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Abstract
The establishment of a neurobiologically based nosological system is one of the ultimate goals of
modern biological psychiatry research. Developments in neuroimaging and statistical/machine
learning have provided useful basic tools for these efforts. Recent studies have demonstrated the
utility of fMRI as input data for the classification of schizophrenia, but none, to date, has used
fMRI of cognitive control for this purpose. In this study, we evaluated the accuracy of an unbiased
classification method on fMRI data from a large cohort of subjects with first episode
schizophrenia and a cohort of age matched healthy control subjects while they completed the AX
version of the Continuous Performance Task (AX-CPT). We compared these results to
classifications based on AX-CPT behavioral data. Classification accuracy for DSM-IV defined
schizophrenia using fMRI data was modest and comparable to classifications conducted with
behavioral data. Interestingly fMRI classifications did however identify a distinct subgroup of
patients with greater behavioral disorganization, whereas behavioral data classifications did not.
These results suggest that fMRI-based classification could be a useful tool in defining a
neurobiologically distinct subgroup within the clinically defined syndrome of schizophrenia,
reflecting alterations in discrete neural circuits. Independent validation of classification-based
phenotypes using other biological data such as genetics would provide a strong test of this
hypothesis.
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INTRODUCTION
One of the goals of modern biological psychiatry research has been the establishment of a
diagnostic system for mental disorders based on objective neurobiological measures. This
achievement would address the limitations associated with the current symptom and
observation-based nosologic system (Jablensky, 2006; Kendell and Jablensky, 2003;
Kendler, 2009) and could revolutionize research and treatment of psychiatric illnesses.
These nosologic concerns have led to proposals for the development of fundamentally new
ways of classifying mental illness, including schizophrenia (Insel et al., 2010; Jablensky,
2006; Kendler, 2009). The Research Domain Criteria (RDoC) initiative (Insel et al., 2010)
sponsored by the NIMH seeks to foster the development neural circuit based systems of
classification that reflect the underlying pathophysiology of mental illnesses. The
availability of modern brain imaging techniques, which afford rapid, detailed and non-
invasive means of detecting alterations in structure or function, have spurred several efforts
at establishing such brain based diagnostic systems (Calhoun et al., 2008; Costafreda et al.,
2011; Costafreda et al.; Davatzikos et al., 2005; Demirci et al., 2008a; Kawasaki et al., 2007;
Koutsouleris et al., 2009; Shen et al., 2010; Shinkareva et al., 2006; Takayanagi et al., 2011;
Yoon et al., 2007). These efforts have applied statistical tools for classification/prediction of
high dimensional data, which, in basic studies, have demonstrated remarkable ability to
decode activity patterns associated with distinct mental states, e.g. viewing of faces vs.
scenes (Haynes and Rees, 2006; O’Toole et al., 2005; Polyn et al., 2005). In psychiatric
clinical studies, pattern classification, using machine learning algorithms, has been adapted
to the classification of group membership; a classifier “learns” to distinguish brain image
patterns from control subjects and patients, reviewed in (Demirci et al., 2008b).

There have been a number of recent neuroimaging classification studies in schizophrenia
demonstrating relatively high classification accuracy. These studies have primarily
examined structural images (Davatzikos et al., 2005; Kawasaki et al., 2007; Sun et al.,
2009a; Sun et al., 2009b; Takayanagi et al., 2011; Yoon et al., 2007) and one study has even
shown high accuracies in predicting conversion from risk states to schizophrenia
(Koutsouleris et al., 2009).

