for the possibility that the cue condition biased the
subject’s key choice rather than their perception per se, subjects also completed blocks in
which they were instructed to make the reverse comparison; that is, whether the probe was
to the left or right of the perceived centroid (Question B). Subjects first completed all blocks
answering one question and then completed all blocks answering the other question. The
order was counterbalanced across subjects. All subjects completed a minimum of 600 trials
per instruction condition.

Data Analysis
Experiment 1

We conceptualize the estimation of centroids by human observers as a three-stage, weighted
integration process in which the individual dot representations are first combined and then
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transformed into a behavioral response (Figure 2). The actual centroid of an RDP is the
mean of the horizontal and vertical dot coordinates. Human centroid estimates are inevitably
imperfect and include some degree of variable error (noise) as well as constant error (bias).

These sources of error could arise either by altering the dot representations themselves (early
bias) or by altering the output of the integration process (late bias).To gain insight into the
computations that underlie the subjects’ centroid estimates, we developed quantitative
models that describe the subject’s response as a function of the actual centroid position
(Equation 1) or in terms of a weighted integration of individual dot positions (Equations
2-5). In the following sections, we show only the equations for the horizontal (X)
coordinates, but analogous equations were used for the vertical (Y) coordinates.

Model Descriptions—Bilateral-Cue Condition

Late Bias Model: The Late Bias model assumes that subjects integrate the dot
representations veridically, but the output of the integrator is perturbed by a linear,
eccentricity-dependent bias and/or constant bias. Accordingly, the model computes the
perceived centroid  as a simple function of the actual centroid, cx. Here, we consider a
simple linear bias according to

(1)

where βx is a slope parameter that quantifies the magnitude of the eccentricity-dependent
horizontal bias and εx is an error term along the horizontal dimension. The value of β in the
fitted model for a given subject indicates whether the observer had an overall linear
foveofugal (β > 1) or foveopetal (β < 1) bias in their centroid estimates relative to the point
of fixation. If β = 1, then there was no overall linear bias due to the retinal eccentricity of the
centroid position. The parameter ε represents a constant bias in the centroid estimates across
all trials regardless of the position of the actual centroid. We determined a separate β and ε
for the vertical coordinates.

Although we report here only a linear late bias model, we did consider the possibility of
other late bias models in which the perceived centroid is computed as a non-linear function
of the actual centroid position (e.g. a sigmoid). Qualitative assessments of the relationship
between perceived and actual centroids suggested that approximately linear effects
predominated and that the addition of non-linear components to the late bias model was not
necessary.

Early Bias Model – Weighted Average (Weighted Average): The use of weighted
average models in prior studies of localization (Landy, 1993; Landy & Kojima, 2001;
McGowan, Kowler, Sharma, & Chubb, 1998) prompted us to also examine this descriptive
model in our centroid estimation task. Unlike the Late Bias model, the Weighted Average
model does not assume equal integration of all dot components. Rather, this model can
capture an early bias in which individual dot representations contribute differently to the
overall centroid estimate on the basis of their positions in the visual field. The Weighted
Average model implements a normalized weighted sum of all dot positions on a given trial
and also allows for a constant late bias, ε. Specifically, the Weighted Average model for
displays containing 25 dots (as used in this study) is

(2)
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where ωi = ω(xi, yi) is a weighting function that assigns a weight to the ith dot on the basis of
its horizontal and vertical position in the visual field (see below). A dot position with a
higher weight contributes more to the centroid estimate, , compared to a dot position with
a lower weight. Preliminary, non-parametric analyses, in which we used a spatially-gridded
model and allocated weights to specific grid locations (up to 120), showed that the effects of
eccentricity were well described by a unimodal, Gaussian-shaped weighting function
anchored at the point of fixation. Therefore, we chose the following form:

(3)

The free parameters in this function determine the width (σx and σy) of the Gaussian
function and a constant offset across all spatial positions, b. The amplitude of the Gaussian,
a, was either +1 or −1 to model an upright or inverted Gaussian, respectively. By definition,
all weights should be positive in a weighted average calculation, therefore, we constrained
the weighting function to prevent negative weights (see below).

Early Bias Model – Weighted Sum (Weighted Sum): The Weighted Sum model is similar
to our Weighted Average model in that it allows for an unequal integration of the dot
representations, but differs in that it does not include normalization of the weights (Equation
4). While this is a relatively minor mathematical change, the Weighted Sum model can
capture a wider range of response strategies (see Discussion).

(4)

We use the same two-dimensional Gaussian function for ω (Equation 3), now allowing the
amplitude (a) to range freely. We again constrained the weighting function to only allow
positive weights. While this is not imperative in a weighted sum calculation as it is in a
weighted average calculation, in the context of our model, a negative weight would alter the
sign of the dot component position. This would cause a dot to shift the perceived centroid
towards the opposite hemifield. Preliminary (non-parametric) analyses showed that only one
subject (S7) had a small subset (< 10%) of negative weights. Therefore, to maximize the
similarity between Weighted Average and Weighted Sum models, parameter constraints
remained consistent in both cases.

