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Abstract

Analyzing data obtained from genome-wide gene expression experiments is challenging due to the quantity of variables,
the need for multivariate analyses, and the demands of managing large amounts of data. Here we present the R package
pcaGoPromoter, which facilitates the interpretation of genome-wide expression data and overcomes the aforementioned
problems. In the first step, principal component analysis (PCA) is applied to survey any differences between experiments
and possible groupings. The next step is the interpretation of the principal components with respect to both biological
function and regulation by predicted transcription factor binding sites. The robustness of the results is evaluated using
cross-validation, and illustrative plots of PCA scores and gene ontology terms are available. pcaGoPromoter works with any
platform that uses gene symbols or Entrez IDs as probe identifiers. In addition, support for several popular Affymetrix
GeneChip platforms is provided. To illustrate the features of the pcaGoPromoter package a serum stimulation experiment
was performed and the genome-wide gene expression in the resulting samples was profiled using the Affymetrix Human
Genome U133 Plus 2.0 chip. Array data were analyzed using pcaGoPromoter package tools, resulting in a clear separation of
the experiments into three groups: controls, serum only and serum with inhibitor. Functional annotation of the axes in the
PCA score plot showed the expected serum-promoted biological processes, e.g., cell cycle progression and the predicted
involvement of expected transcription factors, including E2F. In addition, unexpected results, e.g., cholesterol synthesis in
serum-depleted cells and NF-kB activation in inhibitor treated cells, were noted. In summary, the pcaGoPromoter R package
provides a collection of tools for analyzing gene expression data. These tools give an overview of the input data via PCA,
functional interpretation by gene ontology terms (biological processes), and an indication of the involvement of possible
transcription factors.
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Introduction

Working with genome-wide gene expression data is challenging

for the typical molecular biologist with training mainly focusing on

laboratory techniques and only to lesser extend in the fields of

mathematics or biostatistics. The large number of gene expression

measurements available requires a meaningful reduction of the

data set to make its results comprehensible. Data typically

originate from DNA microarray hybridization experiments or,

more recently, from next-generation sequencing experiments. An

example of an experiment requiring genome-wide gene expression

analysis is the extraction of RNA from a tissue sample taken in situ

or from an ex vivo cultured cell line. The differences in mRNA

levels between the different samples can be ascribed to three

different effects: consequences of cellular signal transduction,

cellular differentiation or the migration of cells into or out of the

tissue. Under these circumstances, key transcription factors are

responsible for establishing differences in the mRNA levels.

Moreover, the transcription factors involved can often be linked

to specific biological processes. For instance, the transcription

factor NF-kb is linked to inflammation [1], whereas the

transcription factor HNF-4a is linked to lipid metabolism [2].

Therefore, data analysis of genome-wide gene expression data

should allow for the interpretation of differences between groups of

experiments in terms of transcription factor involvement and

functional biological terms.

Several data analysis strategies for genome-wide gene expression

data combine an unsupervised approach for reducing the

dimension of the dataset with a supervised approach for drawing

conclusions (for reviews see [3,4,5]). Along with the advent of

DNA-microarray technology, cluster analysis has become a

popular accompaniment of unsupervised investigations of high-

dimensional data. Commonly used cluster analysis methods

display gene expression data using heat maps and dendrograms

[6,7,8]. Principal component analysis (PCA) and the related

correspondence analysis (CA) represents another class of explor-
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ative unsupervised multivariate analysis methods that provide

dimension reduction, and even though the method was first

introduced into chemistry and biology in the late 1970’s (for

review see [9]), it was already described in the early twenties

century [10]. The usefulness of PCA for analysis of genome-wide

gene expression data has recently been reviewed [11]. However,

whereas clusters of microarray hybridization experiments are

typically easily distinguishable in standard PCA plots with few

dimensions, the axes are not easily interpretable. We have

previously demonstrated that PCA can provide an experiment-

oriented view in combination with a functional interpretation of

the PCA axes with respect to transcription factor involvement and

biological function [12,13,14]. Although it is currently possible to

link PCA with annotation analysis and overrepresentation analysis

of predicted transcription factor binding sites, no software package

available is designed to streamline this analysis strategy. It is

necessary to use several software packages and to reformat the

data between the different packages. Moreover, the bioconductor

repository [15] holds at present 516 R packages, but none of these

packages implement a transcription factor binding site overrepre-

sentation analysis algorithm. Some of the bioconductor packages

implement PCA (e.g. MADE4 [16] and pcaMethods [17]) and

others annotation analysis (e.g. GOseq [18] and GOstats [19]), but

these packages are not designed to work together. It was therefore

the purpose of the present work to develop a single R package with

a number of wrapper functions that would easily combine PCA

with annotation analysis and transcription factor binding site

overrepresentation analysis. Thus, the coupling of the intuitive

understanding of differences between groups of experiments, the

potential involvement of transcription factors and biological

processes is automated by the pcaGoPromoter package. Com-

pared with other commercial and open source pathway analysis

software [20], the pcaGoPromoter is unique in using PCA score

plot interpretations.

Currently, the package provides fast and straightforward data

analysis for any genome-wide gene expression data platform using

gene symbols or Entrez IDs as probe identifiers. In addition,

several Affymetrix GeneChip platforms are also supported. In this

work, we describe a serum stimulation experiment using human

monocytes that was specifically designed to illustrate the use of the

pcaGoPromoter package algorithms and tools.

