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Abstract

We consider the application of Efron’s empirical Bayes classification method to risk prediction in a genome-wide
association study using the Genetic Analysis Workshop 17 (GAW17) data. A major advantage of using this method
is that the effect size distribution for the set of possible features is empirically estimated and that all subsequent
parameter estimation and risk prediction is guided by this distribution. Here, we generalize Efron’s method to allow
for some of the peculiarities of the GAW17 data. In particular, we introduce two ways to extend Efron’s model: a
weighted empirical Bayes model and a joint covariance model that allows the model to properly incorporate the
annotation information of single-nucleotide polymorphisms (SNPs). In the course of our analysis, we examine
several aspects of the possible simulation model, including the identity of the most important genes, the differing
effects of synonymous and nonsynonymous SNPs, and the relative roles of covariates and genes in conferring
disease risk. Finally, we compare the three methods to each other and to other classifiers (random forest and
neural network).

Background
The development of disease-risk prediction models
based on genome-wide association data is a great chal-
lenge to statisticians. A major contributing factor to this
difficulty is that the observed effects of the most signifi-
cant features in any particular model are likely to be
overestimates of their true effects [1]. Because of the
complexities of a Bayesian analysis with hundreds of
thousands of features, most of the shrinkage techniques
that have been proposed to deal with this problem have
a frequentist flavor, such as the LASSO (least absolute
shrinkage and selection operator) and ridge regression
[2]. Although these procedures tend to be computation-
ally convenient, the resulting shrinkage could be consid-
ered ad hoc compared with an empirical Bayes
alternative [3], because for the empirical Bayes alterna-
tive model shrinkage is guided directly by both the

proportion of associated variants and the effect sizes for
this subset of associated variants.
Genetic Analysis Workshop 17 (GAW17) provided a

large-scale mini-exome sequence data set with a high
proportion of rare variants. In this data set the number of
genes far exceeds the number of samples, and, as a result,
finding a good risk prediction model is a difficult chal-
lenge. Here, we demonstrate the use of an empirical
Bayes algorithm, originally proposed by Efron [4] in a
microarray case-control context, that is particular suita-
ble to this large-scale data setup. This algorithm is a
modified version of linear discriminant analysis (LDA) in
which certain parameters, which represent standardized
differences in the mean expression for case and control
subjects, are shrunk before they are substituted into the
LDA rule. In addition to describing some of the subtleties
that need to be considered when applying Efron’s method
to the GAW17 data (or other genome-wide association
data), we develop two extensions that allow us to incor-
porate single-nucleotide polymorphism (SNP) annotation
information into the prediction rule: the weighted
empirical Bayes (WEB) model and the joint covariance
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(JC) model. To show the competitive performance of our
proposed methods, we compare them with other classi-
fiers: the random forest and the neural network.

Methods
Choice of gene score
A gene score is a composite value calculated by combining
all SNP information within the same gene. Several advan-
tages are gained by applying Efron’s empirical Bayes
method to such gene scores instead of to individual SNPs.
First, by pooling SNPs together in the correct way, we can
potentially enrich the signal-to-noise ratio of the data. Sec-
ond, the dimensionality of the feature space is greatly
reduced (from 24,487 SNPs to 3,205 gene scores). Finally,
even though LDA as a technique does not require the fea-
ture variables to be normal, it is actually an optimal proce-
dure if they are. Although the number of rare alleles for a
particular SNP cannot be considered a normal variable,
applying this assumption to the score for genes that have
many SNPs may be more reasonable.
Let Xij denote the Madsen-Browning gene score [5]

that summarizes SNPs in gene i for individual j. This
gene score is calculated as:
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where Glj is the number of rare variants for individual
j at SNP l, K is the number of SNPs within gene i, and
pl
 is the empirical minor allele frequency (MAF) at
SNP l. In practice, the Madsen-Browning method,
which up-weights SNPs with a lower MAF when calcu-
lating gene scores, gives more coherent results on the
GAW17 data, and whole gene scores are calculated
based on this pooling method.

