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Abstract

Genome-wide association studies (GWAS) test for disease-trait associations and estimate effect sizes at tag single-
nucleotide polymorphisms (SNPs), which imperfectly capture variation at causal SNPs. Sequencing studies can
examine potential causal SNPs directly; however, sequencing the whole genome or exome can be prohibitively
expensive. Costs can be limited by using a GWAS to detect the associated region(s) at tag SNPs followed by targeted
sequencing to identify and estimate the effect size of the causal variant. Genetic effect estimates obtained from
association studies can be inflated because of a form of selection bias known as the winner's curse. Conversely,
estimates at tag SNPs can be attenuated compared to the causal SNP because of incomplete linkage disequilibrium.
These two effects oppose each other. Analysis of rare SNPs further complicates our understanding of the winner’s
curse because rare SNPs are difficult to tag and analysis can involve collapsing over multiple rare variants. In two-
stage analysis of Genetic Analysis Workshop 17 simulated data sets, we find that selection at the tag SNP produces
upward bias in the estimate of effect at the causal SNP, even when the tag and causal SNPs are not well correlated.
The bias similarly carries through to effect estimates for rare variant summary measures. Replication studies designed
with sample sizes computed using biased estimates will be under-powered to detect a disease-causing variant.
Accounting for bias in the original study is critical to avoid discarding disease-associated SNPs at follow up.

Background

Selection bias in genetic association studies arises when
the same sample is used for both gene discovery and effect
estimation. Under the low power that is common in a gen-
ome-wide association study (GWAS), selection causes
upward bias in the magnitude of genetic effect estimates
because the effect size is estimated only when the test sta-
tistic exceeds the threshold for significance. This phenom-
enon is also known as the winner’s curse, and its effect on
linkage analyses and on case-control association was
demonstrated by Goring et al. [1] and Garner [2], respec-
tively. In a two-stage design, the correlation between the
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tag single-nucleotide polymorphism (SNP) used for selec-
tion and one or more causal variants adds complexities to
the understanding of the winner’s curse.

Linkage disequilibrium causes the test statistics and
effect size estimates at the tag and causal SNPs to be
correlated. Linkage disequilibrium can be quantified by
* or other measures, but in this case we focus on the
Pearson correlation coefficient r as an estimate of corre-
lation p. Low correlation between the tag SNP and cau-
sal SNPs decreases the power to detect the effect at the
tag SNP, which induces upward selection bias in both
the tag and causal SNP estimates. On the other hand, as
correlation decreases, the tag effect attenuates and selec-
tion at the tag SNP exerts less influence on the estimate
at the causal SNP [1-3]. The balance between these two
trends determines the degree of bias in the estimates.
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Sequencing studies can uncover rare SNPs, for which
conventional tests, such as single-SNP linear or logistic
regression, are not powerful. Recently, methods to test
for and estimate the effect size of multiple rare variants
have been proposed. Several investigators have proposed
a region-specific regression method that collapses geno-
types at all rare variants in a specified region [4,5].
Within the region, #; is the number of rare SNPs geno-
typed for individual i, r; is the number of rare SNPs at
which individual i has a rare allele, and the independent
variable is 7;/n;. Morris and Zeggini define the regression
parameter A as the genetic effect size for an individual
carrying the rare allele at each of these n; rare SNPs [4].

In a two-stage design the relationship between the tag
SNP and a rare causal SNP is complicated by the minor
allele frequency (MAF) and the contribution of multiple
causal SNPs to r;/n;. The correlation coefficient r
between two SNPs has an upper bound that depends on
the difference between the MAFs. A tag SNP with MAF
> 5% will capture little of the variation at a rare SNP
with MAF < 0.1%, especially in a small sample. A tag
SNP with a low MAF tends to do better at capturing
variation at a rare causal SNP. When multiple rare
SNPs contribute to the genetic score for an individual, a
useful tag SNP would be correlated with multiple SNPs.