Materials and Methods

Program description
The pcaGoPromoter package provides functions that have been

designed for use with any gene expression analysis platform. In this

report, however, we use data derived from the Affymetrix

GeneChip platform for exemplification. The overall idea was to

achieve an interpretation of the score plot axes of a PCA (function

pca) in terms of biological processes (function GOtree) and the

transcription factors involved (function primo).

A pcaGopromoter online version providing access to the most

important plot functions is available at http://gastro.sund.ku.dk/

brew/pcaGoPromoter.html.

Data import
The pcaGoPromoter package supports Bioconductor’s Expres-

sionSet class [15], however, in addition any normalized data can

be used when formatted as a table with either Affymetrix probe set

IDs, gene symbols or Entrez IDs as row names and experiment

IDs as column identifiers. The serum stimulation data used as an

example in the present work originated from the Affymetrix

GeneChip platform, and the required pre-processing of the CEL

files was performed with the affy package [21]. A data object was

created with the ReadAffy function. Background correction and

normalization was performed using the rma function [22]. The

pca and GOtree functions work with any Affymetrix GeneChip,

which is supported by Affymetrix CDF files, whereas the primo

function comes with data files that support the most popular

human (HG-U133 plus 2.0 and Human Gene ST 1.0), mouse

(Mouse Genome 430 2.0 Array) and rat (Rat Genome 230 2.0

Array) GeneChip arrays. In addition the primoData function

allows custom data files for primo to be produced by the user.

Principal component analysis using the function pca

PCA is a well-established method for multivariate analyses

[9,23]. PCA reduces dimensionality by projecting experiments

(each hybridization experiment) into a new subspace with fewer

dimensions than the original space of the variables (in our case

probe set IDs). It is important to note that PCA also can be used

with the experiments as variables. pcaGoPromoter is, however,

only intended for use in a setting with probes as variables. Each

hybridization experiment yielded a vector of p expression levels Xi

referring to p probe set IDs on the chip. The data from n

hybridization experiments were used to compute k~ð1, . . . ,KÞ
principal components:

PC(k)~b1k|X1 z . . . zbpk|Xp

where b(k) ~ (b1k, . . . , bpk) is a loading vector which satisfies the

constraint
Pp

j~1

b2
ij~1. The first principal component PC(1)

explains most of the variance of the data, the second principal

component PC(2) second most, and so forth.

The loading bpk quantifies the importance of the p9th probe set

ID on the chip for the k9th dimension of the reduced predictor

space. The sign and magnitude of the loadings were used to find

important probe set IDs for functional interpretation.

In pcaGoPromoter, the function pca calculates the principal

components of a data matrix with hybridization experiments in

columns and probe set IDs in rows, by internally calling the

function prcomp of the R base package ‘stats’. It should be noted

that pca uses the transformed input matrix for calculations, as the

convention for PCA is that experiment are in rows and variables in

columns. The function getRankedProbeIds works on pca

objects and is used to select the most important positive and

negative probe set IDs based on their loadings. Going forward, we

use a selection of the 2.5% probes set IDs with highest or lowest

loadings, respectively, as an example. In a separate section under

the Results and discussion section the selection of this parameter is

discussed.

Mapping principal component axes to enriched gene
ontology terms using the function GOtree

We were interested in joining a functional interpretation to the

directions of the axes for each principal component in the PCA

score plot. The Gene Ontology (GO) Consortium [24] provides a

set of databases that contain functional annotations for genes. The

pcaGoPromoter package associates GO terms with biological

processes for each principal component in both directions. This is

done by calculating the overrepresentation of the GO terms in the

annotation of genes with high absolute loadings for each principal

component. This calculation is performed using the function

GOtree, which operates either on the Affymetrix probe set IDs,

gene symbols, or Entrez IDs. In case the input is not of class

ExpressionSet, the input type is controlled with the argument

pcaGoPromoter - Biological Interpretations of PCA
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inputType for the function GOtree. Objects obtained with the

function GOtree are then visualized in a tree structure of

overrepresented GO terms along with their corresponding p-

values. The calculation for overrepresentation can be performed

using either Fisher’s exact test for proportions, or with an exact test

for the number of successes in a Bernoulli sequence (controlled

with the argument statisticalTest). The calculation details for

overrepresentation of annotation terms in gene lists have earlier

been published [25,26].

Mapping principal component axes to enriched
promoter cis-elements using the functions primoData and

primo

Transcription factors can be organized according to their DNA-

binding motifs. The TRANSFAC database [27] and the Jaspar

database [28] contain information about consensus DNA-binding

motifs for a wide variety of transcription factors. Information

about the binding sequences is organized in position weight

matrices.

The primoData function is used to generate a table with

information about potential transcription factor binding sites

discovered by searching promoters for matches to position weight

matrices. The function is based on a previously published

algorithm [29], which was implemented with some modifications

in C++ (as PRIMO: PRomoter Integration in Microarray result

Organization) [30] and in R for the pcaGoPromoter package in

the present work. Fig. 1 illustrates the search algorithm for

determining transcription factor binding sites using position weight

matrices. The threshold score is calculated for each position weight

matrix as the threshold that generates hits in a given percentage of

all the promoters with a default of 10%, which is suggested in the

original description of the algorithm [29]. When the highest

possible score for position weight matrix identify more binding

sites than 10% of all promoters, the highest possible threshold is

chosen. The selection of the threshold for reporting a hit is thus

based on the distribution of scores for a given position weight

matrix in the promoter set being used. Other strategies for

threshold selection based on e.g. a core motif [31] or motif

conservation across species [32] have also been described in the

literature. The primoData function is thus a tool for inclusion of

custom promoter sets in the analysis. It takes as inputs two

arguments (promoters, matrices). The promoters argument is a list

with two elements. The first element is a list of Refseq identifiers

and the second list element is a list of promoter sequences. The R

command

Promoters ,- pcaGoPromoters:::primoData.getPromo-

ter( filename )

