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Abstract
Background—Drug-induced long QT syndrome (diLQTS) is an adverse drug effect that has an
important impact on drug use, development, and regulation. Here, we tested the hypothesis that
common variants in key genes controlling cardiac electrical properties modify the risk of diLQTS.

Methods and Results—In a case-control setting, we included 176 patients of European descent
from North America and Europe with diLQTS, defined as documented torsades de pointes during
treatment with a QT prolonging drug. Control samples were obtained from 207 patients of
European ancestry who displayed <50 msec QT lengthening during initiation of therapy with a
QT-prolonging drug, and 837 controls from the population based KORA study. Subjects were
successfully genotyped at 1,424 single nucleotide polymorphisms (SNPs) in 18 candidate genes
including 1,386 SNPs tagging common haplotype blocks, and 38 non-synonymous ion channel
gene SNPs. For validation we used a set of cases (n=57) and population-based controls of
European descent. The SNP KCNE1 D85N (rs1805128), known to modulate an important
potassium current in the heart, predicted diLQTS with an odds ratio of 9.0 (95% confidence
interval: 3.5–22.9). The variant allele was present in 8.6% of cases, 2.9% of drug-exposed
controls, and 1.8% of population controls. In the validation cohort the variant allele was present in
3.5% of cases, and in 1.4% of controls.

Conclusions—This high-density candidate SNP approach identified a key potassium channel
susceptibility allele that may be associated with the rare adverse drug reaction torsades de pointes.

Keywords
candidate genes; death, sudden; SNP; torsade de pointes; adverse drug events

Unexpected marked prolongation of the QT interval after initiation of drug therapy,
associated with risk of a morphologically distinct pattern of polymorphic ventricular
tachycardia (torsades de pointes) has been recognized since the 1960s.1–3 The most
common class of drugs causing drug-induced long QT syndrome (diLQTS) is the
membrane-active antiarrhythmic drug category, with an incidence approaching 8% in some
reports.1–3 However, diLQTS can occur, albeit more rarely, during treatment with various
drugs including many that are not prescribed for cardiovascular indications.1–3 DiLQTS has
been a major cause for drug relabeling and withdrawal, creating obstacles for drug
development and uncertainties during drug approval and regulatory processes.1–3
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Clinical studies have identified risk factors for diLQTS such as hypokalemia4–6 or female
sex,7 but the phenomenon remains unpredictable in a given individual. Moreover, the
congenital long QT syndromes, usually caused by mutations in ion channel or associated
genes, are characterized by the same pattern of torsades de pointes. Since the congenital
LQTS may have variable penetrance,8 and some mutation carriers may display normal QT
intervals, this finding has lead to the hypothesis that the drug-induced “acquired” LQT
syndromes are conditions predisposed by heritable variants in QT-controlling genes. Indeed,
screening the common disease genes associated with the congenital syndrome has identified
mutations in 5–15% of subjects with diLQTS.9–14 One recent study reported congenital
LQTS mutations in 8/20 (40%) Japanese cases.15

A second hypothesis is that common genetic variants modulate diLQTS risk, and small
studies have identified such variants.12,14 In addition, one study reported that the extent of
QT prolongation among first degree relatives of subjects with diLQTS was greater than that
seen in first degree relatives of subjects who tolerated QT prolonging drugs without relevant
QT prolongation.16 In the present study, we tested the second hypothesis, using a large
cohort of cases drawn from multiple collaborating sites, and interrogating common variants
across ion channel and other high priority candidate genes.

Methods
Subject sample

The 176 diLQTS patients that constituted the case cohort, defined as documented torsades
de pointes during treatment with a drug having known QT prolonging potential, were from
North America or Europe, and all were of self-identified European descent. The diagnosis
was ascertained by cardiologists who specialize in clinical electrophysiology at 7
participating centers. The case definition required documented torsades de pointes,
associated with any reversible QT prolongation during the drug exposure. Covariates sought
included age, sex, self-reported ethnicity, arterial hypertension, history of atrial fibrillation,
serum creatinine, and culprit drug, as well as information serum potassium concentrations
(with particular emphasis on hypokalemia) at the time of the index arrhythmia. Written
informed consent to participate in the study including the collection and use of DNA
samples for genetic analysis was obtained with Institutional Review Board (IRB) approval at
each center.