Method 1: empirical Bayes method
We assume that there are n1 case subjects and n2 con-
trol subjects, where n is the total number of individuals;
that is, n = n1 + n2. Suppose that there is no correlation
between different gene scores; then the LDA rule is to
classify an individual having N gene scores (X1, …, XN)
as belonging to the disease or case group if:
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Here μi,1 is the mean score for the ith gene in the case
group, μi,2 is the mean score for the ith gene in the con-
trol group, and si is the common standard deviation of
the interindividual gene score values for gene i in either
the case or control group. To apply such a method to
real data, all the parameters in Eq. (2) must be esti-
mated. If si is known, then the Z test statistic:
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has expectation δi and is approximately normally dis-
tributed. A naive application of LDA would assign an
individual to the disease group if:
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In practice, one would want to consider only genes
with the largest Z statistics in application of Eq. (2),
effectively restricting the range of the sum to the subset
of the most associated genes. Unfortunately, a large
selection bias is associated with using the Z statistics
directly for this subset of genes, because they are most
likely large overestimates of the true values of δi. How-
ever, if we can assume that Zi is normally distributed
with variance 1 (which is true asymptotically no matter
what the distribution of the original Xi), we can apply
the empirical Bayes approach to obtain a Bayes estimate
of δi that will effectively shrink Zi toward zero using an
empirically estimated prior distribution. These Bayes
estimates of δi can then be substituted for Zi in Eq. (7)
to produce a better prediction rule, which assigns an
individual to the disease group if:
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where S is the subset of genes showing the largest
marginal association with the disease.

Model 2: weighted empirical Bayes model
We expected that nonsynonymous SNPs are more likely
to be directly involved in disease pathogenesis than
synonymous SNPs. In this section, we propose a method
to incorporate this annotation information into the
empirical Bayes model. By fixing gene i, we separately
consider two gene scores calculated by restricting the
set of SNPs to contain only synonymous or only nonsy-
nonymous SNPs. We denote these gene scores as Xi

n

and Xi
s , respectively. The relative importance of the

nonsynonymous SNPs compared to the synonymous
SNPs in gene i can be measured as:
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where pi|n and pi|s are p-values associated with the ith
gene score from the nonsynonymous SNPs and the
synonymous SNPs, respectively. These p-values were
calculated by fitting a logistic regression model in which
the disease trait is regressed on either the synonymous
or nonsynonymous gene and the Smoke covariate. A
larger wi implies that the nonsynonymous SNPs from
the ith gene have a relatively strong association with the
disease trait compared with the synonymous SNPs.
Throughout this section, the superscripts n and s refer
to nonsynonymous and synonymous, respectively. The
other notation is consistent with that introduced in the
Model 1 subsection.
By combining the gene weight with the gene scores

from both nonsynonymous SNPs and synonymous
SNPs, we create a new gene score (weighted score):

X w X w X i Ni i i
n
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In this setting, the LDA rule is to classify an individual
with new measurements ( X Xi N

* *,..., ) as belonging to
the disease group if:
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where d i
* and Wi

* are defined similarly as in the
Model 1 subsection.
As before, d i

* is estimated by shrinking Zi
* using the

empirical Bayes method developed by Efron [4]. The
test statistic:
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still follows a normal distribution with expectation d i
*

and variance 1; then the application of LDA would
assign an individual in the same way.

Model 3: joint covariance model
The strong linkage disequilibrium (LD) between nonsy-
nonymous SNPs and synonymous SNPs for any particu-
lar gene may induce nonsynonymous SNPs and
synonymous SNPs to be highly correlated. This correla-
tion may greatly affect the eventual predicting result.
Building a bivariate model to incorporate nonsynon-
ymous and synonymous SNP information simulta-
neously will properly overcome this difficulty. More
realistically, we can assume that:
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where Pi is the correlation matrix for X Xi
n

i
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After some algebra, it follows that the optimal LDA
rule is to assign an individual to the disease group if:
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different populations of parameters, and, as a result, the
associated empirically estimated prior distributions
should be different. This motivates shrinking the nonsy-
nonymous and synonymous Z values separately and
then applying the resulting Bayes estimates into Eq.
(17). If there is evidence in the data that the nonsynon-
ymous SNPs are more powerful in distinguishing
between disease and nondisease, then the synonymous
SNPs will be shrunk more. This implicitly gives the non-
synonymous gene scores higher weight in the prediction
rule.

