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Abstract
Phytoestrogens are estrogenic compounds of plant origin classified into different groups including
isoflavones, lignans, coumestans and stilbenes. Isoflavones such as genistein and daidzein are the
most studied and most potent phytoestrogens, and are found mainly in soy based foods. The
effects of phytoestrogens are partly mediated via estrogen receptors (ERs): ERα, ERβ and possibly
GPER. The interaction of phytoestrogens with ERs is thought to induce both genomic and non-
genomic effects in many tissues including the vasculature. Some phytoestrogens such as genistein
have additional non-ER-mediated effects involving signaling pathways such as tyrosine kinase.
Experimental studies have shown beneficial effects of phytoestrogens on endothelial cells,
vascular smooth muscle, and extracellular matrix. Phytoestrogens may also affect other
pathophysiologic vascular processes such as lipid profile, angiogenesis, inflammation, tissue
damage by reactive oxygen species, and these effects could delay the progression of
atherosclerosis. As recent clinical trials showed no vascular benefits or even increased risk of
cardiovascular disease (CVD) and CV events with conventional menopausal hormone therapy
(MHT), phytoestrogens are being considered as alternatives to pharmacologic MHT.
Epidemiological studies in the Far East population suggest that dietary intake of phytoestrogens
may contribute to the decreased incidence of postmenopausal CVD and thromboembolic events.
Also, the WHO-CARDIAC study supported that consumption of high soybean diet is associated
with lower mortalities from coronary artery disease. However, as with estrogen, there has been
some discrepancy between the experimental studies demonstrating the vascular benefits of
phytoestrogens and the data from clinical trials. This is likely because the phytoestrogens clinical
trials have been limited in many aspects including the number of participants enrolled, the clinical
end points investigated, and the lack of long-term follow-up. Further investigation of the cellular
mechanisms underlying the vascular effects of phytoestrogens and careful evaluation of the
epidemiological evidence and clinical trials of their potential vascular benefits would put forward
the use of phytoestrogens as an alternative MHT for the relief of menopausal symptoms and
amelioration of postmenopausal CVD.
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INTRODUCTION
Estrogen (E2) deficiency during menopause is associated with perimenopausal symptoms
such as hot flushes and night sweats which prompt women to seek menopausal hormone
therapy (MHT). In addition to the relief of menopausal hot flushes and vaginal dryness,
MHT may improve sleep quality and social well-being, retard bone loss and minimize
osteoporotic fractures [1,2].

The risk of cardiovascular disease (CVD) also increases after menopause, suggesting
vascular benefits of endogenous E2 [3-5]. Estrogen receptors (ERs) have been identified in
the vasculature, and E2 has been shown to promote beneficial effects on the endothelium,
vascular smooth muscle (VSM) and extracellular matrix (ECM) [3,4,6-8]. The vascular
benefits of E2 observed in experimental studies have suggested potential benefits of MHT in
CVD.

Studies of the vascular benefits of female sex hormones have mainly focused on natural and
synthetic estrogens. Initial population-based observational studies showed 35% reduction in
mortality and a 50% reduction in CV events among women using MHT [9]. Also, a meta-
analysis of results from different studies demonstrated overall improvement of
atherosclerotic biomarkers and suggested CV benefit of MHT [10]. However, randomized
clinical trials (RCTs) did not demonstrate a decrease in CV events and instead showed
increased risk of thromboembolic events. As of 2001, only 38% of postmenopausal women
(Post-MW) in the United States used MHT [11]. This has prompted investigations of the
possible causes of the discrepancies between the experimental vascular benefits of E2 and
the results of the clinical trials. Other investigations have focused on alternative MHT.

In the past two decades, there has been an increasing interest in phytoestrogens as natural
alternatives to MHT [12]. Phytoestrogens, or “dietary estrogens”, are a heterogeneous group
of naturally occurring compounds with structural similarities to E2 that allow them to mimic
the effects of E2. Phytoestrogens have several potential applications in different diseases.
Phytoestrogens decrease bone resorption and delay the progression of osteoporosis in Post-
MW [13], exert anti-androgenic effects which could be useful in benign prostatic
hypertrophy [14], and may have protective effects in prostate and breast cancers [15], and
neuroprotective effects that could improve cognitive functions of the brain [16].
Phytoestrogens also showed a potential to improve CV function and to decrease the risk of
CVD associated with menopause [17].