loads promoter sequences from a file in FASTA format into the

promoters variable . The matrices argument is an R list of list

elements. Each list element contain 3 data elements (baseId, name

and pwm). baseId is a character vector with a base id, name is a

character vector with the common name for the matrix, pwm is a

position weight matrix with the base A,C,G,T in rows and the

weights in columns. The primoData function is, however, only

intended to be used by experts in bioinformatics because it

requires a certain level of bioinformatics skills to obtain and format

the input files from the public databases. In addition the function

requires much processor time. The output of primoData is a data

file to be used with the function primo, which is the function that

actually joins the promoter analysis to the PCA analysis.

The R command:

myPrimoData ,- primoData (promoters , fewMatrices)

calculates the myPrimoData object on custom promters and

pwm matrices and the R command:

TFs ,- primo( myLoadings , primoData = myPrimoData)

Calculates cis-element overrepresentation analysis on the set of

probe set IDs (myLoadings) using the custom data.

To ease the use of the pcaGoPromoter package precalculated

data files for promoters in the human, mouse and rat genomes are

available on the project home pages (bioconductor and google.-

code). For these genomes, binding sites have been identified for

promoter regions upstream of reference sequence mRNA

transcripts (Refseq) [33]. We have defined the promoter region

as 100 base pairs downstream and 1000 base pairs upstream of the

59 end of each Refseq mRNA transcript, for a total of 1100 base

pairs.

The input for primo is an object of class ExpressionSet.

Alternatively a vector with either Affymetrix probe set IDs, gene

symbols or Entrez IDs can be used in which case information

about the organism is required and entered as the ‘‘org’’

argument. An option allows for the selection of multiple test

correction using the argument p.adjust.method with the default

being the false discovery rate. The result is a list of possible

transcription factor binding sites that are either over- or

underrepresented.

Data – serum stimulation of a human monocyte cell line
To illustrate the use of pcaGoPromoter, including the rationale

behind the analysis strategy, an experiment was designed and

conducted. A serum-starved human monocyte cell line (ATCC

Number: CRL-9853) was stimulated by serum in the presence

(10 nM) or absence of the specific Erk-1/2 inhibitor, U0126 [34].

Twenty-two hours after serum addition, cells were harvested.

RNA was extracted, and gene expression was analyzed by

Affymetrix Human Genome U133 plus 2.0 arrays. Thirteen

experiments were performed: five control experiments (serum-

starved), three serum-stimulated, and five serum-stimulated in the

presence of the inhibitor U0126. The addition of serum and

inhibitor represented experimental manipulations, and these steps

should be reflected in the independent effects identifiable in the

principal components. Serum response is related to cell cycle

progression [35], which in turn is regulated by E2F transcription

factors [36]. Members of the Ets and Elk transcription factor

families are the immediate early downstream nuclear targets of

Erk-1/2 signaling [37], whereas activation of E2F transcription

factors is a later event. Thus, it was expected that three groups of

experiments would be discernible in the principal component

analysis. Cell cycle progression should be reflected in the gene

ontology analysis, and the Ets, ELK and E2F transcription factors

were predicted to be revealed in the PRIMO analysis. Therefore,

this experiment is well-suited to illustrate the functional interpre-

tation of principal component score plot axes using overrepresen-

tation analysis of annotation terms and predicted transcription

factor binding sites. Data from the serum stimulation experiment

are available at the gene expression omnibus under the accession

number GSE27071 (http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?token = nvydbmmukoikora&acc = GSE27071).

Results and Discussion

Functional interpretation of monocyte serum response
The Affymetrix CEL files were read into R using the affy

package followed by calculation of a normalized gene expression

measure for each probe set ID using rma.

library(affy)

chipdata ,- ReadAffy()

chipdataRMA ,- rma(chipdata)

Load the pcaGoPromoter package.

pcaGoPromoter - Biological Interpretations of PCA
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library(pcaGoPromoter)

Do everything in one command (‘‘groups’’ annotate experi-

ments into classes in the plot. The variable is predefined to contain

the classes: ‘‘control’’, ‘‘serumInhib’’ and ‘‘serumOnly’’):

pcaInfoPlot(chipdataRMA, groups=groups)

The resulting score plot (Fig. 2) displays the first two principal

components. The experiments are colored according to the

grouping vector, and a shaded ellipse marks the 95% confidence

interval for the class. The experiments were grouped in clusters as

expected: top (control), bottom left (serum only) and bottom right

(serum with inhibitor). The three groups were separated along the

1st principal component axis (x-axis), which explained 21% of the

variance. This axis illustrates the portion of the serum effect

influenced by the Erk-1/2 inhibitor. The control group was

separated from the others along the 2nd principal component axis

(y-axis), which explained 16% of the variance. This axis illustrates

the portion of the serum effect that is independent of the Erk-1/2

inhibitor. The axes were annotated with the top overrepresented

GO terms and predicted transcription factor binding sites. The cell

cycle progression was reflected in the negative direction of the 1st

principal component axis. Involvement of E2F and Ets transcrip-

tion factors was predicted, because binding sites in gene promoters

influence this direction of the axis.