Other issues: multiple replicates, treatment of covariates,
and cross-validation and selection
One issue that the models need to take into account is
multiple replicates. The GAW17 data are generated
from a simulation model that assigns deleterious
effects to some coding variants within a subset of
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genes in specific pathways from the 1000 Genomes
Project [6]. A unique feature of the GAW17 data is
that a large proportion of rare variants are reliably
observed in most of the 200 replicates of the data set.
Thus for any particular gene i, we can define Z statis-
tics for R replicates {Zi1, …, ZiR}, each of which has an
N(δi, 1) distribution. One can then use:
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as a better estimate of δi. However, Zi no longer has
variance 1. A naive analysis would propose:
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However, one would expect that:

r = ( ) >Cor Z Zis it, 0 (20)

because there should be a tendency for the sets of
individuals having the disease phenotype for any two
different replicates to have significant overlap. Under
the assumption that:
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for the sth replicate and tth replicate for the ith
gene,
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Because the new variables Zi
* have variance 1, Efron’s

shrinkage algorithm can be applied directly to
Z Z1 3205

* *,...,{ } . Note that these shrunken Z values are
the Bayes estimates of:
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are then substituted into Eq. (9). To estimate r, we
assume the relationship:
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The second issue in the models is the treatment of
covariates. The covariates available in the GAW17 data
(i.e., age, sex, and smoking status) have a dominant role
in conferring disease risk, and it does not make sense to
shrink these variables. When we allow covariates into
our prediction rule, the prediction formula becomes:

d    
i i

i S
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The last issue we want to mention is cross-validation
and selection of the best subset of genes. Cross-validation
is necessary to select the number of genes involved in any
of the prediction rules to avoid the bias of prediction
error. Cross-validation is implemented by using 50 repli-
cates of the GAW17 data as training data, 50 replicates as
test data, and the other 100 replicates as validation data.
The Z scores and associated Bayes estimates are calculated
on the training data. The error is evaluated on the test
data using the prediction rule for each possible number of
genes until we have clearly found the prediction rule with
the minimum cross-validation error. The best prediction
rule is finally applied to the validation data to find an
unbiased estimate of the cross-validation error. The opti-
mal number of genes to use in the prediction rule is calcu-
lated based on the prediction accuracy on the test data set.
It should be noted that for the cross-validation we use a
rule of the form:
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to account for the imbalance between case and control
samples in the actual GAW17 data.

Other classifiers
To evaluate the competitive performance of our pro-
posed methods, we also fitted a random forest classi-
fier [7] and a neural network classifier to the GAW17
data. The random forest classifier is known to perform
remarkably well on a large variety of risk prediction
problems (see [8]) and has been extensively used in
genomic applications. The comparable performance to
other classification methods, such as diagonal linear
discriminant analysis (DLDA), K nearest neighbor
(KNN) analysis, and support vector machines (SVM),
has been demonstrated in a microarray study [9], and
the successful application to a large data set has been
demonstrated in a genome-wide association study [10].
The technique works by fitting a large number of clas-
sification or regression trees to bootstrapped versions

of the original data set and then averaging over all
these trees to form the prediction rule. The neural net-
work classifier is another efficient learning method and
has been widely used in many fields, especially risk
prediction [8].

Results
Table 1 displays the 10 most important variables that
were found using the empirical Bayes (EB), weighted
empirical Bayes (WEB), and joint covariance (JC)
methods. It is clear that the environmental variables
Age and Smoke have extremely strong signals and
dominate the resultant models whenever they are
included. In addition, the gene FLT1 expresses a
strong association with the disease trait and is found
in the gene list for these three methods. We also
detected another gene, C10ORF107, that is near to the
true causal gene SIRT1. If we extend the gene list to
the 30 most highly associated genes, PIK3C2B, another

Table 1 Prediction rule of three proposed methods

Feature Empirical Bayes method Weighted empirical Bayes method Joint covariance model