Epidemiological evidence suggests potential protective effects of phytoestrogens. The
incidence of CVD, diabetes, obesity and breast cancer are less in Asian than Western
populations. Also, the incidence of hot flushes is 70-80% in menopausal Western women
compared to 14-15% in Asian women [18]. Migration studies of the Japanese population
moving to the United States showed that they developed an increased incidence in “Western
Diseases” – mainly CV- after two generations. These observations suggest that the factors
contributing to CVD are not only genetic, but could also involve environmental factors such
as the diet. One important difference between Asian and Western diets is the high content of
soy-rich in phytoestrogens- in the Asian diet (20-150 mg/d) compared to the Western diet
(1-3 mg/d) [12]. In a study examining the relation between coronary artery disease (CAD)
and dietary habits of 61 populations in 25 countries, the 24 hour urinary excretion of taurine
and isoflavones, which are abundant in fish and soybean diets, was inversely related to
mortality rates from CAD [19]. These dietary differences may contribute to the lower
incidence of CAD among the Asian populations.

Research on the CV effects of phytoestrogens has progressed steadily, and the beneficial
vascular effects demonstrated in some studies have suggested potential applications in CVD.

Gencel et al. Page 2

Mini Rev Med Chem. Author manuscript; available in PMC 2013 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Also, being natural, phytoestrogens have less side effects. However, phytoestrogens are a
diverse group of compounds with different modes of metabolism, bioavailability and in vivo
effects. Thus, after decades of research there is no definitive agreement as to the vascular
effects of phytoestrogens and their benefit in CVD. In effect, some studies have suggested
that phytoestrogens may not have any benefit in CVD, and other studies attributed the
benefits of the soy-rich diet to food components other than phytoestrogens [20]. Also, most
of the clinical studies of phytoestrogens have been limited in terms of the number of subjects
enrolled, the compounds studied, the duration of dietary intake and the long-term follow-up
of the participants.

This review discusses reports from the Pubmed database and highlights the sources,
classification, and chemical structure of phytoestrogens, and their interaction with ERs,
signaling pathways and vascular effects on the endothelium, VSM and ECM. Other vascular
effects of phytoestrogens on lipid profile, angiogenesis, and inflammation, and how these
effects could retard the progression of atherosclerosis will also be discussed. We will then
highlight some of the clinical trials that evaluated the vascular effects of phytoestrogens, and
their implications in CV medicine. Throughout the review we will discuss the reported
benefits of phytoestrogens and suggest areas that need further investigation. To facilitate
comparison, we will briefly describe the effects of E2 followed by the data on
phytoestrogens.

Sources and Classification of Phytoestrogens
Phytoestrogens are polyphenolic non-steroidal compounds of estrogenic activity. While
phytoestrogens are generally plant in origin, resorcylic acid lactones, which are produced by
molds, exhibit estrogenic activity and hence termed mycoestrogens [21]. Major classes of
phytoestrogens include isoflavones, lignans and coumestans. Other phytoestrogens include
stilbenes, flavanones, flavonols, and flavones (Fig. 1). The most abundant, most studied and
most potent phytoestrogens are isoflavones. There are more than 1000 types of isoflavones
including genistein, daidzein, genistin, daidzin, formononetin, biochanin-A and equol. The
most commonly studied isoflavones are genistein, daidzein and its metabolite equol.

Isoflavonoids are a subclass of flavonoids, where one phenolic ring has migrated from C-3
to C-2. Isoflavones are found in legumes such as soy, chickpeas, clover, lentils and beans
(Table 1) [22]. Unextracted soy protein contains onaverage 1.105 mg genistein and 0.365
mg daidzein/g soy proteins isolate. However, total isoflavone content may vary up to 3-fold
with growth of the same soy cultivar in different geographical areas and different years.
Biochanin-A and formononetin are precursors of genistein and daidzein, respectively, and
also have estrogenic properties. Formononetin is abundant in Astragalus mongholicus Bunge
and Curcuma comosa Roxb. Glycitein and its conjugates are minor isoflavones in soybean
cotyledons, but are major components in dietary supplements and foods made from the
soybean hypocotyls.

Lignans are common in the plant kingdom and are the building block of lignin found in the
plant cell wall. Food containing lignans include flaxseed, lentils, whole grains, beans, fruits,
and vegetables (Table 1). Enterolactone and enterodiol are major lignans produced by the
action of intestinal bacteria on matairesinol and secoisolariciresinol, respectively [23].