In principle, it is reasonable to expect functional images to be particularly useful for
classifying schizophrenia since its underlying neurobiological abnormalities may be more
evident in terms of impaired function. The application of pattern classifiers to fMRI data has
demonstrated notable sensitivity in detecting subtle abnormalities in the distributed pattern
of neural activity in schizophrenia (Yoon et al., 2008a; Yoon et al., 2008b). A number of
published studies have demonstrated the feasibility of using fMRI data for classifying
schizophrenia (Calhoun et al., 2008; Costafreda et al., 2011; Costafreda et al.; Demirci et al.,
2008a; Shen et al., 2010; Shinkareva et al., 2006). Most have utilized images of unstructured
mental states i.e. resting state, (Calhoun et al., 2008; Shen et al., 2010; Shinkareva et al.,
2006), and few have utilized images of structured cognition (Costafreda et al., 2011;
Demirci et al., 2008a). The convergence of findings that higher order cognitive deficits,
particularly those involving cognitive control, are core features of schizophrenia (Barch et
al., 2001; Barch et al., 2003; MacDonald et al., 2005; Minzenberg et al., 2009; Yoon et al.,
2008b), suggest that fMRI of cognitive control may be a particularly useful method for
schizophrenia classification. However, no previous study, to our knowledge, has utilized
fMRI obtained during the completion of a cognitive control task.
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In this study, we applied statistical classification of fMRI data derived from the completion
of a cognitive control task to distinguish images of subjects with schizophrenia from those
of healthy subjects. We measured fMRI responses in a cohort of subjects with first episode
schizophrenia and a healthy control group while they completed the AX-version of the
Continuous Performance Task (AXCPT), a paradigm consistently demonstrated to elicit a
differential deficit in cognitive performance, PFC dysfunction and related networks in
schizophrenia (Barch et al., 2001; Barch et al., 2003; MacDonald et al., 2005; Yoon et al.,
2008a). Data derived from these functional images served as inputs for classifiers.

Another goal of this study is to examine an alternative potential application of brain based
classification of schizophrenia. This effort is motivated by the possibility that schizophrenia
is in fact composed of neurophysiologically heterogeneous conditions. While this question
of heterogeneity is far from being settled (Cardno and Farmer, 1995; Crow, 1995; Goldberg
and Weinberger, 1995), several lines of evidence support the heterogeneity view (Carpenter
et al., 1988; Crow, 1980; Jablensky, 2006; Tsuang and Faraone, 1995). If this were the case,
there would be hard limits to the maximal classification accuracy of a neurophysiologically
based system. In other words, if schizophrenia were pathophysiologically diverse, with no
one signature of dysfunction shared by the predominant majority of cases, the classification
of functional images sensitive to this heterogeneity could not achieve very high accuracy.
Instead, we would expect the classifier to produce relatively modest overall accuracy as
measured against the traditional diagnostic standard, e.g. DSM-IV criteria, and the fMRI
classifier would, by definition, identify neurophysiologically distinguishable cases. In this
situation, the fMRI classifier would produce classifications in which the clinical profile of
the “correctly” classified group of patients differs from the “incorrectly” classified group of
patients along a dimension linked to the neural circuits being measured. The neural circuits
differentially engaged in schizophrenia during the completion of the AX-CPT indexes
cognitive and behavioral disorganization (MacDonald et al., 2005; Yoon et al., 2008a).
Consequently, we predicted that patients classified correctly into the schizophrenia group
would exhibit greater disorganization than patient cases incorrectly classified into the
control group.

METHODS
Participants

51 first episode schizophrenia and 51 healthy control subjects participated. Demographic
features are displayed in Table 1. Mean age of the control sample was 20.22 years (SD =
3.90, range 12–32) and the mean age of the patient sample was 19.92 years (SD = 3.59,
range 14–30). First episode status was defined as the first psychotic episode occurring
within one year of testing. 19 subjects were anti-psychotic naïve at time of testing. The
groups differed on years of education and IQ, with controls displaying higher means for both
variables, p<.05. The patient group also had a significantly greater percentage of male
subjects, p<.05.

Diagnostic evaluations with the Structured Clinical Interview for DSM-IV-TR confirmed
the diagnosis of schizophrenia in patients, including 4 subjects with schizoaffective disorder,
depressed type, and excluded major psychiatric illness in controls. All patients’ diagnoses
were confirmed by consensus conferences, which occurred approximately 12 months
following initial presentation to our study. In the consensus conference, we used all
available information, including, in most cases, input from clinicians providing on going
psychiatric care to our subjects and the results of structured clinical diagnostic instruments.
Participants in the consensus conference were all masters or doctoral level clinicians.
Controls with a first-degree relative with a psychotic disorder were also excluded. Subjects
under 16 were evaluated with the Kiddie-SADS-Present and Lifetime Version. Diagnoses
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were confirmed by consensus conference. Symptoms were quantified with the BPRS,
SANS, SAPS, and GAS. Sub-scores from the BPRS, SANS, and SAPS were used to derive
indices of disorganization, reality distortion and poverty (Barch et al., 2003). Exclusion
criteria for all subjects were: IQ < 70, drug/alcohol abuse in the previous three months or a
positive drug screen on the day of testing, significant head trauma, or any known
contraindication to MRI. After complete description of the study, written informed consent
was obtained. For subjects under 18, we obtained written consent from their legal guardians.
This study was approved by the IRB at the University of California Davis.