Unilateral-Cue Condition

Late Bias Model: This model is exactly the same as the Late Bias model for the Bilateral-
Cue condition (Equation 1) and we model the Left- and Right-Cue conditions separately,
resulting in a unique Late Bias model for each condition. This model captures whether
attention yields a constant bias in the centroid estimates across trials, ε, or modulates an
eccentricity-dependent bias, β. We hypothesized that εx would differ between the Left-Cue
and Right-Cue conditions and, specifically, would be greater in the Right-Cue condition.

Early Bias Model – Weighted Sum (Weighted Sum): The Weighted Sum model is the
only early bias model we considered for the Unilateral-Cue conditions because it performed
consistently better than the Weighted Average model in the Bilateral-Cue condition (see
Results). Here, we used an identical Weighted Sum model (Equation 4) but modified the
weighting function (Equation 3) to account for lateralized attentional effects. Specifically,
we hypothesized that attentional differences across the visual field may have altered the
peak position or the width of the Gaussian weighting function from Equation 3.
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Alternatively, or in addition, attention may have imparted a more global change in which the
contributions of dot positions in the attended visual field are enhanced while those on the
opposite visual field are attenuated. To account for such effects, we allowed a shift of the
peak (or trough) along the horizontal and vertical dimensions (μx and μy) and extended the
weighting function with linear gradients in both the horizontal and vertical dimensions (mx
and my).

(5)

In addition, we investigated other types of weighting functions including one that used
multiple Gaussians to allow for bimodal peaks in weights, but did not find enough evidence
to support the use of these alternate models.

Model Fitting—Model parameters were estimated separately for each subject and
condition (Bilateral-Cue, Left-Cue and Right-Cue). Least squares fitting methods were used
to minimize the model error concurrently across X and Y coordinates. Pearson’s correlation
analysis confirmed that each of the fitted models had a significant correlation between the
model predictions and subject responses (t(>500) > 14, p < 10−6).

To determine the parameter values in the Late Bias model, we used the lsqcurvefit routine
from the Optimization Toolbox in Matlab 7.9 (The MathWorks, Natick, MA). The non-
negativity constraint on the weights (see above) required us to use constrained nonlinear
optimization to fit the Weighted Average and Weighted Sum models. To do this we used the
fmincon routine from the Optimization Toolbox in Matlab with the following constraint; (a
+ b)>0. We also constrained the lower and upper bounds for each parameter and set them as
follows: μx and μy to −15 and 15 to keep the center of the Gaussian function within the
stimulus display area, a , b, and ε to −100 and 100, and σx and σy to 0 and 7.5 so that the
Gaussian function would reach an asymptote level within the stimulus presentation area.
Preliminary non-parametric analyses supported the use of 7.5° as the maximum value. We
then used repeated curve fits, starting from 1000 random initial parameter choices within
these bounds to find the optimal set of parameters. We used this optimal set of parameter
estimates for subsequent analysis.

We determined 95% bootstrap confidence intervals (95% CI Method) for each of the model
parameters using the bootci function in Matlab. For each of 1000 bootstrapped sets, we re-
sampled the data with replacement, and re-ran the fmincon procedure with the optimal
parameters as initial values.

Comparing Models (AIC Method)—We used the Akaike Information Criterion (AIC) as
a measure of relative model performance. This criterion allows the comparison of non-
nested models that use different numbers of free parameters and penalizes a model for
additional free parameters. Specifically, we used the Least Squares AIC;

(6)

where n is the number of trials,  is the residuals for each trial, and K is the number of free
parameters. This calculation assumes that the errors are normally distributed and have
constant variance.
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Note that for models with an equal number of parameters, the AIC value is essentially

determined by the average squared residual error per trial (i.e., ,Model Prediction Squared
Error, MPSE). We use this measure in the main text to provide an intuitive measure of
performance. Statistically valid model selection, however, requires comparison of the full
AIC values. Models with the lowest AIC value provide the most parsimonious account of
the data. We followed the guidelines of Burnham and Anderson (2002) and considered a
model to be notably better if its AIC value was less than another model’s AIC by four or
more units. Models with an AIC difference less than four were considered to be statistically
indistinguishable.

Experiment 2
For each offset of the probe relative to the true centroid position, we calculated the
proportion of responses in which subjects judged the probe to be to the left of the centroid.
The data from separate cueing conditions (Left-Cue, Right-Cue) were then fitted with
separate cumulative Gaussian functions. The probe offset that corresponded to the inflection
point of this psychometric function (point of subjective equality, PSE) was used as an index
of the perceived centroid. Psychometric functions were fitted using the psignifit toolbox
version 2.5.6 (Wichmann & Hill, 2001a, 2001b) in Matlab 7.9. We determined confidence
intervals for the PSE using a bootstrapping method and used these confidence intervals to
determine whether subject responses differed significantly between cueing conditions (95%
CI Method).