Coumestans such as coumestrol and 4-methoxycoumestrol are found in mung bean sprouts,
brussel sprouts and spinach. Coumestrol, the most important coumestan consumed by
humans, is found in clover sprouts, alfalfa sprouts, and other legumes.
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The stilbenes family of phytoestrogens includes reseveratrol and pterostilbene which are
commonly found in red wine and peanuts. Resveratrol has estrogenic activity only in the
Trans form [24].

Flavanones include eriodictyol, naringenin, pinocembrin and are mainly found in citrus
fruits. Flavonols include kaempferol, myricetin, quercetin, and quercetagetin, and are found
abundantly in green tea and to a less extent in dark tea and chocolate. Flavones include
apigenin, baicalain, chyrisin, norwogenin and are found mainly in cereals and herbs.

Phytoestrogens Metabolism
Phytoestrogens are present in plants as inactive glycosidic conjugates. In the intestine, they
are hydrolyzed by the action of UDP-glucuronosyltransferase secreted by intestinal bacteria
to the active forms aglycones (Fig. 2). The aglycones are then absorbed by the intestinal
tract. On entering the circulation, aglycones may undergo extensive metabolism to other
compounds through various reactions including demethylation, methylation, hydroxylation,
chlorination, iodination, and nitration [25]. These metabolites are then transported to the
liver where they undergo conjugation to form β-glucuronides and to a less extent sulfate
esters. In the liver some glucuronides undergo further fermentation into other metabolites
that vary depending on the class of phytoestrogen. The glucuronides are excreted in bile and
partially reabsorbed via the enterohepatic circulation. Phytoestrogens are excreted in bile
and urine as conjugated glucuronides and in feces in the unconjugated form (Fig. 2) [25,26].

As with other phytoestrogens, isoflavones in food are bound to glucose. When ingested, they
are enzymatically cleaved in the gut into active aglycones. Genistein and daidzein, the most
active forms of isoflavones, are produced both by hydrolysis of their biologically inactive
glucoconjugates, as well as from the demethylation of their precursors biochanin A and
formononetin, respectively. The aglycone forms of isoflavones are easily transported across
the intestinal epithelial cells to the blood or are further metabolized in the intestine [26]. In
humans consuming soy-free diets, the plasma concentration of isoflavones is usually in the
nanomolar range, ≤40 nM. Acute ingestion of dietary soy leads to a rapid increase in the
plasma concentration of isoflavones up to the micromolar range [27]. The isoflavone serum
concentration shows variability in different populations. In serum samples of Japanese men,
the average concentration of genistein is 276 nmol/L and of daidzein is 107 nmol/L [28].

The majority of the genistein and daidzein consumed is eliminated from the body within 24
hours [26]. Genistein is transformed to dihydrogenistein and is further metabolized in the
colon to 4-ethyl phenol. Daidzein is metabolized to dihydrodaidzein, which is further
metabolized to both equol and O-desmethylangolensin (O-DMA). Genistein, daidzein, equol
and O-DMA are the major isoflavones detected in blood and urine of humans and animals
[29]. Interestingly, only 30-40% of humans –mostly Asians and vegetarians - are able to
metabolize daidzein into equol, and the ability to produce equol may be associated with an
increased benefit of isoflavones on bone mineral density and a lower risk of breast cancer
[30,31].

Factors Affecting the Metabolism of Phytoestrogens
The metabolism and excretion of isoflavones after soy consumption show considerable
variation among individuals. The average time taken after ingesting the aglycones to reach
peak plasma concentration is 4–7 hr, and is delayed to 8–11 hr for the corresponding
glycosidic conjugates. This suggests that the rate-limiting step for absorption is the initial
hydrolysis of the glycosidic moiety. The half-lives of genistein and daidzein are 7.1 and 9.3
hr, respectively [32].
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In addition to the inter-individual variations in phytoestrogen metabolism, sex may also play
a role, with women metabolizing phytoestrogens more efficiently than men [12]. Other
factors that could influence isoflavone bioavailability include the chemical composition, the
administered dose, intestinal transit time, intestinal microflora and the individual ability to
produce equol [26]. The source of the isoflavones and hence the food matrix in which the
compound is delivered plays a minor role in their bioavailability. The effect of age on the
bioavailability of isoflavones was also investigated, but no difference was found in the
pharmacokinetics of either genistein or daidzein between Pre- and Post-MW [33]. Also, the
frequency of ingestion does not appear to cause significant difference in the bioavailability
of isoflavones [34].