The pcaInfoPlot function is designed to perform the key

calculations required for functional interpretations of the PCA.

The underlying calculations can be conducted individually with

possibilities for choosing additional options as explained in the

following.

Run PCA:

pcaObj ,- pca(chipdataRMA)

The probe set IDs on the GeneChip can now be ranked

according to their effect on the projection of the experiments into

the new subspace defined by the 1st and 2nd principal component.

The function getRankedProbeIds generates a ranked list of the

probe set IDs that mostly contribute for placing experiments

along the chosen principal component, here set by the argument

‘‘pc’’:

probesPC1neg ,- getRankedProbeIds(pcaObj, pc=1,

decreasing=FALSE)[1:1365]

The number of probe set IDs chosen (1365) constitutes 1365/

54613 = 2.5% of the total number of probe set IDs on the HG-

U133 Plus 2.0 array.

The probes associated with the negative direction of the first

principal component axis can now be interpreted in terms of

biological processes:

GOtreeObj ,- GOtree(probesPC1neg)

Figure 1. Description of the PRIMO algorithm. This figure shows the calculation of a position weight matrix (PWM) score for a specific DNA
sequence. The sequence window under calculation is shown at the bottom in capital letters. To the left is the PWM, which can be obtained from the
Transfac or Jaspar databases. A value for each position was calculated based on the PWM value for the specific base. Underflow and the trivial zero
result (if zero occurs in the PWM) were avoided as indicated.
doi:10.1371/journal.pone.0032394.g001
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GOtree returns an object that lists all the GO terms with one or

more genes, the total number of genes found for the term and a p-

value calculated using an exact binominal test (binom.test(x, n, p)).

x: number of successes (number of probes in the extreme

loading list having the specified GO term)

n: number of experiments (the total number of probes having

the specified GO term)

p: the hypothesized probability of success (number of probes in

the extreme loading list/total number of genes used in expression

analysis)

Fisher’s exact test for proportions can be used (option:

significance Method = ‘‘fisher’’)

Using the command plot(GOtreeObj) plots a tree view (Fig. 3)

of the relations between the GO terms.

Figure 2. Principal component analysis score plot using pcaInfoPlot(). This plot shows the output from the function pcaInfoPlot(). This
function makes a principal component analysis score plot and applies functional annotation to the axis. The plot shows the experiments of the three
experimental groups (control, serum only and serum with inhibitor) separated into three clusters. The 1st principal component (PC1), which contained
21% of the variance, shows the differences in gene expression caused by the inhibitor and the serum. The serum-only group (serumOnly) is in the
most negative direction. The control group is in the middle. The serum with inhibitor (serumInhib) group is in the positive direction. The 2nd principal
component (PC2), which contained 16% of the variance, shows the effect of the added serum. The control group is in the positive direction, and the
serum-supplemented groups (serumOnly and serumInhib) are in the negative direction. Each axis is functionally annotated with the five most
significant GO terms (biological processes) and the five most significant overrepresented predicted transcription factor binding sites.
doi:10.1371/journal.pone.0032394.g002

pcaGoPromoter - Biological Interpretations of PCA
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As seen in the pcaInfoPlot (Fig. 2), this analysis identified the

two major branches in the GOtree of overrepresented biological

processes. One branch was related to the cell cycle, and the other

was related to RNA metabolism. The final leaf on the cell cycle

branch in the GO tree (Fig. 3) was the term ‘‘mitotic sister

chromatid segregation’’. Thus, the 2.5% of genes with the most

negative loadings in the 1st principal component have an

overrepresentation of annotation terms related to progression in

the cell cycle. This was as expected for the ‘‘serum only’’

experiments, which were projected towards negative values of the

1st principal component. Moreover, it can be hypothesized that

the ‘‘serum inhibitor’’ experiments were also inhibited in cell cycle

progression. This hypothesis requires experimental validation, e.g.,

DNA synthesis measurements using labeled nucleosides. It should

Figure 3. Negative direction PC1 gene ontology tree using 1365 probes. Significantly overrepresented gene ontology terms (biological
processes) in the negative direction of the 1st principal component using 2.5% of the most important probes were used to draw a tree graph. The
gene ontology (GO) tree starts with the top term ‘biological process’ and then splits out into more specific terms. Box color indicates the p-value
range. Each box contains the name of the process, the GO term number, the p-value, the number of genes in the subset and the total number of
genes, which are annotated using this term. The GO tree splits into two major branches. The upper branch indicates cell division by mitosis, and the
lower branch indicates mRNA processing.
doi:10.1371/journal.pone.0032394.g003
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be noted that the terms ‘‘negative’’ and ‘‘positive’’ only refer to the

signs of the loadings following the PCA. The terms are thus purely

mathematical and have no biological meaning.

Interestingly, GO overrepresentation analyses of the positive

PC2 direction revealed overrepresentation of the term ‘‘cholesterol

biosynthetic process’’ (p = 3.8661025). The function GOtreeHits

found eight genes in the PC2 positive loadings annotated with this

term. The probes interrogate genes involved in cholesterol

synthesis (Table 1), a process that may be up-regulated in serum-

starved cells due to a lack of cholesterol to provide lipoproteins

(e.g., low-density lipoprotein; LDL) in the serum-free medium.