Results
In all experiments, subjects estimated the centroid of a briefly presented random dot pattern,
RDP (Figure 1). We first report these behavioral responses across all experiments showing
that (a) subjects estimated centroids reliably; (b) exogenous attentional cues biased centroid
estimates towards the attentional focus, and; (c) the bias due to attention cannot be explained
by a motor-response bias. We then describe a number of quantitative models to account for
performance with and without lateralized attention. Our modeling results demonstrate that
both the retinal eccentricity of the dots and the locus of spatial attention modulate spatial
integration, in part, by differentially altering the contribution of specific dot components
within the RDP

Behavioral Results
Centroid Estimation (Experiment 1: Bilateral-Cue)—We first confirmed that
subjects were capable of identifying the approximate centroid of the RDPs. The constant
error (i.e., bias), defined as the mean of the difference between the subjects’ centroid
estimates and the actual centroids, was 0.18° horizontally (STE = 0.09°) and −0.27°
vertically (STE = 0.12°) across subjects (Figure 3A). Variable error, defined as the standard
deviation of subject response error, averaged across subjects was 1.56° horizontally (STE =
0.18°) and 1.46° vertically (STE = 0.17°). We next calculated the correlation between the
behavioral responses and the actual centroid on a trial-by-trial basis for each subject using
Pearson’s correlation coefficient. All coefficients were significant and ranged from 0.43 to
0.83 (t(>500) > 14, p < 0.0001). This demonstrates that subjects used the positions of the
dots on a trial-by-trial basis to guide their behavioral responses and did not just click at the
center of the screen.

This correlation between subject response and the actual centroid does not eliminate the
possibility that subjects may have used a subset of the dots in each trial to determine the
centroid location. Previous studies have observed that some subjects place particular
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emphasis on the boundaries of objects (Findlay, Brogan, & Wenban-Smith, 1993), and
localize a dot pattern at the centroid of the implied target shape rather than at the centroid of
all the dot positions (Melcher & Kowler, 1999). Therefore, we investigated whether subjects
determined the centroid of the implied shape, defined as the polygon formed by the dots
along the convex hull of the RDPs, rather than the centroid of all the dot components.
Because the centroid of the implied shape and the true centroid of all the dots are inevitably
correlated, we used partial correlation analysis to disentangle these influences on
performance. The partial correlation between subject responses and the actual centroid using
all of the dots (group median: 0.60), given the centroid of the implied shape, was
significantly higher (rank sum statistic = 110; p < 0.0001) than the partial correlation
between subject responses and the centroid of the implied shape (group median: 0.14), given
the centroid of all the dots. Using the same methods, we also investigated whether subjects
used the average position of the dots on the convex hull, and found similar results.
Therefore, there was no indication that subjects mainly used the outermost dots of the RDP
when determining the centroid estimate. We will explore and quantify other behavioral
strategies in more detail in the Model Selection & Analysis section.

Lateralized Spatial Attention (Experiment 1: Unilateral-Cue)—The main goal of
the Unilateral-Cue condition was to determine how exogenous spatial attention influenced
subjects’ centroid estimates. In this condition subjects localized a centroid after being cued
to either the left (Left-Cue condition) or the right (Right-Cue condition) side of the visual
display.

We again found that subjects responded reliably even when cued unilaterally. The Pearson
correlation between the centroid estimates and the actual centroid ranged from 0.57 to 0.84
(t(>700) > 21, p < 0.0001). Importantly, attention yielded a significant horizontal bias in the
direction of the attended locus for all subjects (t(>1500) < −4.5, p < 0.001; see Figure 3B).
The constant error, averaged across subjects, was −0.07° (horizontal; STE = 0.13°) and
−0.21° (vertical; STE = 0.09°) in the Left-Cue condition and 0.66° (horizontal; STE = 0.18°)
and −0.27° (vertical; STE = 0.11°) in the Right-Cue condition. Only one subject (S1) had a
significant difference, 0.22°, in the vertical direction (t(1797) = 3.45, p < 0.001). These
differences are not due to subjects’ eye position as their mean horizontal eye position during
presentation of the RDP did not differ significantly between the Left-Cue condition, −0.11°
(STE = 0.08°), and the Right-Cue condition, −0.12° (STE = 0.08°), for any of the subjects.

In addition, attention did not alter subject response variability, which was consistent across
all conditions, i.e. Left-Cue, Right-Cue and Bilateral-Cue (one-way repeated measures
ANOVA: F = 1.848, p = 0.20). The variable error in the Left-Cue and Right-Cue conditions
ranged from 1.28° to 2.74°.