In this paper, we study the consequences of a two-
stage design for estimating the genetic effect at both the
GWAS and sequencing stages. Using the Genetic Analy-
sis Workshop 17 (GAW17) unrelated mini-exome data
set [6] and the corresponding tag SNP genotypes drawn
from the publicly available HapMap data set [7], we esti-
mate the magnitude of the winner’s curse and the
attenuation resulting from incomplete correlation
between the tag SNP and causal SNPs. We demonstrate
that selection bias occurs in both stages, even when the
tag SNP is poorly correlated with the rare or the com-
mon causal SNP(s).

Methods

We examine three different two-stage scenarios
described below in which first a genetic effect is
detected at a tag SNP in a GWAS, then the gene is
sequenced to find the true causal SNP(s), and finally the
genetic effect is estimated at the true causal SNP(s). We
compare the distribution of genetic effect estimates over
varying correlations between the tag SNP and the causal
SNP and over varying MAFs at both SNPs. The exami-
nation of the design matrix for the additive model
shows that the relevant quantity, yTC, for comparing
the tag SNP and causal SNP effects is:
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where pc is the causal SNP MAF, pr is the tag SNP
MAF, and prc is the correlation between the tag SNP
and causal SNPs. Without loss of generality, we use prc
to refer to both the correlation parameter and the Pear-
son correlation coefficient in the finite sample.

For analysis, we classify the GAW17 data into the fol-
lowing subpopulations: CEPH (European-descent Utah
residents), Chinese, Japanese, Tuscan, Luhya, Yoruba,
Europeans (CEPH + Tuscan), Asians (Chinese + Japa-
nese), and Africans (Luhya + Yoruba). We define a com-
mon SNP as one with MAF > 5% and a rare SNP as one
with MAF < 5% within a subpopulation. We compute 7;/
n; over all rare SNPs in a gene. We use a linear model
with covariates Age and Smoking for trait Q1 and no
covariates for Q2, as specified in the simulation model.
To avoid sparse data when stratifying by ethnicity, we
use a logistic model with no covariates for disease
status.

Scenario 1: common tag SNP, common causal SNP

In the first scenario, the tag SNP detected in the stage 1
GWAS is common and the causal SNP found in the
stage 2 sequencing study is also common. We construct
a two-stage study combining the GAW17 data set with
the HapMap data set as follows. For the stage 1 GWAS,
we obtain genotypes at tag SNPs for the individuals in
the GAW17 data set (matched by individual ID) from
the HapMap data set (build 36, available at http://hap-
map.ncbi.nlm.nih.gov) [7]. For the stage 2 sequencing
study, we use the GAW17 mini-exome data set for
unrelated individuals. We included all 616 subjects for
which there was genotype data in both the HapMap
build 36 and GAW17 data sets.

For each stage 1 tag SNP, we test for additive genetic
effect with trait Q2 using a linear model and select all
data sets that are significant at a p-value threshold of
0.05. For each data set in which the tag SNP is significant,
we estimate the effect at the tag SNP. In stage 2, we esti-
mate the additive genetic effect size for the common cau-
sal SNP or rare SNP collapsing statistic r;/n; for all data
sets in which the tag SNP is significant. We compare the
estimates obtained from data sets in which the tag SNP is
significant with the estimates obtained for all 200 data
sets. PLINK was used for all analyses [8,9].

We describe the distribution of estimates using a box-
plot (Figure 1). We present results for quantitative trait
Q2 with causal SNP C6S5380 and tag SNPs from the
HapMap data set that fall within the VNNI gene, as
defined by the gene information file provided with the
GAW17 data set. In Figure 1, we present boxplots for
the distribution of the genetic effect estimates over 200
replications for six HapMap tag SNPs that are correlated
with the causal SNP and one tag SNP that is not
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Figure 1 Distribution of estimates for a common tag SNP and a common causal SNP. Boxplot of estimates of genetic effect at a tag SNP
(GWAS stage 1) and causal SNP C655380 (sequencing stage 2) on quantitative trait Q2 over 200 replicates with and without selection at a stage
1 tag SNP for additive genetic effect using a selection threshold p < 0.05. pc is the MAF of the causal SNP, pr is the MAF of the tag SNP, prc is
the correlation between the tag SNP and the causal SNP. Horizontal lines are the null effect size (zero) and the mean of causal SNP genetic
effect estimates without selection. Because of sampling variation, the mean is different from the median (band in middle of boxplots).