Genes #SNP MAF Genes #Syn SNP #Non SNP MAF Genes #Syn SNP #Non SNP MAF

1 Age Age Age

2 Smoke Smoke Smoke

3 ATP11A 1 0.29 SUSD2 13 23 <0.01 ATP11A 1 0.29

2 4 0.01–0.05

1 2 ≥0.05

4 FLT1 25 <0.01 FLT1 8 17 <0.01 BUD13 1 0.11

7 0.01–0.05 5 2 0.01–0.05

3 ≥0.05 2 1 ≥0.05

5 SUSD2 36 ATP11A 1 0.29 C10ORF107 1 0.13

6

3

6 BUD13 1 0.11 RIPK3 4 13 <0.01 RIPK3 4 13 <0.01

1 1 0.01–0.05 1 1 0.01–0.05

1 1 ≥0.05 1 1 ≥0.05

7 RIPK3 17 <0.01 BUD13 1 0.11 SUSD2 13 23 <0.01

2 0.01–0.05 2 4 0.01–0.05

2 ≥0.05 1 2 ≥0.05

8 C10ORF107 1 0.13 ADAMTS4 10 23 <0.01 FLT1 8 17 <0.01

2 2 0.01–0.05 5 2 0.01–0.05

1 2 ≥0.05 2 1 ≥0.05

9 ADAMTS4 33 <0.01 WNT16 8 7 < 0.01 GPR158 1 0.1

4 0.01–0.05 1 2 0.01–0.05

3 ≥0.05 2 ≥0.05

10 MAP3K12 14 <0.01 GOLGA1 1 <0.01 ANAPC5 14 12 <0.01

3 0.01–0.05 1 0.01–0.05 1 0.01–0.05

1 ≥0.05 ≥0.05

Top 10 important features from the model incorporating genes and environmental variables for the three proposed methods. #SNP, number of SNPs within a
specific gene; #Syn SNP, number of synonymous SNPs; #Non SNP, number of nonsynonymous SNPs. MAF shows three intervals of minor allele frequency:
MAF < 0.01, 0.01 ≤ MAF < 0.05, and MAF ≥ 0.05. The boldfaced genes and environmental variables are real causal features that are selected across the three
proposed models.
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true causal gene, is involved in the prediction rule.
Under the simulation design for the GAW17 data set,
if a large proportion of rare variants are involved in
this data set, then we need to record the number of
SNPs and the minor allele frequency (MAF) interval
of SNPs within these highly significant genes (see
Table 1). It is obvious that the MAF of most SNPs
within these selected genes is less than 0.01. Both the
WEB and JC methods incorporate SNP annotation
information in the models; the number of SNPs is
further divided into two groups: the number of synon-
ymous SNPs and the number of nonsynonymous
SNPs. When compared with the synonymous SNPs,
the important genes in Table 1 have a larger propor-
tion of nonsynonymous rare variants in the WEB and
JC models.
The feature selection procedure of the EB method is

also compared with the random forest (RF) method and
logistic regression (LR). The comparison results are

summarized in Table 2. According to the RF classifier,
10 features with the largest sum importance score are
selected from separate RF classifiers on each of the 100
replicates. Under LR, 10 features with the smallest p-
values are chosen from the 100 replicates. In brief, six
features in the RF method and 10 features in LR are
consistent with features in the EB model, and the con-
cordance rate in feature selection is quite high between
our proposed methods and other classifiers.
The comparison results of misclassification error for

our proposed methods are displayed in Table 3. The
first row in Table 3 gives the average misclassification
error obtained from the model derived on the training
and test data to predict the phenotype values of the 100
validation replicates (see the earlier discussion of cross-
validation). Note that this error may depend on which
100 replicates are chosen. To explore this issue, we ran-
domly split the 200 replicates into training, test, and
validation sets five times. This enabled us to compute a

Table 2 Comparison of the prediction rule between the empirical Bayes and other classifiers