Motor-response Bias (Experiment 2)—Given that subjects used the computer mouse
to indicate the location of the centroid, it is possible that the findings of Experiment 1 were
due to an effect of attention on the motor response rather than an effect on visual perception.
Specifically, subjects might have simply clicked closer to the attentional cue without a true
bias in the location of the perceived centroid. In Experiment 2, we assessed this possibility
by repeating the Unilateral-Cue condition using a non-spatial, two alternative forced choice
response paradigm rather than a spatially directed motor response. Specifically, subjects
were asked to report whether their perceived centroid was to the left or right of a reference
line that appeared briefly after the offset of the RDP. Even in this paradigm, though, there is
the possibility for motor-response bias. To allow us to determine whether the cue biased the
subjects’ selection of button presses or their perception, we also reversed the task
instructions (in separate sessions); that is, subjects were asked to report whether the line was
to the left or right of the perceived centroid.
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Figure 4A plots for one subject the percentage of trials in which the line was reported to be
to the left of the centroid as a function of the physical offset of the reference line. For this
subject, as for the majority of subjects (Figure 4B), the point of subjective equality (PSE)
shifted in the direction of spatial attention and remained consistent in direction regardless of
the specific task instructions. Thus, Experiment 2 confirms that the perceived centroid of
RDPs shifts toward the locus of attention, regardless of the specific modality of motor
response.

Model Selection & Analysis
In the Behavioral Results section, we showed that subjects localized centroids accurately
though imperfectly, and spatial attention introduced further biases in this process. The goal
of this section is to describe and understand these results in the context of a three-stage,
weighted integration model (Figure 2). In this scheme, inaccuracies in centroid estimates
could arise from improper weighting of the individual dot representations (early bias), from
a bias in the output of the integrator (late bias), or both. To assess these possibilities, we
analyzed the data using three quantitative models that each implemented a different
operation for the computation of centroids. In each case, the models were used to predict
subjects’ centroid estimates on a trial-by-trial basis using knowledge of the RDP dot
positions.

Retinal Eccentricity (Experiment 1: Bilateral-Cue)—We first assessed the
performance of a Late Bias model in which observers are assumed to compute a veridical
centroid at an early stage of processing but then subject the output of this operation to a late
bias that is a linear function of its retinal eccentricity (Equation 1). The slope parameter of
this function, β, characterizes the eccentricity-related bias across the horizontal or vertical
dimensions of the visual field. A β significantly less than one indicates an overall foveopetal
bias in subjects’ centroid estimates, and thus subjects tended to report the centroid to be
closer to the fovea than its true position. A value of β significantly greater than 1 indicates
that the observer had an overall linear foveofugal bias. Four out of the seven subjects had a
significant foveopetal bias in the perceived centroid in both the horizontal and vertical
dimensions (i.e., β < 1 [95% CI Method]; mean = 0.68°, STE = 0.03°; Figure 5). In contrast,
two out of the remaining three subjects had a significant foveofugal bias in the perceived
centroid in both the horizontal and vertical dimensions, therefore their responses
exaggerated the true eccentricity of the centroid (i.e., β > 1 [95% CI Method]; mean = 1.30°,
STE = 0.1°). The remaining subject had a significant foveofugal bias (β = 1.20°) in the
horizontal direction and a foveopetal bias (β = 0.78°) in the vertical direction.

To probe for early biases, we evaluated models in which each dot in the RDP was assigned a
weight based on its position in the visual field (Equations 2 and 4). In a preliminary analysis,
we implemented a nonparametric model using a separate weight parameter for different
regions across the visual field in which no assumptions were made about the shape of the
underlying distribution of weights across the visual field. These analyses showed some
subjects with higher weights in more foveal locations that gradually decreased toward the
periphery and others with the reverse pattern. This suggested that a two-dimensional,
Gaussian would provide an appropriate description of the distribution of weights across the
visual field using only a small number of parameters. This Gaussian weighting function was
used in two separate models: the Weighted Average (Equation 2) and Weighted Sum
(Equation 4) models. The Weighted Average model differs from the Weighted Sum model
in that it normalizes the weights assigned to each dot by the sum of the weights for all dots
on a given trial (See Methods).
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Of these three models, the Weighted Sum model clearly performed best. For a more intuitive
comparative measure of model performance, we calculated the squared residual error per
trial for each model. We refer to this measure as the model prediction squared error (MPSE;
see Methods-AIC Method). The median MPSE, across subjects, for the Weighed Sum model
was 3.48 deg2 (1.03 deg2 < MPSE < 7.69 deg2), whereas, the median MPSE for the Late
Bias Model was 3.94 deg2 (1.09 deg2 < MPSE < 8.57 deg2) and 4.16 deg2 for the Weighted
Average model (1.24 deg2 < MPSE < 9.28 deg2). These comparisons of relative model
performance, however, do not take into account the fact that each of the models; Late Bias,
Weighted Average and Weighted Sum, has a different number of free parameters. We used
the Akaike Information Criterion (AIC) to overcome this limitation. Lower AIC values
indicate a more parsimonious model, and one model is considered to outperform another
model significantly if its AIC value is lower than the comparison model by four or more
units (Burnham & Anderson, 2002).