Estrogen Receptor
ER has two major subtypes ERα and ERβ that differ in their C-terminal ligand-binding
domain and in the N-terminal transactivation domain [3,35]. Several splice variants of ER
subtypes have also been identified. The diversity among ER variants could be due to
epigenetic changes, methylation of the genes encoding ERs, alternative RNA splicing
leading to multiple ER mRNA isoforms, and multiple sites for initiation of translation of ER
mRNA [36]. The two nuclear ER genes are located on separate chromosomes. ER1, the gene
that encodes ERα, is located on chromosome 6q(25.1) and ER2, the gene that encodes ERβ,
is located on chromosome 14q(23-24.1) [37]. Although E2 release patterns and plasma
levels change with aging, little is known about the age-associated changes in ER expression
and subtypes.

Similar to other members of the nuclear receptor superfamily, ERα and ERβ share a
common structure with five functional domains A/B, C, D, E and F [3]. Domain A/B is
involved in protein-protein interactions and transcriptional activation of target gene
expression. Domain C is involved in DNA binding and ER dimerization. Domain D is the
hinge domain linking domain C and E and is responsible for nuclear localization of ER.
Domain E is the ligand-binding domain. Domain F contains co-factor recruitment regions
[3]. Two acidic activation factors, AF-1 and AF-2, mediate the ligand-dependent
transcriptional activity of ER. AF-1 is located within the N terminus. AF-1 in ERα is very
active on a variety of E2-sensitive promoters whereas its activity in ERβ is minimal.
Hormone-dependent AF-2 is located in the ligand-binding domain [38]. AF-1 and AF-2 may
also be required for ligand independent receptor functions, including growth factor
activation by AF-1 and cAMP activation by AF-2.

Nuclear ERs are 40 times more abundant than membrane ERs. The same DNA sequence is
responsible for coding both nuclear and membrane ERs, but post-translational protein
modifications are likely to be responsible for targeting ER to either the nucleus or plasma
membrane [39]. ERα and ERβ have overlapping but not identical tissue distribution and
expression levels, suggesting distinct biological roles. ERα is expressed abundantly in the
uterus, vagina, ovaries, mammary gland, and hypothalamus [3,40]. ERβ is more active in the
prostate and ovaries, with smaller number in the lungs, brain, and bones [3]. ERs have also
been identified in ECs and VSM [3,6,41,42].

G protein-coupled receptor (GPR30) also termed G protein-coupled ER (GPER) is a novel
membrane receptor that binds E2. GPER comprises 375 amino acids and shares little
homology with the classical ERs. The gene coding for GPER is located on chromosome
7p22.3 and consists of three exons which code for three domains; an N-terminal domain, a
7-transmembrane domain and a C-terminal domain [43]. GPER is widely distributed in the
brain and peripheral tissues and may play a functional role in the vasculature. GPER has
been localized in the endoplasmic reticulum [44], and plasma membrane [45]. However, the
cellular localization of GPER appears to vary depending on the cell type.
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ERs display marked differences in binding affinity and activation by natural and synthetic
ligands [37,46]. Endogenous natural estrogens are C18 steroids and include estrone (E1),
estradiol (E2), and estriol (E3). They have 4 rings A, B, C, D, a hydroxyl group at C3, and
either a hydroxyl or ketone group at C17. The phenolic A ring is responsible for selective
high-affinity binding to ER. Only 5 chemicals without aromatic rings were found to be
active. These 5 chemicals possess H-bond capability with a rigid hydrophobic backbone that
matches the A, B and C rings of E2 [3,47].

Phytoestrogens and ERs
Different classes of phytoestrogens have distinct chemical structures that could allow them
to bind to ERs (Fig. 1). The key structural elements which are essential for the estrogenic
effects are the phenolic rings, low molecular weight, and optimal hydroxylation patterns [3].
Phytoestrogens could modulate ER function in several ways, including having both agonist
and antagonist effects. Phytoestrogens bind both ERα and ERβ, and activate ER-dependent
gene transcription. The affinity of most phytoestrogens to ERs is 1/100 to 1/10000 that of E2
but they may reach concentrations up to 10000 times that of E2 in the human body.
Phytoestrogens also have different binding affinities to ER subtypes with generally higher
affinity for ERβ than ERα, which explains why they may act differently from E2 [12,16].
Genistein has high affinity for ERβ, almost identical to that of E2, while its affinity for ERα
is only 6% of E2. Daidzein has very weak binding affinity for both ERα and ERβ, but its
relative affinity for ERβ is still higher than that for ERα. One study estimated that the
maximal activity induced by isoflavone phytoestrogens is about half the activity of E2.
Coumestrol has very high binding affinity for human ERα, but still a slightly higher affinity
for ERβ. The actions of phytoestrogens at the cellular and molecular level are influenced by
many factors including the phytoestrogen concentration, ER status, presence or absence of
endogenous estrogens, and the type of target organ or cell [35,48].