Strict feedback control of cellular cholesterol biosynthesis is well-

known [38], but changes in the expression patterns of genes

involved in cholesterol biosynthesis were unexpected in the present

serum stimulation experiment, which focused on the cell cycle and

MAP kinase activation. However, the literature does provide

support for serum starvation as an inducing stimulus for

cholesterol synthesis [39]. This demonstrates that functional

interpretation of score plot axes can yield useful insights into

cellular processes.

Overrepresented transcription factor binding sites in the

promoters of genes defined by the probe set IDs with the 2.5%

most extreme negative loadings for the 1st principal component

were found using the function primo:

primoRes ,- primo(probesPC1neg)

The result ‘‘primoRes’’ contained two lists, overRepresented

and underRepresented. Each list holds the respective transcription

factor position weight matrix with p-values for over- and

underrepresentation calculation using Fisher’s exact test for

proportions. Table 2 shows position weight matrices with

overrepresentation hits in gene promoters (probe set IDs) with

extreme (2.5%) positive or negative loadings. The list of position

weight matrix hits for promoters associated with probe set IDs

with the most negative loadings has three matrices for E2F

transcription factors, whereas E2F position weight matrix hits were

not found in the promoters associated with the probe set IDs with

the most positive loadings in the 1st principal component. This was

as expected because the probe set IDs with the most negative

loadings of the 1st principal component represent cell cycle

progression with activated E2F responsive promoters. Position

weight matrix hits for the immediate downstream targets of MAP

kinase activation, Ets and Elk transcription factors, are overrep-

resented in both directions of the 1st principal component. The

interpretation is that different Ets and Elk transcription factor

targets are activated by serum in the absence and presence of the

Erk-1/2 inhibitor.

The probe set IDs joined to promoter hits for position weight

matrices can be retrieved using the function primoHits as

follows:

probeIdsE2F ,- primoHits(probesPC1neg, id= ‘‘9262’’)

This function generates the list of probe set IDs associated with

promoter hits for the E2F position weight matrix with the Jasper

accession number MA0024 and ID 9252. A list of gene names can

be retrieved using the mget function from the AnnotationDBI

package and the hgu133plus2.db package:

geneNamesMA0024 ,- mget(probeidsE2F, ‘‘hgu133-

plus2GENENAME’’)

Among the resulting hits is proliferating cell nuclear antigen

(PCNA), which is a well-known component of the DNA replication

fork (for a review see [40]). Moreover, a functional E2F-binding

site has been demonstrated in its promoter [41].

Predicted binding sites for proteins of the NF-kB transcription

factor complex (c-REL (pwm MA0107) and NF-kB (pwm

MA0061)) were also overrepresented in the gene promoters (probe

set IDs) with extreme positive loadings for the 1st principal

component. This correlated with the overrepresentation of the

GO term ‘‘regulation of I-kappaB kinase/NF-kappaB cascade’’ in

the same direction of the 1st principal component (Fig. 2). The

interpretation is that the combined inhibitor and serum treatment

led to NF-kB activation in the monocyte cell line. This is another

example of an interesting result that is somewhat novel with

respect to NF-kB activation. However, NF-kB inhibition by Erk-

1/2 has been reported in endothelial cells [42] and again

demonstrates the ability of our method to find and interpret

biologically-relevant gene expression changes.

Relationship between loadings, variance and gene

expression patterns. The first two principal components of

the PCA (Fig. 2) explain 37% (21%+16%) of the variance in the

original data. The variance in gene expression data can be

interpreted in terms of gene expression patterns, which is a

convenient way of interpreting the variance in gene expression

analyses.

Fig. 4 shows the gene expression measurements of the three

probe set IDs with the most negative or positive loadings in the 1st

and 2nd principal component. The probe set IDs with the highest

positive loadings had expression patterns with the highest

expression levels in the serum + inhibitor group for the 1st

principal component. The control group had an intermediate

expression level, and the serum only group had the lowest

expression level. For the probe set IDs with most influence on the

negative direction of the 1st principal component, the reverse was

true. Likewise, probe set IDs with high or low expression in the

Table 1. Probe set IDs annotated with GO 6695: ‘‘cholesterol biosynthetic process’’.

Probe Set ID Gene Symbol Gene Title

201791_s_at DHCR7 7-dehydrocholesterol reductase

200862_at DHCR24 24-dehydrocholesterol reductase

203027_s_at MVD mevalonate (diphospho) decarboxylase

209279_s_at NSDHL NAD(P) dependent steroid dehydrogenase-like

202245_at LSS lanosterol synthase (2,3-oxidosqualene-lanosterol cyclase)

201275_at FDPS farnesyl diphosphate synthase (farnesyl pyrophosphate synthetase, dimethylallyltranstransferase,
geranyltranstransferase)

211113_s_at ABCG1 ATP-binding cassette, sub-family G (WHITE), member 1

200642_at SOD1 superoxide dismutase 1, soluble (amyotrophic lateral sclerosis 1 (adult))

doi:10.1371/journal.pone.0032394.t001
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control group relative to the two serum groups (with or without

inhibitor) defined the positive or negative direction of the 2nd

principal component.

Thus, almost 40% of the variance in the original data was

due to the four distinct gene expression patterns seen in

Fig. 4.

Table 2. Overrepresentation analysis for predicted transcription factor binding sites using Primo on the 1st principal component.