correlated with the causal SNP. Because we observed
large effect sizes for this uncorrelated tag SNP on both
sides of the null value, we used a one-sided test (o =
0.025) to ensure that the boxplot would reflect the mag-
nitude of the effect. Using the causal SNP as its own
tag, we also include the case in which the tag SNP is
perfectly correlated with the causal SNP. In Figure 1 we
present 4 boxplots for each tag SNP: (1) the causal SNP
genetic effect estimates over all 200 replicates (light
blue), (2) the tag SNP estimates over all 200 replicates
(orange), (3) the tag SNP estimates for all replicates in
which the tag SNP is significant (red), and (4) the causal
SNP estimates for all replicates in which the tag SNP is
significant (blue).

Scenario 2: common tag SNP, multiple rare causal SNPs
In the second scenario, the tag SNP is common and there
are multiple rare causal SNPs in the same gene at the
sequencing stage. We construct a two-stage study from
the GAW17 data set using all 697 individuals: The com-
mon SNPs are used as tag SNPs and the rare SNPs are
used as sequencing SNPs. For each stage 1 tag SNP, we
test for additive genetic effect with traits Q1, Q2, and dis-
ease status and select all data sets for which the tag SNP
p-value is smaller than the significance threshold (the
threshold was chosen so that estimated power was less
than 20%) indicated in Table 1. We estimate the additive
genetic effects of the parameter 8 at the tag SNP and the
parameter A for the r;/n; rare SNP collapsing statistic.



Table 1 Bias in genetic effect estimates for a common tag SNP and multiple rare causal SNPs

Trait Gene Population Tag SNP Rare SNP collapsing statistic r;/n;
SNP  Significance level Estimated power Mean effect estimate Correlation Mean effect estimate
for additive test  for additive test between tag SNP
and ri/n;
Over all  Over data sets with  Relative Over all  Over data sets with  Relative
data sets significant tag effect bias (%) data sets significant tag effect bias (%)
Q1 KDR CEPH 451878 0.001 0.15 0.63 093 49 041 551 6.19 12
DS PIK3C2B Tuscan C159170 0.05 0.10 0.87 226 160 040 6.69 7.08 6
DS PIK3C2B  Tuscan  C159171 0.05 0.10 087 226 160 040 6.69 7.08 6
DS PTK2B CEPH 85911 0.05 0.10 0.67 149 122 0.51 1.99 291 46
DS PTK2B Chinese (85925 0.05 0.06 0.21 123 476 047 034 153 350

Results for scenario 2. Values computed as described in the Results section. DS is disease status.
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Scenario 3: tag SNP with MAF 1-5%, multiple rare causal
SNPs

In the third scenario, we consider the case in which the
tag SNP has a low MAF and there are multiple rare cau-
sal SNPs in the same gene in the sequencing stage. We
construct a two-stage study from the GAW17 data set
using all 697 individuals: Each SNP in a causal gene
with MAF between 1% and 5% is in turn used as the
GWAS tag SNP; the rest are used as sequencing SNPs
(i.e., the tag SNP is excluded from the collapsing statis-
tic r;/n;). For each tag SNP, we test for additive genetic
effect with traits Q1, Q2, and disease status. We select
data sets and estimate effect sizes as in scenario 2.

Results

We use boxplots or summary measures to describe the
effect of selection on the distribution of estimates at the
tag SNP and causal SNPs. For scenario 1, we test at a
fixed threshold for significance (Figure 1). For scenarios
2 and 3, we select significance thresholds required for
low power. Power is estimated as the proportion of data
sets for which the tag SNP test is significant. The mean
effect estimate is computed over all 200 data sets and is
also computed over all data sets for which the tag SNP
additive test is significant. We compute the summary
measure relative bias as the difference between the
mean estimate over data sets for which the tag SNP is
significant and the mean estimate over all 200 data sets,
divided by the mean estimate over all 200 data sets
(Table 1 and 2).