Feature Empirical Bayes method Random forest classifier Logistic regression

Genes #SNP MAF Genes #SNP MAF Genes #SNP MAF

1 Age Age Age

2 Smoke Smoke Smoke

3 ATP11A 1 0.29 FLT1 25 <0.01 SUSD2 36 <0.01

7 0.01–0.05 6 0.01–0.05

3 ≥0.05 3 ≥0.05

4 FLT1 25 <0.01 SUSD2 36 <0.01 ATP11A 1 0.29

7 0.01–0.05 6 0.01–0.05

3 ≥0.05 3 ≥0.05

5 SUSD2 36 SHD 10 < 0.01 BUD13 1 0.11

6 1 0.01–0.05

3 2 ≥0.05

6 BUD13 1 0.11 RIPK3 17 <0.01 RIPK3 17 <0.01

2 0.01–0.05 2 0.01–0.05

2 ≥0.05 2 ≥0.05

7 RIPK3 17 <0.01 ADAMTS4 23 <0.01 FLT1 25 <0.01

2 0.01–0.05 4 0.01–0.05 7 0.01–0.05

2 ≥0.05 3 ≥0.05 3 ≥0.05

8 C10ORF107 1 0.13 CECR1 8 <0.01 MAP3K12 14 <0.01

0.01–0.05 3 0.01–0.05

4 ≥0.05 ≥0.05

9 ADAMTS4 33 <0.01 GOLGA1 1 <0.01 ADAMTS4 33 <0.01

4 0.01–0.05 1 0.01–0.05 4 0.01–0.05

3 ≥0.05 1 ≥0.05 3 ≥0.05

10 MAP3K12 14 <0.01 C14orf108 16 <0.01 C10ORF107 1 0.13

3 0.01–0.05 1 0.01–0.05

2 ≥0.05

The top 10 important features from the model incorporating genes and environmental variables between our proposed method (empirical Bayes) and other
classifiers (random forest and logistic regression). #SNP, number of SNPs within a specific gene. MAF shows three intervals of minor allele frequency: MAF < 0.01,
0.01 ≤ MAF < 0.05, and MAF ≥ 0.05. The boldfaced genes are real causal features that are selected simultaneously from the three models; for example, FLT1 is
observed using the three classifiers.
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standard error of the mean prediction error for the EB,
WEB, and JC methods (see Table 3). Note that the dif-
ferences between the means are large relative to the
standard errors and likely reflect true differences in the
performance of the three methods. It is clear that the
WEB method provides the smallest average misclassifi-
cation error (0.236) followed by the JC method (0.241)
and the EB method (0.26).
We also compared the prediction accuracies for our

proposed methods using the area under curve (AUC)
value (Table 3). When both genes and environmental
variables are involved in the prediction model, the WEB
method gives the highest AUC value (0.80) followed by
the JC method (0.78) and the EB method (0.76). All
three methods perform better than other classifiers: RF
(0.67), neural network 1 (NN1: 0.68), and neural net-
work 2 (NN2: 0.70) (Table 4). It is easy to see that the
EB-based neural network classifier (0.70) provides a lar-
ger AUC value than the LR-based neural network classi-
fier (0.68). The relevant three receiver operating
characteristic (ROC) curves corresponding to our pro-
posed methods are plotted in Figure 1.
In summary, our proposed methods significantly

improve the accuracy of the prediction model com-
pared with other classifiers. Because the environmental
variables have such a strong influence in the prediction
model, we also fitted the EB, WEB, and JC models
using the genetic variables alone in order to determine
the prediction accuracy achievable through purely
genetic information (Table 3). In this case, the best
AUC value is achieved using the WEB method (0.64)
followed by the JC method (0.62) and the EB method
(0.60) (Figure 2).
Of course, in practical applications more than one

replicate cannot be obtained. This scenario can be

represented by training and testing the prediction
model using only one replicate. When one does this,
the prediction model based on the EB method is still
quite good. For example, FLT1 is always in the list of
the 10 most strongly associated features in the EB
model. If a similar model is fitted using the RF classi-
fier, no causal genes tend to be found in the top gene
list (Table 5). In addition, the EB method provides a

Table 4 Comparison of AUC value for the empirical Bayes and other classifiers

Item Model Statistics Empirical Bayes model Random forest classifier Neural network 1 Neural network 2

AUC value Gene + environment Mean 0.76 0.67 0.68 0.70

SE 0.0102 – – –

AUC value indicates the area under the ROC curve when minimizing the cross-validation error. Neural network 1 used selected features from the logistic
regression; neural network 2 used selected features from the empirical Bayes method. SE is the standard error of the AUC value.

Table 3 Cross-validation error and AUC value for the three methods

Item Model Statistic Empirical Bayes method Weighted empirical Bayes method Joint covariance model

Cross-validation error Gene + environment Mean 0.26 0.24 0.24

SE 0.0020 0.0011 0.0012

AUC value Gene + environment Mean 0.76 0.80 0.78

SE 0.0102 0.0015 0.0148

AUC value Gene Mean 0.60 0.64 0.62

SE 0.0191 0.0183 0.0191

AUC is the area under the ROC curve when minimizing the cross-validation error. SE, standard error of the cross-validation error and the AUC value.
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Figure 1 ROC curves for the EB, WEB, and JC methods for the
prediction model using genes and environmental covariates.
The black dotted line is the ROC curve generated from gene and
environmental covariates in the prediction model based on the
empirical Bayes (EB) method. The blue solid line is the ROC curve
from the weighted empirical Bayes (WEB) model. The purple dot-
dashed line is the ROC curve from the joint covariance (JM) model.
The red dashed line is the diagonal.
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substantively larger AUC value (0.72) than the RF clas-
sifier (0.66) (Table 6).