PC1 negative direction

Matrix ID Length Name Raw p-value FDR

MA0098 6 ETS1 6,30E-16 6,17E-14

MA0080 6 SPI1 1,18E-13 1,16E-11

MA0062 10 GABPA 5,02E-09 4,92E-07

MA0024 8 E2F1 1,75E-05 1,72E-03

MA0028 10 ELK1 3,63E-05 3,56E-03

MA0076 9 ELK4 4,39E-04 4,30E-02

MA0075 5 Prrx2 6,74E-04 6,61E-02

MA0131 10 MIZF 3,43E-03 3,36E-01

MA0060 16 NFYA 4,19E-03 4,11E-01

PB0008 15 E2F2_1 4,19E-03 4,11E-01

PB0009 15 E2F3_1 1,96E-02 1,92E+00

PB0020 17 Gabpa_1 1,51E-01 1,48E+01

PB0027 17 Gmeb1_1 1,51E-01 1,48E+01

MA0004 6 Arnt 1,64E-01 1,60E+01

MA0104 6 Mycn 1,64E-01 1,60E+01

PB0095 16 Zfp161_1 6,05E-01 5,93E+01

PB0179 15 Sp100_2 1,02E+00 1,00E+02

MA0151 6 ARID3A 1,16E+00 1,14E+02

MA0006 6 Arnt::Ahr 1,49E+00 1,46E+02

MA0062 11 GABPA 1,74E+00 1,70E+02

PB0164 17 Smad3_2 6,08E+00 5,96E+02

MA0058 10 MAX 6,54E+00 6,41E+02

PB0108 14 Atf1_2 4,95E+01 4,85E+03

MA0259 8 HIF1A::ARNT 8,56E+01 8,39E+03

PC1 Positive
Matrix ID Length Name Raw p-value FDR

MA0098 6 ETS1 3,23E-18 5,36E-16

MA0080 6 SPI1 7,68E-14 1,27E-11

MA0062 11 GABPA 1,93E-13 3,21E-11

MA0028 10 ELK1 1,68E-07 2,79E-05

MA0076 9 ELK4 1,77E-07 2,93E-05

MA0062 10 GABPA 5,86E-07 9,73E-05

MA0162 11 Egr1 9,51E-07 1,58E-04

PB0020 17 Gabpa_1 3,35E-04 5,55E-02

MA0039 10 Klf4 5,11E-02 8,48E+00

MA0146 14 Zfx 4,96E-01 8,23E+01

MA0079 10 SP1 8,17E-01 1,36E+02

PB0039 16 Klf7_1 1,39E+00 2,31E+02

PB0011 15 Ehf_1 3,06E+00 5,09E+02

PB0189 14 Tcfap2a_2 8,19E+00 1,36E+03

MA0067 8 Pax2 1,17E+01 1,95E+03

PB0010 14 Egr1_1 2,65E+01 4,39E+03

PB0127 17 Gata6_2 4,10E+01 6,81E+03

MA0079 10 SP1 4,38E+01 7,27E+03

doi:10.1371/journal.pone.0032394.t002
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Self-contained test for GO term overrepresentation. The

test strategy used to calculate GO term overrepresentation is a

competitive test strategy [26]. It depends on the total number of

genes interrogated on the DNA chip, which include genes with

functions unrelated to those of the genes with a particular GO

term. Alternatively, a self-contained test strategy [26] that depends

only on the genes with a particular joined GO term may be

applied. Such a strategy is possible if an absolute value (e.g., a p-

value) is used to determine if a gene is differentially expressed.

The GOtree() function can be used in a self-contained test.

As an example, the GO terms overrepresented in genes with

increased expression in the serum-only samples compared with the

control samples can be calculated in a self-contained test. First,

genes with higher expression in serum-only samples are calculated

using the t.test function in R. The resulting p-values are

corrected for multiple tests by the false discovery rate method

using p.adjust [43] and the probe set IDs with corrected p-values

below the significance level subsequently stored in the variable

selfcontained.

Then GOtree() is used with the binomAlpha argument set (p-

value = 0.05):

GOselfcontained ,- GOtree(selfcontained, binomAl-

pha=0.05)

Table 3 shows the results for the comparison between the

serum-only group and the controls. Mitosis and other terms

related to cell cycle progression were overrepresented. This result

is comparable to the GO analysis of the negative direction of the

1st principal component (Fig. 2).

Parameter selection
As explained in the preceding sections the sign and the

magnitude of the loadings indicate the importance of a probe set

ID for a given principal component. Thus to join a functional

interpretation to a principal component the probe set IDs with the

highest absolute loadings with either positive og negative signs are

retrieved and analyzed for overrepresentation of GO terms in the

annotation or for overrepresentation of potential transcription

factor binding sites in the corresponding promoters. A facing issue

is the decision about at which magnitude of loading to set the cut-

off. For the serum stimulation example we have used the 2.5% of

the probe set ID variables with the highest absolute loadings in

both PC directions. The 2.5% cut-off was chosen here as it yielded

biological sound interpretations of gene expression data in

previous analysis (e.g. [12,14]). However, in other settings it may

be useful to be able to change the cut-off and to study the effect of

changing it.