Scenario 1
The expected pattern of attenuation resulting from
imperfect correlation is evident in the distributions of
the genetic effect estimates at the tag SNP and causal
SNP. The tag SNP estimates (Figure 1, orange boxplots)
increase with the yrc quantity from equation 1. Selec-
tion for significant genetic effect at the tag SNP induces
upward bias into the estimate. As yrc increases, the
power increases and the effect of selection decreases.
The difference between the tag SNP estimates with and
without selection is much smaller when yr¢ is larger
(Figure 1, orange and red box plots). When yr¢ is 0, as
for the null case, only the most extreme data sets are
selected, and the bias away from the null value is large.
When yrc is 1, power is high and the bias is smaller.
Because of correlation between the tag SNP and the
causal SNP, selection bias in the tag SNP estimate carries
through to the causal SNP estimate. Two factors influ-
ence the bias at the causal SNP: (1) the correlation
between the tag SNP and the causal SNP and (2) the
power to detect the effect at the tag SNP. When y7c is
small, power is low and so the upward bias resulting
from selection at the tag SNP is large. As yrc increases,
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power increases and selection bias decreases. On the
other hand, when y7¢ is small, the correlation between
the tag SNP and causal SNP estimates is small, and so
the effect of selection at the tag SNP, although large, car-
ries through to the causal SNP only to a small degree. As
Yrc increases, the correlation increases and the effect of
selection, although small, is carried through to a greater
degree. These two effects tend to balance each other out
so that the bias is similar over the small range of yr¢ in
the tag SNPs that we examined. The exceptions are at
the extremes. If the tag SNP and the causal SNP are com-
pletely uncorrelated, then none of the selection at the tag
SNP carries through to the causal SNP (Figure 1, box-
plots at far left). If the tag and causal SNPs are perfectly
correlated (in our case the tag SNP is in fact the causal
SNP), then power to detect the SNP is so high that selec-
tion bias is minimal (Figure 1, boxplots at far right).

Scenario 2

Rare causal SNPs can be difficult to tag with common
SNPs because of the upper bound for correlation
between two SNPs with different MAFs. In causal genes
with multiple rare SNPs, we found 68 SNPs with MAF
> 5%. Of these, there were only five SNPs that tagged
the effect of the rare SNPs (correlation with r;/n; was p
> 0.4 for power to detect effect above significance level
o for at least one of o = 0.001, 0.01, or 0.05). The corre-
lation was low in all five cases (Table 1). The mean tag
SNP genetic effect estimate was inflated by selection.
Estimates of the rare SNP parameter were biased but to
a lesser degree. When there is imperfect correlation
between the tag SNP and causal SNPs, some but not all
of the selection bias at the tag SNP is transferred to the
causal SNP estimate.

Scenario 3

Rare causal SNPs can be more easily tagged with low-
MAF SNPs, because two SNPs with similar MAFs have
a higher upper bound for correlation. In causal genes
with multiple rare SNPs, we found 162 SNPs with
MAF between 1% and 5%. Of these, 12 tagged the
effect of the rare SNPs (as defined earlier). The corre-
lation was much higher for these rare tag SNPs than
for the common tag SNPs in scenario 2. Bias in the
estimate at the tag SNP was, on average, more severe
when power was low (Table 2), and relative selection
bias at r;/n; was also more severe when power was low,
although that bias was usually smaller at the causal
SNP than at the tag SNP. When we examined cases
for which the tag SNP bias was similar (152-186%),
bias for the r;/n; estimate tended to be higher when
correlation was higher. This demonstrates how with
higher correlation, more of the tag SNP bias is trans-
ferred to the causal SNP.



Table 2 Bias in genetic effect estimates for a rare tag SNP and multiple rare causal SNPs

Trait Gene Population Tag SNP Rare SNP collapsing statistic r;/n;
SNP Significance level Estimated power Mean effect estimate Correlation Mean effect estimate
for additive test for additive test between tag SNP
and r;/ni
Over all  Over data sets with  Relative Over all  Over data sets with  Relative
data sets significant tag effect bias (%) data sets significant tag effect bias (%)