ER-Mediated Genomic and Nongenomic Effects
Although life is possible without either or both ERs, the reproductive functions are severely
impaired [49]. ERs also mediate multiple vascular, hematologic and metabolic effects
through stimulation or inhibition of gene expression (genomic pathways) and via other
pathways which do not involve gene transcription or new protein synthesis (nongenomic
pathways).

E2/ER activate genomic pathways that regulate many transcriptional processes and require
relatively longer time to show their effects. Upon binding E2, ER undergoes conformational
changes resulting in the formation of a homo- or heterodimer with high affinity for E2 and
DNA. This is followed by nuclear translocation of ER, binding to specific estrogen response
elements (ERE) and regulation of target gene expression. Depending on the cell and
promoter context, the DNA-bound ER exerts either positive or negative effects on the
expression of downstream target gene(s). Ligand-bound ER may also interact with other
transcription factor complexes to influence transcription of genes whose promoters do not
harbor ERE [3,5].

The overall effects of E2 depend on the ratio between ERα and ERβ in different tissues.
However, ERβ stimulation can produce some ERα effects in some organs [49]. Also, ERβ
may interact in a ligand independent manner with EREs of target promoters and attenuate
the ligand dependent transcriptional activity of ERα [50].

ERs can also regulate gene transcription without binding directly to DNA and thus regulate
the expression of a large number of E2-responsive genes that do not contain ERE. The
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receptors in such cases are tethered through protein-protein interactions to a transcription
factor complex that contacts the DNA [51].

ER function can also be modulated by extracellular signals in the absence of E2. Polypeptide
growth factors such as epidermal growth factor and insulin-like growth factor-1 can activate
ER and increase the expression of ER target genes. The mechanisms by which the E2 and
growth factor pathways converge are not clear, but these pathways appear to be dependent
on each other for the full manifestation of the ligand-mediated response [52].

Non-genomic effects are rapid responses that occur too quickly to be mediated by gene
transcription, are independent of protein synthesis, and typically involve modulation of
membrane bound and cytoplasmic regulatory proteins. For example, following E2 binding to
GPER, the Gα-GTPase subunit dissociates from the G-protein complex and activates
adenylyl cyclase and phospholipase C, which in turn generates second messengers such as
cAMP, IP3 and Ca2+ [53]. Other E2-activated pathways include mitogen-activated protein
kinase (MAPK), phosphatidylinositol trisphosphate kinase PI3K/Akt, and alteration of ion
channel fluxes [3,54].

Phytoestrogens and Endothelium
Like E2, phytoestrogens may have beneficial effects on the CV system partly through
effects on the vascular endothelium.