Figure 4. The three most important PC1 and PC2 probes in both the positive and negative directions. The probes have been selected
by sorting the loadings from the PCA. The confidence intervals for the mean of each group (control, serumInhib and serumOnly) are plotted for each
probe set ID.
doi:10.1371/journal.pone.0032394.g004
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We first consider the significant GO term GO:0006695

(cholesterol biosynthetic process) which was found overrepresented

in probe set IDs with the 2.5% highest loadings in PC2. Fig. 5

depicts the effect on the p-value of changing the fraction of probe

set IDs included from the 0.5% highest loadings to the 25%

highest loadings. It can be seen that the overrepresentation

(p,0.05) of this term is observed already when 0.5% of the probe

set IDs with the highest loadings are included and the

overrepresentation is maintained until 8.5% of the probe set IDs

with highest loadings are included. Further inclusion of probe set

IDs leads to p-values above 0.05. This is due to inclusion of probe

set IDs not annotated with the specific term in question. In fact

only 16 genes on the chip are annotated with this term

(GO:0006695) and 8 of these are found in the top 2.5% of probe

Set IDs with highest loadings. Clearly the number of probe set IDs

annotated with a given term will influence the outcome of the

parameter selection. We therefore now consider the term

GO:0043122 (‘‘regulation of I-kappaB kinase/NF-kappaB cas-

cade’’), which is annotated to 105 probe set IDs on the chip. This

term is overrepresented in the interval from 1.5% to 5.5%

included probe set IDs. For this term the changes of the p-values

are not monotone for increasing values of the cut-off (Figure 5).

This is due to groups of probe set IDs in the interval between 5.5%

to 25% that are annotated to this term having similar loadings

followed by groups of probe set IDs not annotated to this term.

The term GO:0007420 (‘‘Brain development’’) is annotated to

80 probe set IDs on the chip and was not found overrepresented in

the analysis. The calculated p-value for this term remained high

irrespective of the fraction of probe set IDs included (Fig. 5). In the

selection of probe set IDs for the overrepresentation analysis we

could have weighted the probe set IDs by the PCA-rank instead of

letting all included probe set IDs contribute equally to the test

statistics. However, the results depicted in Figure 5 suggest that

taking rank into account would only have minor effect. Thus both

significant terms remain significant over a relatively broad interval

of included probe set IDs. The main conclusion is that an interval

between 1.5% and 5% of included probe set IDs yields robust

results. Similar findings were found for the primo analysis.

Robustness under data perturbation
Cross-validation is a direct way to judge the robustness of the

PCA and the joined functional interpretations of the PC axes. This

can be achieved using the functions GOtreeWithLeaveOut and

primoWithLeaveOneOut. Thus, a fraction of experiments are left

out, and the PCA model builds using a data set with a reduced

number of experiments. This process is repeated until all samples

have been left out. The default is leave-one-out, but a fraction of

the samples to be left out can be given as an argument (e.g.,

leaveOut = 0.1 results in the omission of 10% of the samples in

each run). For both functions, only GOterms (for GOtreeWith-

Table 3. Selfcontained test for overrepresentation (p,0.001) of GO terms in genes with higher expression in serum stimulated
cells compared to controls (FDR,0.05).

GOid Genes with term in list Total number of genes with term P-value GOterm

GO:0007049 69 481 1,18E-11 cell cycle

GO:0022403 44 237 5,37E-11 cell cycle phase

GO:0022402 54 360 5,12E-10 cell cycle process

GO:0000278 45 281 2,40E-09 mitotic cell cycle

GO:0000279 33 163 2,40E-09 M phase

GO:0000280 26 108 4,65E-09 nuclear division

GO:0007067 26 108 4,65E-09 mitosis

GO:0000087 26 111 6,61E-09 M phase of mitotic cell cycle

GO:0034984 37 212 6,61E-09 cellular response to DNA damage stimulus

GO:0048285 26 111 6,61E-09 organelle fission

GO:0006259 49 353 2,47E-08 DNA metabolic process

GO:0006974 37 230 6,08E-08 response to DNA damage stimulus

GO:0007059 16 51 2,60E-07 chromosome segregation

GO:0033554 45 333 2,60E-07 cellular response to stress

GO:0006260 28 153 3,28E-07 DNA replication

GO:0051726 33 205 3,81E-07 regulation of cell cycle

GO:0007346 22 103 7,31E-07 regulation of mitotic cell cycle

GO:0006281 29 173 1,15E-06 DNA repair

GO:0006297 9 17 3,09E-06 nucleotide-excision repair, DNA gap filling

GO:0000075 16 71 3,12E-05 cell cycle checkpoint

GO:0051716 49 460 6,37E-05 cellular response to stimulus

GO:0000070 9 27 3,25E-04 mitotic sister chromatid segregation

GO:0065004 11 42 3,81E-04 protein-DNA complex assembly

GO:0000819 9 28 4,19E-04 sister chromatid segregation

GO:0006323 13 61 5,93E-04 DNA packaging

GO:0051276 31 266 8,76E-04 chromosome organization

doi:10.1371/journal.pone.0032394.t003
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leaveoneOut) or PWMs (for primoWithLeaveOneOut) that are

present in all runs are retrieved for subsequent ranking after p-

value. Thus, GO terms or PWMs that are only found in some of

the cross-validation runs are not present in the final list.

The command line:

GOtreePC2poscv ,- GOtreeWithLeaveOut(exprsData,

pc=2, decreasing=TRUE)

calculates overrepresented GO terms in the positive direction of

the 2nd principal component using leave-one-out cross-validation.

The results (Table 4) show that GO terms related to sterol

metabolism were consistently overrepresented in the positive

direction of the 2nd principal component.

Relationship to other annotation analysis strategies
Classically the biplot [44] is used in PCA and related

multivariate analysis methods for displaying the relationship

between variables and experiments in the same 2D-plot. Our

analysis strategy focuses, however, on the PC axes and is only

equivalent to a biplot analysis when the experiments are clearly

grouped and positioned close to the axes. The advantage of our

analysis strategy is that the axes can be interpreted in relation to

function and regulatory mechanisms even in the case where the

experiments are not clearly grouped in the plot. We believe that

our method of interpreting the axes is intuitive to biologists who

are not a priori experts in bioinformatics or biostatistics. Advanced

users interested in higher-level analysis of the link between

annotation and genome-wide gene expression data are referred

to [45,46,47,48].