The drug-exposed controls consisted of 207 self-identified European ancestry subjects
derived from a clinical study at Vanderbilt University Medical Center, under appropriate
IRB-approved protocols. The study used electronic medical record-based surveillance to
identify in-patients in whom QT prolonging antiarrhythmics were being initiated. Patients
consenting to participate (91% of those approached) agreed to allow collection of clinical
data, including drug-associated QT interval duration changes, as well as DNA samples. For
this study, the drug-exposed control cohort was defined by the absence of qualifying
arrhythmias, <50 msec increase in QTc interval using Bazett’s formula for heart rate
correction, and no QTc interval exceeding 500 msec during drug treatment.

We also used control subjects from the general population. These were recruited from the
population-based KORA Study (Cooperative Health Research in the Region of Augsburg),17

and were all of European descent. In brief, 4856 subjects in ten subsets of equal size,
stratified according to sex and age, underwent a survey in 1994–95 (KORA S3), and again
in 2004–2005 (KORA F3). From among the KORA population, we included 837 randomly
selected subjects as controls, maintaining the original sex-distribution. The study was
approved by the ethics committee of the Bavarian Medical Association.
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Finally, we used cases with diLQTS from the Drug Induced Arrhythmia Risk Evaluation
(DARE) Study, who met the inclusion criteria above, for a validation cohort.18 These
validation cases were compared to healthy population controls recruited by DARE from the
primary care practices of cases to achieve geographical matches, aiming for a 2:1 to 4:1 ratio
of controls to cases. Controls were excluded if there was any prior history of ventricular
arrhythmia, drug-induced arrhythmia, syncope or congenital long QT syndrome. All
validation control subjects underwent digital 12 lead ECGs and were excluded if there was
significant abnormality.

Genotyping
Eighteen candidate genes were studied. These included genes reported to be disease-causing
in cardiac arrhythmia syndromes, functionally important subunits of these genes, and genes
significantly associated with the QT interval in the general population based on the results of
genome wide association studies (Table 1).19,20

Haplotype tagging SNPs (tagSNPs) were selected to systematically analyze each gene using
Tagger21 based on HapMap22 data release #20 / phase II using the March 2006 NCBI B35
genome assembly and dbSNP build 125 data. The following criteria were applied for
tagSNP selection: HapMap CEU population, pairwise only tagging with r2 ≥ 0.8 and a
minor allele frequency (MAF) ≥ 10%. To account for genetic variation in regions
surrounding each gene, we considered up- and downstream genetic data in the tagging
procedure. Included regions were defined by linkage-disequilibrium (LD), blocks as
previously reported.23 We included at least 50 kb of both up- and downstream information.
A total of 1,386 SNPs were selected for genotyping using this method. In addition, we
included all 38 non-synonymous SNPs with minor allele frequencies ≥1% previously
reported in the 18 candidate genes. A summary of all 1,424 SNPs chosen for study is
presented in Table 1, and detailed information including a complete SNP-list is presented in
Supplemental Table 1.

Genotyping of all cases, drug-exposed controls, and KORA population-based controls was
performed using a custom Illumina GoldenGate assay (Illumina OPA GS0007558)
according to the manufacturer’s recommendations using the Illumina Beadstation 500GX
(Illumina Inc., SanDiego, USA) in a single laboratory (Genome Analysis Center, Helmholtz
Zentrum München, Germany). The Illumina BeadStudio software clustering algorithm was
used for initial data analysis. Thereafter, intensity plots of all variants were examined
individually and manual genotype calling was performed if necessary.

Monomorphic SNPs or those with a minor allele frequency <1%, and SNPs, as well as
samples with call rates <90%, were excluded from the analysis. A total of 70 SNPs were
removed prior to analysis. Hardy Weinberg Equilibrium (HWE) was calculated for the
remaining SNPs, and deviations from HWE expectations were noted but not excluded from
analyses (Supplemental Table 1). After filtering, the overall genotyping call rate was 97.1%,
and a total of 1,354 SNPs had sufficient quality for analysis. Details of SNPs as well as their
clustering relative to the 18 selected genes can be found in Table 1. Clusterplots for SNPs
selected for replication are shown in Supplemental Figure 1.