Effects of Phytoestrogens on Endothelial Cell Growth and Permeability—E2
stimulates endothelial cell (EC) proliferation via cytosolic and nuclear ERs [55]. E2 is also
important for the integrity of the endothelium and consequently the vascular permeability. In
cultured human umbilical vein endothelial cells (HUVECs) E2 has a biphasic effect on
vascular permeability; at nanomolar concentrations E2 decreases the permeability, but at
micromolar concentrations E2 increases it [56]. Animal studies also support a role of E2 on
EC integrity and permeability. Studies have shown that the permeability of the blood brain
barrier is 500% greater in ovariectomized (OVX) than intact female rats, and E2
replacement restores barrier properties [57]. The E2-induced decrease in EC permeability
may be related to regulation of prostaglandin E2 (PGE2) levels [58]. Similar to E2,
phytoestrogens regulate EC proliferation, maintain EC integrity and decrease vascular
permeability. Several studies have shown that genistein regulates the proliferation of human
endometrial ECs [59]. Genistein derivatives protect HUVEC-12 from H202 induced
apoptosis [60]. Genistein also inhibits TNF-α-induced apoptosis in human aortic ECs [61].
Phytoestrogens also maintain the integrity and decrease the permeability of the endothelium.
For example, in HUVECs equol improves EC function by reducing the generation of
reactive oxygen species (ROS) [62]. Equol also has a protective effect against EC
dysfunction induced by ritonavir, an antiprotease drug used in HIV patients [63]. Low
concentrations of biochanin A also inhibit cell proliferation in the human EC line ECV304
[64]. Also, long-term oral administration of genistein inhibits retinal vascular leakage in
experimentally-induced diabetes in rats, possibly via tyrosine kinase (TK) inhibition [65].
Genistein, also via TK inhibition, modulates bradykinin- and substance P-induced increase
in macromolecular efflux from the hamster cheek pouch microcirculation [66]. In mouse
skin, genistein inhibits vascular endothelial growth factor (VEGF)-induced increase in
vascular permeability, possibly by inhibiting TK-mediated local production of NO and
arachidonic acid metabolites [67]. Also, pretreatment of bovine aortic ECs with genistein
inhibits thrombin-induced increase in EC permeability via activation of the PKA/cAMP
pathway [68]. Thus, phytoestrogens regulate EC proliferation, maintain vascular integrity
and decrease endothelial permeability; and further studies are needed to define the
mechanisms and pathways involved.
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Phytoestrogens and EC Function—Vascular tone is controlled by the ratio between
vasodilators such as NO, PGI2 and EDHF and vasoconstrictors such as angiotensin II (Ang
II) and endothelin (ET). Experimental data have shown beneficial vascular effects of E2.
ERs mediate endothelium-dependent vascular relaxation, and E2 promotes NO, PGI2 and
EDHF production and decreases ET release [5,8,69,70]. Phytoestrogens promote
endothelium-mediated vascular relaxation via similar mechanisms.

Phytoestrogens and NO—Endothelium-derived NO is a key regulator of vascular tone.
In ECs, activation of eNOS leads to transformation of L-arginine to L-citrulline and NO
production (Fig. 3). E2 upregulates eNOS in human ECs by increasing eNOS promoter
activity and enhancing the binding activity of the transcription factor Sp1. E2 also increases
EC Ca2+, MAPK and PI3K activity and thereby increases eNOS activity and NO production.
E2 also reduces antioxidants which are known to decrease NO bioavailability [71].
Phytoestrogens may have similar effects on NO production and activity. Genistein
stimulates NO release in human aortic ECs and HUVECs [72]. In human EA.hy926 EC line,
biochanin A and formononetin and their metabolites genistein and daidzein increase eNOS
promoter activity and NO release [73]. Studies suggested different mechanisms of
phytoestrogen-induced increase in NO production. In bovine aortic ECs and HUVECs,
genistein may act through a protein kinase A (PKA)-dependent pathway, as genistein-
induced eNOS activation and phosphorylation was abolished by inhibition of PKA by H89
and was not blocked by ER antagonists, MAPK or PI3K/Akt-Kinase inhibitors [74]. In
human aortic ECs and HUVECs, equol stimulates phosphorylation of ERK1/2 and PI3K/
Akt, leading to the activation of NOS and increased NO production at resting cytosolic Ca2+

levels [75]. Animal studies also support that phytoestrogens increase NO production by
increasing eNOS expression and activity [76]. In OVX female Sprague-Dawley rats,
treatment with E2 reverses EC dysfunction and increases Ca2+ dependent NOS activity in
lung homogenates, and treatment with genistein increases NOS activity and improves
endothelial dysfunction to the same extent [77]. Also, in isolated rat carotid and basilar
arteries both equol and daidzein possess vasodilator activity. Interestingly, in hypertensive
rats the vasorelaxant response to equol, but not daidzein, is preserved [78]. Also,
formononetin relaxes phenylephrine-preconstricted rat aorta via NO-dependent mechanism
and other endothelium-independent mechanisms [79]. Several studies support a role of ER
in phytoestrogen-induced vasodilatation. In anesthetized pigs, intracoronary infusion of
genistein at constant heart rate and BP increases coronary blood flow as assessed by
ultrasound flowmeters and induces the phosphorylation of eNOS and NO production
through ERK 1/2, Akt and p38 MAPK pathways. The genistein-induced coronary
vasodilation appears to involve ERα/ERβ and stimulation of β2-adrenoreceptors [80]. In
mouse aorta, red wine polyphenols as well as ERα agonists stimulate endothelium-
dependent NO pathway via activation of ERα [81]. Also, red clover extracts stimulate NO
synthesis in cultured human ECs by recruiting ER-β [82]. In ECs, caveolin-1 is an anchoring
protein that binds to eNOS and reduces its activity. The increase in Ca2+ together with
calmodulin promotes the dissociation of eNOS from caveolin leading to increased eNOS
activity. One study suggested that daidzein and E2 may not alter eNOS protein in rat aorta
but reduce the expression of caveolin-1 and increase the expression of calmodulin, and
thereby increase eNOS activity [83]. Thus phytoestrogens may promote vasodilation by
increasing the expression and activity of eNOS and increasing NO production in ECs.