Cognitive Task
fMRI was conducted while subjects performed the AX-CPT. Detailed descriptions of this
paradigm can be found elsewhere (Barch et al., 2001). In summary, the appearance of an A
cue represent the low cognitive control condition while the appearance of the B cue signals
the need to engage control processes in order to overcome a pre-potent response tendency.
Therefore, the key contrast of interest is between B cue and A cue trials, as they entail lower
and higher levels of cognitive control necessary to complete the task, respectively.

Neuroimaging
Functional scans (T2* EPI, TR 2000 ms, TE 40 ms, flip angle 90 degrees, FOV 22 cm, 4.0
mm axial slices with 3.4 mm2 in-plane resolution) were acquired on a 1.5T GE scanner.
Preprocessing, implemented in SPM5 (http://www.fil.ion.ucl.ac.uk/spm5), included:
temporal and spatial realignment, normalization to the EPI MNI template, and spatial
smoothing with a 8 mm FWHM kernel. Subjects exhibiting greater than 4mm within run
movement were excluded as were subjects with <60% overall task performance accuracy.
Analyses were conducted using a general linear model within an event related framework.
We modeled correct trials with covariates for A cue, B cue, AX probe, AY probe, BX probe
and BY probe. Incorrect trials were modeled separately and excluded from analyses. We
used the B cue – A cue contrast to generate the fMRI data for classification since this
contrast identifies brain regions differentially engaged by greater cognitive control demands
(MacDonald et al., 2005; Yoon et al., 2008a). Activation significance for all analyses were
defined at the voxel level with p<.05, FDR, corrected for multiple comparisons. These
contrast images were obtained by combining subjects across diagnoses; therefore,
activations produced by this contrast would not bias subsequent between-group analyses.
We used a functional ROI approach to generate data for classification. This approach affords
a simple means of data reduction and indexing robust neural activity. From the regions
showing significant activity in the B cue – A cue contrast, Fig. 1, we obtained summary
measures of activity (average beta values) for each subject, which served as classifier inputs.
In one set of analyses, given the hypothesized importance of the DLPFC in the cognitive
deficits in schizophrenia, classifications were conducted on fMRI data derived from
significant voxels within the left DLPFC (defined by the anatomical boundaries of the
middle frontal gyrus). We then examined classification of fMRI activity from significant
voxels from the entire network of brain regions indentified by the B cue – A cue contrast.

Classification Analysis
We applied a linear discriminant analysis classifier and conducted unbiased classifications
using leave-one-out cross-validation (LOOCV). LOOCV entailed 102 rounds of
classifications, one round for each subject. In each round, the classier trained on fMRI data
from all but one subject and prediction of group membership was tested on the one subject
excluded from training. This procedure was repeated until all subjects were tested. To
estimate classification performance, we conducted classifications 100 times and error rates
are averaged over the 100 iterations. To assess the potential of the fMRI-based classifier to
identify neurophysiologically distinct subgroups, we compared the clinical characteristics of
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correctly and incorrectly classified patients. Based on prior studies demonstrating that fMRI
data derived from patients completing the AX-CPT is associated with greater
disorganization in schizophrenia (MacDonald et al., 2005; Yoon et al., 2008a), we predicted
that disorganization in correctly classified patients would be greater than in incorrectly
classified patients. To ensure reliable estimates of the propensity of each patient with
schizophrenia to be misclassified, we calculated the proportion of times each patient was
misclassified in 1000 iterations of training/testing allocation. Those patients predicted by the
classifier to be belonging the control group greater than 50% of the time across these
iterations were deemed misclassified. Patients predicted by the classifier to belong to the
schizophrenia group more than 50% of the time were deemed correctly classified.

RESULTS
Behavioral Results

Subjects with schizophrenia exhibited a specific deficit in cognitive control in the context of
impaired overall performance in the AX-CPT task. In the planned comparison between the
AX (low cognitive control) and BX (high cognitive control) conditions, there was a
significant Group × Condition interaction on RTs (p = .048) and a nearly significant
interaction on accuracy (p = .058) such that patients were slower and less accurate in the BX
compared to the AX condition (Table 2). When the BX condition was considered alone,
patients were less accurate (p = .001) and slower (p = .026) compared to controls.

fMRI Results
The contrast between B cue and A cue trials revealed a network of cortical regions,
including the left DLPFC, Fig. 1. A full list of activations can be found in Table 3.