Figure 6a reports the AIC values for the early bias models (symbols) relative to that of the
Late Bias model (horizontal line at zero). Thus, negative values indicate early bias models
that outperform the Late Bias model. Using this criterion, the Late Bias model outperformed
the Weighted Average model for six out of seven subjects. The Weighted Sum model,
however, outperformed the Late Bias model for six out of seven subjects (AIC differences;
Weighted Average median = 66.12, STE = 14.66; Weighted Sum median = −33.62, STE =
17.43). Hence, this statistical analysis shows strong support for the Weighted Sum model.

Given that the Weighted Sum model best described the data, we next examined the subject-
specific weight distributions from this model to assess the contribution of each dot
component to subjects’ centroid estimations. Four out of the seven subjects exhibited higher
weights closer to the fovea (Figure 7, A-D), while the remaining three subjects displayed an
opposite pattern, albeit with a smaller effect size (Figure 7, E-G). These weight patterns
suggest that dot positions closer to the fovea influenced the centroid estimation more or less
than would be expected from an equal integration of all dot positions. We confirmed that
although some effects were small, the majority of subjects (6 out of 7) displayed significant
differential weighting: the amplitudes of the Gaussian weight functions differed significantly
from zero (95% CI Method).

It is important to note that the pattern of weights across the visual field (i.e., an upright or
inverted Gaussian function) does not map directly onto an overall foveopetal or foveofugal
bias in performance. For example, Subject 5 has an overall foveofugal bias (Figure 5A), but
higher weights at the fovea (Figure 7B). This may seem counterintuitive, but in the
Weighted Sum model, the overall magnitude of the weights indicates whether there is a
general bias towards or away from the fovea. To understand this, consider a subject who
calculates the true centroid of the dots; this subject’s weights should be 0.04, since there are
25 dots presented on a trial. However, if the subject weighted the majority of dot positions
below 0.04 there will be an overall foveopetal bias (Figure 7, D-G), whereas, if the majority
of weights are above 0.04 there will be an overall foveofugal bias (Figure 7, A & B). The
relative magnitude of the foveal and peripheral weights only modulates this bias depending
on the number of dots presented in each of those regions. For instance, a subject with the
majority of weights above 0.04 and an upright Gaussian will overestimate the centroid of an
RDP with many dots near the fovea less than an RDP with many dots in the periphery. The
ability to capture such effects is a qualitative difference between the weighted sum and the
less flexible weighted average model. We expand on this idea further in the Discussion.

The significant parameters of the Gaussian weighting function and the superior performance
of the Weighted Sum model relative to the Late Bias model suggest that there is an influence
of eccentricity on the encoding of individual dot positions and hence, an early bias.
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However, this does not imply there is not also a late bias. The error term, ε, in Equation 4 of
the Weighted Sum model represents an additive late bias. For the majority of subjects (6 out
of 7) this term differed significantly from zero in both the horizontal (mean = 0.17°; STE =
0.08°) and vertical directions (mean = −0.25°; STE = 0.12°). This suggests the application
of a rightward and downward bias after the integration of dot components.

Lateralized Spatial Attention (Experiment 1: Unilateral-Cue)—We next examined
how spatial attention altered perceived centroids, again in the context of our three-stage
spatial integration framework (Figure 2). Just as inaccuracies in baseline performance due to
retinal eccentricity could have arisen from early or late computational biases, so too could
our observed attentional effects. Because the Weighted Average model fared poorly in the
previous section, we did not consider it here. We did, however, compare model performance
of the Late Bias model and the Weighted Sum model. In the Late Bias model attention
induces a linear bias on the actual centroid (Equation 1). In the Weighted Sum model
attention could shift the Gaussian weighting functions (to model localized attraction by the
exogenous cues), or induce a linear gradient within the weighting function (to model a more
global attraction towards the attended side) (Equation 5). Across subjects, the median model
prediction squared error per trial for the Weighted Sum model was 3.77 deg2 (1.91 deg2 <
MPSE < 10.03 deg2), whereas, the median MPSE was 3.89 deg2 for the Late Bias model
(1.95 deg2 < MPSE < 11.08 deg2). To determine whether the Weighted Sum model is truly a
better model given the additional free parameters, we compared the AIC values for the
Weighted Sum model to the Late Bias model for the Unilateral-Cue conditions (Figure 6B).
In all subjects, the Weighted Sum model significantly outperformed the Late Bias model
(AIC difference; median = −78.58, STE = 33.41). Therefore, we conclude that the Weighted
Sum model gave the most parsimonious account of the influence of attention on spatial
integration.