For validation of rs1805128, 57 additional diLQTS cases from the DARE cohort and 211
controls were genotyped for KCNE1 D85N (rs1805128) using standard direct Sanger
sequencing of the PCR amplicon in both directions. We also used the DARE set to examine
whether an initial finding with rs7295250 would replicate. For this experiment, samples
were genotyped using the Illumina Infinium Human CVD 50K Bead Array24 analyzed with
the Illumina platform 500GX (the Biomics Centre, St. George’s University of London). Of
138 individuals, two had >10% missing genotypes and were excluded. Another three control
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subjects were excluded having an overall genotype pattern suggestive of non-European
descent despite self-report. Thereafter, 47 cases and 86 controls were available with 100%
genotyping call rate for rs7295250.

Statistical analysis
All subjects included in the study were of European descent. We attempted the
STRUCTURE25,26 and EIGENSTRAT27 methods to account for population stratification,
but no relevant stratification was identified. In particular, the first five principal components
were nonsignificant.

All tests of association were performed using PLINK.28 Each SNP was tested for association
to diLQTS between cases and controls using logistic regression adjusted for age and sex in
two different analyses: diLQTS cases vs. drug-exposed controls, and diLQTS cases vs.
population controls. In addition, we attempted sex-stratified analyses adjusted for age in
each analysis group. Bonferroni correction for multiple comparisons would have required an
uncorrected p-value of 3×10−5. Given our sample size and the fact that ours presumably
represents already one of the largest collections of diLQTS cases, we applied less stringent
criteria for identifying SNPs to be evaluated by replication. We planned to take forward to
the DARE follow-up set any SNP with a P value of <0.01 for both drug-drug exposed and
drugcontrol population comparisons.

The validation stage associations in the DARE cohort for rs1805128 and rs7295250 were
assessed among cases and controls only assuming an additive genetic model adjusted for age
and sex.

Results
The clinical characteristics of the cohorts are presented in Table 2. Among the 176 diLQTS
cases, 128 (73%) were female, and the mean age was 63 ± 17 years. The single most
common drug associated with torsades de pointes was sotalol (n=52); other common culprit
antiarrhythmic drugs included quinidine (n=18) and amiodarone (n=17). Cumulatively,
antiarrhythmics (n=107), antipsychotics (n=14) and antibiotics (n=12) were associated with
diLQTS in 133 (76%) of the cases. In 28 cases, combinations of two or more culprit drugs
were implicated.

Serum potassium was available in 119 cases at the time of the event and was below the
laboratory specific reference range in 34 (19.3%) cases. Resting heart rate was different
between cases (70.0 ± 17.4 /min), drug-exposed controls (80.7 ± 23.9 /min) and population
controls (69.0 ± 11.2 /min). Atrial fibrillation was more prevalent in the drug-exposed
control group (88.9%) compared to the population control group (1.7%) and to the diLQTS
cases (53.4%). Quantitatively analyzable 12-lead resting ECG measurements were available
in 135 cases, 205 drug-exposed controls, and 824 population controls. ECG measurements
were included prior to the event or at steady state post event and after culprit drug
withdrawal. Baseline QT intervals as well as corrected QT intervals using multiple formulae
was prolonged at baseline in cases compared to both control groups.

Single SNP tests of association assuming an additive genetic model were performed for
1,354 variants across all 18 genes of interest between diLQTS cases and drug-exposed
controls (Figure 1, black symbols). The association results for all SNPs at a significance
threshold of p≤0.01 are shown in Table 3, and the results for all associations are shown in
Supplemental Table 1. All tests of association used a logistic regression model adjusted for
age and sex. SNP rs7295250, a variant on chromosome 12 in the genomic region of the L-
type calcium channel gene CACNA1C, was associated with the smallest p-value among all
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tests of association. This variant conferred an odds ratio of 1.88 (95% confidence interval
(CI) 1.30 – 2.71, p=7.62 × 10−4). The strongest effect size within this dataset was detected
for rs1805128, which is a non-synonymous coding (missense) SNP in exon 1 of the cardiac
ion channel gene KCNE1. This variant leads to an amino acid substitution from aspartic acid
to asparagine at position 85 of the translated protein (Asp 85 Asn; D85N). The variant was
significantly associated with diLQTS with an odds ratio of 9.92 (95% CI 2.36 – 41.80,
p=1.77 × 10−3). The SNP showed a marked difference in allele frequency between diLQTS
cases and drug-exposed controls: 8.6% vs. 2.9%.