Q1 FLT4  Chinese  C555141 0.01 0075 052 1.00 94 046 3.26 405 24
Q2 PLAT Luhya (851797 0.05 0.105 029 098 241 046 037 1.71 356
Q2 SREBF1 CEPH C1751023 0.05 0.135 0.59 1.63 177 0.81 2.00 397 98
Q2 VLDLR Tuscan C95404 0.01 0.055 0.84 2.28 173 051 0.99 2.53 155
Q2  VIDLR  Tuscan C95471 0.01 0.055 0.84 228 173 051 0.99 253 155
Q2 VWF CEPH C125193 0.01 0.070 0.34 093 171 0.65 061 1.12 85
Q2 VWF CEPH C125200 0.01 0.080 041 1.15 182 061 0.57 1.04 84
Q2 VWF CEPH C125203 0.05 0.075 0.21 0.53 157 0.48 0.63 093 47
Q2 VWF CEPH C125211 0.01 0.070 0.34 0.87 152 0.78 0.65 1.39 113
Q2 VWF  Japanese (125193 0.05 0.070 0.21 072 244 0.56 -0.12 036 403
Q2 VWF  European  C125193 0.05 0.200 031 079 153 062 055 1.03 87
Q2 VWF  European 125200 0.01 0.070 030 092 203 045 049 0.95 93
Q2 VWF European  C125203 0.05 0.070 0.18 0.50 180 0.46 0.58 0.85 47
Q2 VWF European  C125211 0.01 0.055 0.32 0.90 186 0.74 0.59 122 107
Q2 VWF All C125203 0.05 0.140 0.16 041 160 048 0.69 1.06 54
DS PTK2B CEPH (85883 0.05 0.075 0.95 240 153 0.53 2.35 13.83 489
DS PTK2B  Chinese (85885 0.05 0.050 0.16 1.24 692 0.87 038 268 610
DS PTK2B  European 85911 0.05 0.130 0.63 1.27 102 0.50 2.04 2.86 40
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Discussion

Our mini-exome two-stage study design was different
from a genome-wide two-stage study design in several
ways. The sample size was small (hundreds instead of
thousands of SNPs), the p-value threshold for selection
was large (o = 0.05 instead of 107°), and the correlation
was less than ideal in most cases. The low correlation
resulting from linkage disequilibrium between the causal
and tag SNPs attenuated the effect size at the tag SNP,
causing tag SNP estimates to fall well below the true cau-
sal SNP effect size. With a better set of tag SNPs, the
attenuation would be less severe. To obtain an adequate
number of significant data sets for each tag SNP, we used
a liberal threshold for selection. A genome-wide signifi-
cance level (107%) would have decreased power, causing
selection bias to be more severe.

Dickson et al. [10] demonstrated how multiple rare cau-
sal SNPs can be correlated with a single common tag SNP
and can produce an apparent association at that tag SNP.
Their simulation studies also showed that this synthetic
association can occur over long ranges, often longer than
would be covered by targeted resequencing around an
associated GWAS SNP. In our study, we searched for tag
SNPs that were correlated with r;/n; within the same gene
and did not find more than two. In practice, expanding
the examined regions may detect additional tag SNPs cor-
related with the r,/n; statistic for the region, but at the cost
of additional sequencing.

Recently, methods have been proposed to correct for
upward bias in genetic effect estimates at a GWAS tag
SNP caused by selection at that same tag SNP [3,11].
Extensions of the methods are needed for two-stage
designs in which upward bias at one or more stage 2
sequencing SNPs is caused by selection at an imperfectly
correlated stage 1 GWAS tag SNP. Selection bias is of
practical importance when designing a replication study. If
the sample size is estimated from an upward-biased esti-
mate of effect size at the causal SNP, then the replication
study may be underpowered to detect the true association.
Reliable estimates of genetic effect are also important for
clinical interpretation and estimation of the proportion of
heritability explained.

Conclusions

Targeted resequencing following a GWAS is becoming a
cost-effective way to uncover causal variants not included
in commercial genotyping chips. Because of low power,
many association studies will be of low to moderate signif-
icance and follow-up studies will be required to confirm
the associations. If the causal SNP genetic effect estimate
in the original study is biased, then power to detect this
SNP in a follow-up study will also be overestimated, and
true associations not replicated because of low power may
be misinterpreted as null associations. One might expect
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that when tag and causal SNPs are not well correlated, the
effect of selection on the causal SNP estimate will be negli-
gible. Our work indicates that this is not the case. To
avoid discarding disease-associated SNPs in the follow-up
stage, it is critical that investigators account for selection
bias in the original resequencing study.
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