The PcaGoPromoter analysis strategy relies on overrepresenta-

tion analysis. An alternative strategy would be to form an

aggregate score for a gene set defined by a GO term or a

transcription factor binding site. A very popular method

Figure 5. The Importance of loading cut-off for inclusion of probe set IDs in GO term annotation analysis. The probe set IDs were
sorted after loadings for the first principal component (GO:0043122 and GO:0007420) and second principal component (GO:0006695) following the
PCA of the serum stimulation data (Figure 2). Overrepresentation analysis for the three terms was repeated for different cut-off values between 0.5%
and 25% of probe set IDs with highest loadings. Shown are the resulting p-values. The vertical dotted line indicates the top 2.5% probe set IDs with
highest loadings. This is the cut-off used in the text and as the default in the pcaInfoPlot function. The horizontal dotted line indicates the 0.05
significance level.
doi:10.1371/journal.pone.0032394.g005
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depending on aggregate scores is the gene set enrichment analysis

(GSEA; [49]). One theoretical advantage of methods depending

on aggregate scores is that they only rely on the information

gathered from the genes included in the gene set. In the standard

use of pcaGopromoter, probe set IDs not annotated with a given

term contribute to the calculation of the p-value for overrepre-

sentation. To give the user the ability to calculate overrepresen-

tation which is only dependent on the probe set IDs annotated

with a given GO term, the GOtree function was supplemented

with the self-contained test option (see above).

Conclusions
The R package pcaGoPromoter provides a collection of tools for

the analysis of gene expression data obtained from any genome-wide

expression analysis platform supporting either of Affymetrix probe

set IDs, gene symbols or Entrez IDs as probe identifiers. It was

developed in the statistical environment R. The package pcaGo-

Promoter provides functions to give an overview of the data by PCA,

functional interpretation by gene ontology terms (biological

processes), and an indication of the involvement of specific

transcription factors. In the present setup, a serum stimulation

experiment with a monocyte cell line was used for illustrative

purposes. In addition to the expected results, the pcaGoPromoter

analysis also revealed unexpected and interesting results when

applied to the serum stimulation data, e.g., an indication of

cholesterol synthesis in serum-starved cells and NF-kB activation

in cells treated with both serum and Erk1/2 map kinase inhibitor.

This directly demonstrates how the pcaGoPromoter package can be

used to direct attention towards relevant biological issues in various

genome-wide gene expression analyses in the future.

Web site access
A pcaGopromoter online version providing access to the most

important plot functions is available at http://gastro.sund.ku.dk/

brew/pcaGoPromoter.html .The serum stimulation experiment

used for calculations in this presentation is available as an

example. In addition the user can upload data for analysis. The

uploaded data should be either a zipped CEL file (with the

Affymetrix platform) or a csv table for other formats. The

extension R package can also be downloaded and installed locally.

Availability
Project name: pcaGoPromoter

Project home page: http://gastro.sund.ku.dk/brew/pcaGo

Promoter.html

Public repositories:

https://code.google.com/p/pcagopromoter/downloads/list

http://www.bioconductor.org/packages/2.10/bioc/html/pcaGo

Promoter.html

Table 4. Overrepresentation (p,0.05) of GO terms in the annotation of genes defining the positive direction of PC2 calculated
using leave-one-out cross-validation.

GOid p-value Total number of genes with term GOterm

GO:0008610 0,004 185 lipid biosynthetic process

GO:0002376 0,008 616 immune system process

GO:0008284 0,010 221 positive regulation of cell proliferation

GO:0045321 0,010 172 leukocyte activation

GO:0006629 0,011 480 lipid metabolic process

GO:0016126 0,013 14 sterol biosynthetic process

GO:0008202 0,013 117 steroid metabolic process

GO:0001775 0,017 199 cell activation

GO:0008652 0,017 15 cellular amino acid biosynthetic process

GO:0009309 0,019 31 amine biosynthetic process

GO:0042127 0,019 447 regulation of cell proliferation

GO:0019752 0,024 297 carboxylic acid metabolic process

GO:0006950 0,026 984 response to stress

GO:0006694 0,026 49 steroid biosynthetic process

GO:0006082 0,027 304 organic acid metabolic process

GO:0042180 0,027 304 cellular ketone metabolic process

GO:0006520 0,027 98 cellular amino acid metabolic process

GO:0048659 0,028 19 smooth muscle cell proliferation

GO:0033138 0,031 11 positive regulation of peptidyl-serine phosphorylation

GO:0016477 0,032 214 cell migration

GO:0006695 0,034 12 cholesterol biosynthetic process

GO:0008203 0,034 41 cholesterol metabolic process

GO:0006928 0,043 346 cellular component movement

GO:0030032 0,044 6 lamellipodium assembly

GO:0006066 0,047 212 alcohol metabolic process

GO:0048870 0,048 235 cell motility

doi:10.1371/journal.pone.0032394.t004
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Operating system(s): Linux, Windows, Mac OS X

Programming language: The R statistical environment

Other requirements: R version 2.10 or higher, Bioconduc-

tor 2.x

License: GNU GLP3

Any restrictions to use by non-academics: None
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