In parallel, we performed an analysis comparing diLQTS cases with population control
subjects (Figure 1, grey symbols). Tests of association results with p≤0.01 are shown in
Table 3 and the complete results are shown in Supplemental Table 1. The most significantly
associated variant at this stage was the previously detected rs1805128 / D85N, with an odds
ratio of 8.88 (95% CI 3.26 – 24.17, p=1.95 × 10−5). The difference in allele frequencies
between cases and population-based controls was 8.6% versus 1.8%. SNP rs7295250
showed weaker, but significant association in the analysis versus population controls
subjects: odds ratio 1.56 (95% CI 1.18 – 2.07, p=1.77 × 10−3). Other SNPs showed strong
associations, but were not (or not as significantly) associated in the parallel analysis
comparing diLQTS cases and drug-exposed controls.

To validate the association between diLQTS and SNPs rs1805128 / D85N and rs7295250,
we assessed the relationship in the independent DARE sample consisting of 57 diLQTS
cases and 211 population-based, matched control subjects. Clinical characteristics of this
validation sample are provided in Table 2. Cases displayed a higher proportion of
cardiovascular disease than controls, and hypokalemia at the time of the index arrhythmia
was identified in 25% of those cases for whom admission potassium levels were available.
Amiodarone (51%) and sotalol (26%) were the two most common culprit drugs. Six patients
(11%) were receiving diuretics, usually in combination with another drug. In 12 patients
(21%) more than one culprit drug was implicated.

The effect of rs1805128 / D85N in the validation analysis showed a trend in the same
direction as observed in the discovery analysis (Table 3). We identified 1 homozygote and 2
heterozygotes among diLQTS cases, and 6 heterozygotes among controls. The minor allele
frequencies of cases and controls in this dataset were 3.5% and 1.4%, respectively, which
translated into an odds ratio of 1.5 (95% CI 0.35 – 6.57, p=0.58).

In an analysis of rs1805128 stratified by sex, we found similar effect estimates and
significance levels for both men and women suggesting no major effect modification by sex.
In each subgroup, the results were comparable to the main age- and sex-adjusted analysis
(data not shown). SNP rs7295250 failed to replicate in the DARE cohort with a non-
significant effect estimate in the opposite direction (Table 3).

Discussion
In this study, we tested the hypothesis that common genetic variants modulate the risk for
diLQTS. We observed that the KCNE1 variant rs1805128, resulting in D85N, confers
substantially increased risk for drug-induced torsades de pointes. The key resources that
allowed us to identify this variant as a risk allele were the accumulation of a large set of
cases through an international collaboration, large control sets of subjects with drug
response phenotypes, and availability of population controls.

The D85N variant has been implicated previously as a modulator of QT interval19,29,30 and
T wave morphology.31 In addition, D85N had been described as a rare variant in a small
study of 32 diLQTS cases.12 One recent study reported that co-expression in heterologous
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cells of KCNE1-D85N with genes encoding potassium channel pore-forming subunits
(KCNQ1 and KCNH2) impaired IKr and IKs, two key repolarizing potassium currents, and
suggested it contributed to the variable penetrance of the congenital long QT syndrome.32

Life-threatening adverse drug reactions are rare by their nature, since high-risk drugs are not
generally widely prescribed. Further, many such adverse reactions occur in an unpredictable
fashion, and sudden death due to this mechanism may not be recognized clinically. Thus, the
impact of culprit drugs on the balance between risk and benefit of drug therapy in an
individual patient has not been predictable a priori. Contemporary genomic approaches to
analyze human phenotypes, such as common diseases, rely on discovery and replication
cohorts, often accumulating tens of thousands of subjects to validate the predictive power of
variants with odds ratios <2. Accumulating such large numbers of cases is by definition
impossible for rare adverse drug effects.33,34 Hence, the expectation with the use of either an
intensive candidate gene interrogation or even a genome-wide approach is that common
contributory variants can be identified only if they confer relatively high odds ratios.
Further, demonstration of biologic plausibility, as in this study, bolsters an argument that a
variant identified in this fashion contributes to the phenotype under study. Other examples
of rare adverse drug effects analyzed using genomic approaches include statin-related
myopathy35 and abacavir-related skin reactions.36 In both cases, individual genetic variants
with strong effects on risk and with biologic plausibility arguments have been identified.