Classification
We examined the utility of behavioral data (see Table 3) as classifier inputs in distinguishing
patients with schizophrenia from healthy comparison subjects. The difference in the
percentage of trials correctly performed in the BX and AX conditions was chosen for this
purpose because this measure most closely matches the B cue – A cue contrast used for the
fMRI based classifications. Behavioral data yielded an average classification accuracy of
57.8% for all subjects. The group specific accuracies were 64.7% and 51.0% for controls
and patients respectively. Classification of left DLPFC fMRI data resulted in an overall
accuracy of 61.8% with 64.7% of healthy subject and 58.8% patients being correctly
classified compared to their DSM-IV diagnosis. Classifications based on whole brain
network fMRI data resulted in an overall accuracy of 58.8%, with 62.7% of healthy subject
and 54.9% patients being correctly classified.

Clinical characteristics of misclassified patients with schizophrenia
To test the hypothesis that the modest classification accuracy reflects pathophysiologic
heterogeneity, we compared the level of disorganization exhibited by correctly classified
and incorrectly classified patients (Table 5). Patients incorrectly classified exhibit brain
activity that is similar to healthy subjects. Therefore, we predicted that the incorrectly
classified patients would exhibit diminished severity of disorganization symptoms compared
to the correctly classified patients and. Patients, whose fMRI data from the entire network of
significantly activated regions were correctly classified, exhibited greater disorganization
compared to misclassified patients, p<.05, but they did not differ in GAF scores, total BPRS,
and negative symptoms (p>.15). There was a trend level difference in positive symptoms,
with incorrectly classified patients having more symptoms, p=.091. The classification of
fMRI data from the left DLPFC did not result in differences in the level of disorganization
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between correctly and incorrectly classified patients, p=.146. However, the GAF score
among the former was significantly lower than among the latter, p=.028. The groups did not
differ in total BPRS, negative or positive symptoms, p>.199. Classifications based on
behavioral data did not yield significant group differences in the magnitude of
disorganization or in any of the other symptom measures, p>.2.

DISCUSSION
This study adds to a rapidly growing literature on the application of automated classification
towards the development of a neurobiologically based diagnostic system for schizophrenia.
To the best of our knowledge, this is the first schizophrenia fMRI classification study
utilizing a cognitive control task. Since deficits in cognitive control may be one of the core
features of illness, it was thought that fMRI of this process could be a powerful means of
classifying schizophrenia. Contrary to this predication, we obtained very modest
classification accuracies, suggesting the limited capacity of this approach to classify
schizophrenia. Correctly classified patients exhibited significantly greater levels of
disorganization compared to patients assigned to the control group. In contrast to the fMRI
data, classifications based on in-scanner behavioral data, although yielding very similar
accuracy, produced classification assignments among patients that did not differ on the
disorganization dimension. These results suggest a novel application for classification of
fMRI data in schizophrenia – a circuit based approach to identifying neurophysiologically
distinct subgroups among clinically defined cases of schizophrenia.

A number of factors may have contributed to the modest classification accuracy. One factor
may be related to the patient sample. Unlike most other classification studies, we studied
first episode patients. Evidence of progressive brain pathology (Andreasen et al., 2011;
Borgwardt et al., 2009; Mathalon et al., 2001) suggests the possibility that the
neurophysiological markers of illness may not be as evident in first episode patients as they
are in patients with more established illness. Consequently, fMRI data from early in the
course of illness may be less distinguishable from healthy subjects. Another potential factor
may be related to our efforts to avoid prediction biases that have affected prior classification
efforts, reviewed in (Demirci et al., 2008b). We excluded test subjects from all stages of
training to address a subject selection bias. We did not optimize classification parameters
across multiple runs to avoid parameter selection bias. We massively reduced the
dimensionality of our input data to avoid the “curse of dimensionality,” a situation in which
over-fitting of the data at the cost of reduced generalizeabiity can occur. Another potential
factor affecting classification accuracy could be the limitations associated with the particular
classifier and algorithm we used in this study. This is unlikely since we obtained similar
accuracies using alternative classifiers and methods for data reduction, feature selection and
cross validation. We tested whether medications could be contributing to low classification
accuracy by conducting a chi-square test. We found that the classification performance was
not associated with antipsychotic medication status (p > 0.2).