The specific pattern of weights in the Weighted Sum model during the lateralized attentional
conditions provides insight into the mechanisms of spatial attention. To visualize the
attention-induced changes in weights, we determined the differences between weights in the
Left-Cue and Right-Cue conditions across the stimulus presentation area (Figure 8). While
each subject’s weight map showed an idiosyncratic pattern, there were clear commonalities
that were also reflected in the population weight map (Panel H): a peak in weight differences
in the left visual field and a trough in weight differences in the right visual field. This
qualitative understanding of the weight maps was confirmed by a statistical analysis of the
free parameters in the model. The slope of the horizontal gradient (mx) in the Right-Cue
condition was higher than that of the Left-Cue condition for all subjects (individually
significant in four out of seven subjects, 95% CI Method). This shows a coarse effect of
attention; weights in the attended visual field were generally greater than weights in the
unattended field. At the same time, the peak of the weighting function (μx) was shifted
rightward in the Right-Cue compared to the Left-Cue condition in five out of seven subjects
(individually significant in two subjects, 95% CI Method). This shows a more focused shift
of attention towards the exogenous cue. Lastly, and unexpectedly, the late constant
horizontal bias, εx, was larger in the Left-Cue condition than to the Right-Cue in all subjects.
This difference was individually significant in four out of seven subjects (95% CI Method).
While this late bias is opposite to our expectation, additional analyses in which we omitted
this term from the model generated qualitatively similar weight maps and had little effect on
overall model performance.

Discussion
Our experiments and models investigated the role of retinal eccentricity and the locus of
spatial attention in spatial integration. Although subjects were reasonably accurate when
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determining the centroid of a random dot pattern (RDP), our Weighted Sum model revealed
systematic differences in the utilization of specific dot positions. First, subjects put
significantly different weight on foveal regions compared to more peripheral regions of the
visual field. Second, exogenous cues yielded spatially specific increases in weights
surrounding the focus of attention, as well as, global increases in weights in the attended
visual field. We conclude that the localization of extended objects consisting of multiple
components is modulated by eccentricity and exogenous attention, and that the influence of
attention includes a modulation of the eccentricity-dependent influence on the components.

We first discuss why the Weighted Sum model outperformed the Weighted Average model,
then discuss our work in the light of earlier research on the localization of visual objects, and
end with a speculative proposal for a neural implementation of the Weighted Sum model.

Weighted sum versus weighted average
If subjects calculated the true centroid, then both the Weighted Sum model using weights of
0.04 and the Weighted Average model using weights of 1 would have predicted their
performance accurately. Our data, however, clearly showed that there are systematic errors
in the localization of centroids due in part to differential weighting of specific dot positions.
These errors were most parsimoniously captured by the Weighted Sum model, and not by
the Weighted Average model. The difference between these models is the normalization
across all weights in the Weighted Average model. Consider the subjects with lower weights
surrounding the foveal regions; the normalization of the Weighted Average model would
inevitably lead to a foveofugal bias. Contrary to this intuition, some of our subjects with this
inverted Gaussian weighting pattern nevertheless showed a foveopetal bias. Hence at an
abstract level of description one can speculate that the subjects did not perform an
appropriate normalization in their centroid calculation.

Retinal eccentricity
All subjects showed differential weighting of dot positions depending on retinal eccentricity.
Higher foveal weights might have been expected given earlier reports of foveal biases in
localization tasks (Mateeff & Gourevich, 1983; O’Regan, 1984; van der Heijden, van der
Geest, de Leeuw, Krikke, & Musseler, 1999), and lower foveal detection thresholds
(Johnson, Keltner, & Balestrery, 1978). We hypothesized initially that the three subjects
with higher peripheral weights may have placed particular emphasis on the dots along the
boundary of the stimulus (Findlay, Brogan, & Wenban-Smith, 1993). However, we
eliminated the possibility that subjects actually calculated the centroid of the implied shape
of the RDP using partial correlation analysis. In addition, there was no evidence to indicate
that subjects with an inverted Gaussian pattern showed a higher partial correlation between
the subject responses and the centroid of the implied shape given the actual centroid of the
dots. Alternatively, enhanced sensitivity to transient stimuli for more peripheral targets may
have contributed to this pattern. Given that the RDP was displayed very briefly, peripheral
positions may have exerted greater influence on behavioral responses than foveal dots. An
interesting prediction of this hypothesis is that individual variations in sensitivity should
correlate with idiosyncratic localization weight patterns.

A previous study reported similar weighting patterns (Drew, Chubb, & Sperling, 2010)
relative to the true centroid of an RDP. Since eye position was not restricted in that study,
however, it is not possible to assess how the retinal eccentricity of each dot position
influenced the final weighting, and how that may have played into the weighting relative to
the true centroid. Conversely, because our true centroid positions were relatively close to the
fovea, the eccentricity bias we observed could also reflect these “object-centered” effects of
Drew et al. However, when we examined weighting relative to the true centroid of each
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RDP, we did not find similar weight patterns across subjects. To further disentangle
centroid-centered and fovea-centered weighting a future study would need to both control
eye position and vary centroid position systematically and over a wider range than in our
study.