We studied cases of diLQTS caused by a wide range of drugs and drug classes, although the
majority was antiarrhythmic-related. Atrial fibrillation was most prevalent in the drug-
exposed control group compared to the population control group and to the diLQTS cases.
The reason for this distribution pattern was the fact that many diLQTS cases and drug-
exposed controls received culprit drugs for atrial fibrillation treatment. It is widely accepted
that culprit drugs all share a common proximate mechanism, which is inhibition of the rapid
component of the cardiac delayed rectifier potassium current, IKr.1–3 This common
mechanism justifies the inclusion in this analysis of multiple culprit drugs. High
concentrations of offending drugs are also clinical risk factors for diLQTS, although
mechanisms producing such elevations are drug-specific. Thus the analysis we report did not
consider variability in drug concentrations. While the phenotype we studied here required
documented torsades de pointes, this arrhythmia has the potential to degenerate to
ventricular fibrillation, and thus cause sudden cardiac death. Indeed, use of QT-prolonging
antipsychotics37 and of other high potency IKr blockers38 has been associated with an
increased risk of SCD.

Electrophysiological experiments using a range of approaches, from whole hearts39–41 to
single mammalian cells42 to computational simulations,43 support the concept that
variability in the extent to which IKr block prolongs QT interval is determined not only by
this specific current but also by multiple other currents whose integrated activity generates
normal cardiac repolarization. A framework for analyzing diLQTS susceptibility suggests
that multiple mechanisms control normal cardiac repolarization. Thus, loss of a single
component in this system is unlikely to cause marked QT derangement; this redundancy has
been referred to as “repolarization reserve”.44 As a consequence, individuals with a reduced
repolarization reserve, due to common genetic variants or other risk factors such as sex, may
display entirely normal QT intervals until drug challenge eliminates the remaining reserve,
resulting in marked QT prolongation and torsades de pointes. Recent studies have implicated
a second key repolarizing current, IKs, as a major contributor to repolarization reserve.41–43

Our finding, that a variant in KCNE1 is a risk factor for diLQTS, is entirely consistent with
this view, and supports the idea of using such a “system” approach45 to analyze the
physiologic underpinnings of other rare, previously unpredictable adverse drug effects. Our
diLQTS cases presented with significantly prolonged QTc measurements compared to
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controls. We attribute this finding in part to the fact that many ECGs in cases unavoidably
were collected when the patients were not entirely off the QT prolonging drugs. Our
findings demonstrate the power both of multi-institutional collaborations to study rare
adverse drug effects, and of contemporary genomic approaches as a first step to definitive
studies to directly test the value of “pre-prescription genotyping” to optimize drug therapy.
Further studies will be required to determine whether pre-prescription genotyping at this site
can reduce the incidence of diLQTS.

Limitations and conclusions
Restricting our study to participants of European descent does not allow us to make any
conclusion with regard to other ethnicities. Although we did not detect relevant population
stratification in our cohort, diLQTS cases were of European descent, but all population
controls were Germans only. Current standards in genetic association studies generally
require rigorous standards regarding adjustment for multiple comparisons and independent
replication. As outlined above, the rarity of our phenotype prevented us from collecting
higher numbers of participants to meet this standard. However, the clinical importance of the
phenotype justified the acceptance of a trade-off in requirements. In addition, we aimed to
minimize false-positive results by using two control groups different in nature, and an
independent validation step, which showed consistent but not significant results. As
particularly the sample size of the case group was small, we attribute this finding to a
limitation of statistical power. In addition to the sample size, also the low frequency of the
D85N risk allele is of importance when interpreting the nonsignificant validation. However,
the D85N variant is known to modulate potassium current and prolong repolarization. Data
attributing risk to this variant in our study and previous work is creating a portfolio of
evidence that supports the idea of genotyping subjects at risk prior to drug exposure. At
present, such an option might be still distant, however, will become more interesting once
further supporting replication evidence is available. How much evidence is required to act
on a specific variant in this fashion remains controversial, and is likely to evolve as
genotyping costs and very large databases evolve.46 We submit that the clarity of our
findings would have benefitted from additionally adjusted models including ECG
measurements like the QTc interval, or other clinical covariates like potassium levels or
concomitant diseases. Due to an excess of missing data in our case samples, we were
restricted to a limited adjustment as presented. Future investigations will be required to gain
further insight regarding the effect of other factors on the association between D85N and
diLQTS.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Manhattan-plot illustrating the genotyping results.–log10 p-values plotted against the SNPs’
chromosomal location. diLQTS cases vs. drug-exposed controls in black; diLQTS cases vs.
population controls in gray. The horizontal line indicates threshold of p=0.01 for SNP
replication. Arrows mark associations with p≤0.01 in both comparisons.
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