One of the limitations of this study is the fact that the samples were not well matched on
gender. Stratification of our samples by gender would have resulted in relatively small
sample sizes, rendering results from these groups unstable and potentially misleading.
Consequently, future studies will have to address the effects of gender on fMRI
classification of schizophrenia.

The magnitude of classification accuracy has been regarded as the primary measure of a
classifier’s success. By this metric, this study produced very modest accuracy compared to
prior efforts (Calhoun et al., 2008; Costafreda et al., 2011; Costafreda et al.; Davatzikos et
al., 2005; Shen et al., 2010; Sun et al., 2009a; Sun et al., 2009b; Takayanagi et al., 2011).

Yoon et al. Page 6

Schizophr Res. Author manuscript; available in PMC 2013 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



This low accuracy suggests that our approach, classification of fMRI obtained during the
completion of a cognitive control paradigm, holds limited potential in the automated
classification of schizophrenia. An alternative interpretation of our results, however, is
suggested by the question of whether high classification accuracy should be the proper
measure of classifier success. In other words, is maximal correspondence between a brain
based classifier assignment and the DSM-IV diagnosis of schizophrenia desired or
meaningful from a research perspective? The answer to this question ultimately depends on
the validity of the DSM-IV diagnosis of schizophrenia in terms of defining a unitary disease
pathophysiology. A number of investigators have questioned this validity (Carpenter et al.,
1988; Crow, 1980; Insel et al., 2010; Kendell & Jablensky, 2003; Kendler, 2009). Given the
possibility that the diagnostic signs and symptoms may be the product of diverse neural
disturbances, individuals diagnosed with schizophrenia under the current system may share
relatively little common neural substrates.

Our results are broadly consistent with the RDoC initiative (Insel et al., 2010) initiative and
one of the main conclusions we draw from our results is that fMRI-based classification may
be a novel means of identifying neural circuit based phenotypes within schizophrenia. By
classifying patients into sub-groups with similar macro-circuit level dysfunction, the
classification procedure outlined in this study has the potential to reduce unwanted variance
and boost the ability to discover causative mechanisms. Group stratifications based on
refined phenotypes has been advocated as a strategy to boost power to detect the genetic
causes of complex conditions (Allison et al., 1998), including schizophrenia (Ginsburg et al.,
1996). One test of the validity of this proposition would be to use fMRI-based classifications
to stratify group assignments and examine if these stratifications results in greater power to
identify causative genes, as has been the case with phenotype stratification strategies in
other complex neuropsychiatric conditions such as autism (Shao et al., 2003) and Alzheimer
disease (Ginsburg et al., 1996). In this proof of concept study, we employed a binary
classifier and detected one sub-group within schizophrenia. Future studies with substantially
larger sample sizes and additional fMRI paradigms could be designed with multi-category
classifiers capable of identifying multiple patient sub-groups within the same study.
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Figure 1.
Map of significant activations. A contrast of Cue B – Cue A among the sample including all
subjects revealed activations within the left DLPFC (purple) and within the entire brain
(brown), p < .05, FDR corrected. Activation estimates from these regions served as inputs
for the classier. Peak activation coordinates are displayed in Table 3.
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Table 3

Significant Activations

Cluster size P (FDR) T x,y,z {mm}

1664 0.002 5.6 30 −70 52

427 0.002 5.19 −50 32 32

1047 0.004 4.75 44 20 20

162 0.011 4.16 38 10 60

61 0.019 3.81 −20 8 62

125 0.025 3.62 −44 −50 40

34 0.027 3.57 −48 10 −6

94 0.028 3.56 −32 −68 54

66 0.031 3.47 0 28 58

17 0.034 3.39 52 44 0
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Table 4

Classification Performance

Overall Healthy Control Subjects Patients with Schizophrenia

Behavioral Data: BX-AX Accuracy 57.8% 64.7% 51.0%

fMRI Data: B cue – A cue Left DLPFC 61.8% 64.7% 58.8%

fMRI Data: B cue – A cue Network 58.8% 62.7% 54.9%
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Table 5

Level of Disorganization in Correctly and Incorrectly Classified Subjects with Schizophrenia

Correctly Classified Schizophrenia Misclassified Schizophrenia

Mean Mean P-Value

BX-AX Accuracy
B cue - A cue Network

0.93 0.82 0.525

1.02 0.69 0.049

B cue -A cue Left DLPFC .97 .73 .146
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