Related to this, even though we interpret our finding as an effect of eccentricity, we
acknowledge that the subjects could have developed a bias to respond closer to the fovea
because that was the average location of the centroid over all trials, or because they had to
maintain fixation at the center of the display throughout the entire trial. Such effects,
however, would depend only on the location of the centroid, not the positions of the
individual dots; hence, our finding that an early bias model outperformed the Late Bias
model speaks against this interpretation.

In contrast to our results, McGowan and colleagues (1998) found no evidence of differential
weighting due to dot position. We believe this can be attributed to the small size of their
RDPs; even in our experiments the weighting was relatively constant on a small scale.
McGowan et al. also found a strong nonlinear effect of dot proximity, such that isolated dots
had a stronger influence on the centroid than clustered dots. Although we found some
support for such effects in our data, they were weak and not consistent across subjects. This
may also be the consequence of our larger RDPs and concomitant larger spacing between
the dots.

Lateralized spatial attention
Consistent with earlier reports of attentional mislocalization of single dots (Tsal & Bareket,
1999), we showed that centroid estimates were shifted in the direction of (exogenously
cued) attention. Our modeling results showed that this was most parsimoniously captured as
a change in the weighting function in the Weighted Sum model such that locations near the
cue received larger weights than locations remote from the cue. This enhancement was not
restricted to the location of the cue as we also found a more general increase in weights
across the attended side of the visual field.

To our knowledge ours is the first study to show that spatial attention differentially alters the
usage of the components of a target in a localization task. One way to interpret these
findings is that attentional modulation acts, at least in part, on early visual representations.
Consistent with this, the weight patterns that our behavioral data reveal are similar to those
found using functional imaging (Datta & DeYoe, 2009), which leads us to speculate about
possible neural mechanisms.

Neural mechanisms
While the Weighted Sum model used in our experiments is a descriptive model, we
speculate that it may be implemented neurally as distortions in the population activity of
early visual neurons. In this view, the input layer in Figure 2 would correspond to an early
retinotopic area where receptive fields correspond to specific locations on the retina; these
neurons are labeled lines for position. If a downstream area performs the centroid
computation by computing the inner product of each neuron’s label and its firing rate, then
any distortion or inhomogeneity in the population firing rate would lead to a misperception.
In terms of neural mechanisms, eccentricity-dependent weighting (i.e. distortions or
inhomogeneities in the neural response) may result from differences in receptive field size,
cortical magnification, latency differences, or other differences in local circuitry (Roberts,
Delicato, Herrero, Gieselmann, & Thiele, 2007).

To account for a late bias, the region that computes the centroid or a region further
downstream may further bias the centroid computation to yield the final perceived centroid.
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Given that our data show that subjects perform an imperfect normalization across all dots
when performing the centroid task, one way to interpret these data is that they reflect
changes in the neural activity normalization process (Heeger, 1992) with eccentricity or
changes in attention (Reynolds & Heeger,2009).