Conclusions
It is well known that developing a good disease risk pre-
diction model based on genome-wide association data is
a difficult task; the number of predictors can be orders
of magnitude higher than the number of samples that
are genotyped. This is certainly the case in the GAW17
mini-exome data set, in which there is information on
24,487 SNPs for only 697 samples. In this paper, we
have used the good properties of the empirical Bayes
prediction model that Efron [4] developed in a large-
scale microarray context to build a prediction model for
these data. An interesting feature of the GAW17 data is
that they provide annotation information for each SNP
in the form of a synonymous/nonsynonymous indicator.
Because only nonsynonymous SNPs affect protein func-
tion, we expect that they, rather than synonymous
SNPs, are more likely to be directly involved in disease
pathogenesis. We propose two ways (weighted empirical
Bayes model and joint covariance model) to properly
incorporate this annotation information into the predic-
tion model. The weighted empirical Bayes model pro-
vides the best performance (relatively small cross-
validation error and larger AUC value). We also com-
pare the three EB classifiers with two other popular clas-
sifiers (random forest and neural network). The EB

Table 5 Prediction rule for two classifiers based on one
replicate

Feature Empirical Bayes classifier Random forest classifier

Genes #SNP MAF Genes #SNP MAF

1 Age Age

2 Smoke Smoke

3 GOLGA1 1 <0.01 OR1L6 <0.01

1 0.01–0.05 3 0.01–0.05

1 ≥0.05 1 ≥0.05

4 FLT1 25 <0.01 VTI1B 9 <0.01

7 0.01–0.05 1 0.01–0.05

3 ≥0.05 1 ≥0.05

5 NFKBIA 6 <0.01 DENND1A 19 <0.01

0.01–0.05 3 0.01–0.05

2 ≥0.05 4 ≥0.05

6 DGKZ 17 <0.01 C9ORF66 4 <0.01

4 0.01–0.05 3 0.01–0.05

1 ≥0.05 4 ≥0.05

7 SMTN 23 <0.01 CECR1 8 <0.01

4 0.01–0.05 0.01–0.05

2 ≥0.05 4 ≥0.05

8 PAK7 1 0.30 MAP3K12 14 <0.01

3 0.01–0.05

≥0.05

9 ADAM15 22 <0.01 SLC20A2 24 <0.01

5 0.01–0.05 4 0.01–0.05

3 ≥0.05 1 ≥0.05

10 ADAMTS4 33 <0.01 ALK 9 <0.01

4 0.01–0.05 1 0.01–0.05

3 ≥0.05 6 ≥0.05

Top 10 important features from the model incorporating genes and
environmental variables (Age and Smoke) using one replicate between our
proposed method (empirical Bayes) and the random forest method. #SNP,
number of SNPs within a specific gene. MAF shows three intervals of minor
allele frequency: MAF < 0.01, 0.01 ≤ MAF < 0.05, and MAF > 0.05. The
boldfaced gene FLT1 still can be selected in the empirical Bayes method but
is not observed using the random forest method.

Table 6 Cross-validation error and AUC value for the
empirical Bayes and random forest methods based on
one replicate

Item Model Statistics Empirical
Bayes
method

Random
forest
method

Cross-validation
error

Gene +
environment

Mean 0.26 0.23

SE 0.009 –

AUC value Gene +
environment

Mean 0.72 0.66

SE 0.058 –

AUC value is the area under the ROC curve when minimizing the cross-
validation error. SE is the standard error of the cross-validation error and the
AUC value.
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Figure 2 ROC curves for the EB, WEB and JC methods for the
prediction model using genes only. The black dotted line is the
ROC curve generated from the prediction model using genes only,
based on the empirical Bayes (EB) method. The blue solid line is the
ROC curve from the weighted empirical Bayes (WEB) model. The
purple dot-dashed line is the ROC curve from the joint covariance
(JC) model. The red dashed line is the diagonal.
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classifiers have superior prediction performance in terms
of AUC value. Based on this analysis, we think that
Efron’s empirical Bayes risk prediction model, extended
in the manner that we describe here, is a useful and
powerful tool for disease risk prediction in genome-wide
association studies.
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