Alternatively, the bias due to attention could be the result of well-known attentional
modulation of neuronal activity of early visual areas (for review, see Kastner & Ungerleider,
2000; Reynolds & Chelazzi, 2004), attentional modulation of receptive field location
(Womelsdorf, Anton-Erxleben, Pieper, & Treue, 2006; Womelsdorf, Anton-Erxleben, &
Treue, 2008), or the eccentricity-dependent attentional modulation of spatial integration
(Roberts, Delicato, Herrero, Gieselmann, & Thiele, 2007). Our behavioral data are too
coarse to distinguish among the relative contributions of these processes; future studies
using functional imaging or electrophysiological recordings are required to determine how
visual cortex integrates spatial information and generates a percept of position.
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Figure 1.
Experimental paradigm. (A) Array of all possible dot positions. 25 positions were selected at
random on each trial. (B) Example trial from Experiment 1 (Right-Cue condition). Subjects
fixated centrally for the duration of the trial. A non-informative cue appeared at an
eccentricity of 7.5° just before the onset of the RDP. Shortly after the offset of the RDP, a
cursor appeared at the point of fixation and subjects moved the cursor to the perceived
centroid location. In separate trials, the cues appeared on the left, right, or on both sides of
the visual display.
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Figure 2.
Model of centroid estimation. This is conceptualized in three stages; input, integration and
output, with up to two sources of perceptual bias (early & late). The integrator combines the
veridical dot representations, which may differentially contribute to the final response. We
model these different levels of contribution with specific weights, ωi, for each dot position
(early bias). These weighted dot representations are summed in an integrator resulting in an
intermediate centroid estimate. The intermediate centroid estimate can be subjected to
multiplicative (β) or additive (ε) bias (late bias) resulting in the final centroid estimate, i.e.,
response.
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Figure 3.
Behavioral responses per subject. (A) Experiment 1. Bilateral-Cue condition. Constant error
(center of ellipse, dots) relative to the actual centroid (0, 0) and variable error (ellipse =
1SD) for each subject. Negative values indicate a response to the left (X-axis) or down (Y-
axis) relative to the actual centroid. (B) Experiment 1. Unilateral-Cue conditions: Constant
(center of ellipse, dots) and variable (ellipse = 1STE) error for Left-Cue (solid ellipse) and
Right-Cue (dotted ellipse) conditions. Each pair of ellipses denotes 1 subject. For all
subjects, the centroid estimate in the Left-Cue condition was significantly to the left
(t(>1500) < −4.5, p < 0.001) of the centroid estimate in the Right-Cue condition (arrows).
Only S1 showed a significant shift in the vertical direction (t(1797) = 3.45, p < 0.001).
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Figure 4.
Centroid estimates in a 2AFC variant of the localization task. (A) Psychometric functions
for one subject. Each data point is the proportion of trials in which the subject chose the line
as being left of the centroid for Left-Cue (blue) and Right-Cue (green) trials. Horizontal axis
indicates the physical offset between the reference line and the actual centroid. Error bars
depict 95% confidence intervals for 25%, 50% (point of subjective equality, PSE) and 75%
thresholds. In this plot, data from trials in which subjects were asked to report whether the
centroid was to the left of the line (Question A) and whether the line was to the left of
centroid (Question B), are combined. This subject has a perceived centroid (PSE)
significantly to the left in the Left-Cue condition relative to the Right-Cue condition. (B)
Constant error (PSE) relative to the actual centroid for each subject. Each bar shows the PSE
for a specific combination of cue condition (Left-Cue: blue bars; Right-Cue: green bars) and
Question Type (A: darker bars; B: lighter bars). Negative values indicate perceived centroids
to the left of the actual centroid. Error bars depict 95% confidence intervals. For both
question types, the predicted perceived centroid in the Left-Cue condition was significantly
to the left relative to the Right Cue condition (t(1797) = 3.45, p < 0.001)) for all but 1
comparison (Subject 4, Question A).
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Figure 5.
Late Bias model. (A) Centroid estimates of a single subject (S5) plotted against the actual
centroid position for the horizontal (Left panel) and vertical (Right panel) dimensions. Fitted
Late Bias linear regression model (solid line). This subject shows a foveofugal bias (i.e., β >
1). (B) Fitted Late Bias model for all subjects along the horizontal (Left panel) and vertical
(Right panel) dimensions. Each solid line depicts the estimated behavioral response as a
function of the actual centroid position for one subject using the fitted parameters from the
Late Bias model. Four subjects show a significant foveopetal bias in both dimensions (red,
black, green, pink), two subjects show a significant foveofugal bias in both dimensions (dark
and light blue), and one subject shows a foveofugal bias along the horizontal dimension and
a foveopetal bias along the vertical dimension (purple) [95% CI Method]. Unity (dotted) line
shows where actual centroid equals the centroid estimate.
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Figure 6.
A comparison of relative model performance using the Akaike Information Criterion (AIC).
The AIC values for each model (Weighted Average [squares] and Weighted Sum
[asterisks]) are plotted as difference scores relative to that observed for the Late Bias model
(horizontal black line) for individual subjects (columns, color and number consistent with
prior figures) and group median. Negative values indicate AICs lower than the Late Bias
model. Lowest AIC value indicates best model (A) Experiment 1. Bilateral-Cue. Weighted
Sum model has the lowest AIC in all but 1 case (S6) by four or more units. (B) Experiment
1. Unilateral-Cue. The AIC value for the Weighted Sum model was lower than the Late Bias
model by four or more in all but one case (S6).
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Figure 7.
Eccentricity Weight Maps (Experiment 1. Bilateral-Cue condition). Weights maps were
determined with the Weighted Sum model (Equation 3). The Weighted Sum model
describes centroid estimates as a weighted sum of the dot positions. The color maps indicate
the weight at a particular spatial location with white being largest and black being lowest.
Gray regions depict areas without any dot positions. (A-D) Weight maps showing higher
foveal weights. Ordered from greatest effect size to smallest effect size. (E-G) Weight maps
showing lower foveal weights for the remaining three subjects. Each panel has its own color
map to allow the visualization of all subject weight patterns, even when idiosyncratic effect
sizes were small. All subjects except one (S3), however, had a significant eccentricity-
dependent weight gradient (See Main Text for details).
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Figure 8.
Attentional Weight Maps (Experiment 1. Unilateral-Cue conditions). Attentional weights
were determined as the difference maps between the Left-Cue and Right-Cue condition in
the Weighted Sum model (Equation 5). Red indicates a location where the Left-Cue weight
was higher and blue indicates a location where the Right-Cue weight was higher. Gray
regions depict areas without any dot positions. (A-G) Subject specific weight difference
maps ordered the same as in Figure 7. In all cases, weights were enhanced in one or both of
the visual fields that contained the exogenous cue. The local structure of these differences
varied considerably across subjects. (H) Group weight difference map. Obtained using the
median of each weight difference at a specific spatial position across subjects.
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