Phytoestrogens and cGMP—Biological signaling by NO is primarily mediated by
cGMP. cGMP is synthesized by NO-activated guanylyl cyclase and is broken down by
phosphodiesterase enzyme. cGMP activates PKG, which phosphorylates many cellular
proteins, leading to activation or inactivation of various cellular processes. E2 induces
cGMP production especially in ischemic tissues [84], cGMP may also mediate E2-induced
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stimulation of Ca2+ activated K+ channels (BKca) in porcine coronary artery [85].
Phytoestrogens may have similar cGMP-mediated vascular effects. In human coronary
SMCs, resveratrol enhances cGMP formation and stimulates PKG activity. E2 has 46%
lower maximal response than that of resveratrol. The cGMP formation by resveratrol or E2
is attenuated by the ER blocker ICI-182,780, even in endothelium-disrupted coronary
arteries. Interestingly, combining E2 with resveratrol shows a competitive rather than an
additive response [86].

Phytoestrogens and Prostacyclin (PGI2)—PGI2 is a prostaglandin (PG) produced
from the metabolism of arachidonic acid by cyclooxygenase enzyme (COX) and in turn
promotes endothelium-dependent vascular relaxation. E2-induced vascular relaxation is
partly mediated by endothelium-derived PGI2 [87]. E2 induces upregulation of COX-1
expression and PGI2 synthesis in ECs, and increases urinary excretion of the PGI2 stable
metabolite 6-keto-PGF1α. Interestingly, deletion of the PGI2 receptor diminishes the
vascular protective effect of E2 in OVX female mice [88]. Phytoestrogens may have similar
effects on the PGI2 pathway. Treatment of HUVECs with serum from Post-MW whose diet
was supplemented with soy isoflavones and red clover increased the capacity of ECs to
produce PGI2 [89]. Also, in HUVECs, genistein and daidzein increase PGI2 production
through an ER-dependent mechanism involving increased COX-2 protein and activity, but
not COX-1 [90]. In mesenteric microvessels isolated from female Wistar rats and
preconstricted with norepinephrine, COX inhibitors abolish the vasodilatory effects of
genistein, suggesting a role of PGs in genistein-induced vasorelaxation [76]. Phytoestrogens
may also affect other PGs. In SHR aorta, isoflavones and E2 inhibit endothelium-dependent
contraction to acetylcholine by reducing the release of PGH2 (unstable precursor of PGs and
TXs) and its vasoconstrictor response [91]. Thus, phytoestrogens increase PGI2 production
and may alter the level of other PGs as well.

Phytoestrogens and cAMP—Cyclic adenosine monophosphate (cAMP) is an
intracellular second messenger derived from adenosine triphosphate (ATP) by activated
adenylate cyclase. cAMP mediates some of the vascular effects of PGs [92,93]. E2 via ER
increase cAMP production [94]. cAMP stimulates ER-mediated transcriptional activity in
the absence of E2 by direct phosphorylation of the receptor [95]. Phytoestrogens may also
enhance adenylate cyclase activity and affect cAMP-dependent pathways in ECs and VSM.
In porcine coronary artery, genistein-induced vasodilatation is abolished by the cAMP-
dependent protein kinase inhibitor Rp-8-Br-cAMP, suggesting a role of cAMP-dependent
signal transduction [96]. Genistein also potentiates β1-adrenoceptor-induced relaxation in rat
aortic rings mostly by inhibiting cAMP-phosphodiesterase activity [97]. In bovine aortic
ECs, low concentrations of genistein, but not E2, increase intracellular cAMP by enhancing
adenylate cyclase activity via a nongenomic mechanism [68]. Also, in porcine coronary
artery, genistein causes VSM via a cAMP-dependent mechanism that does not involve Gs
proteins or ERs [98]. Collectively, soy isoflavones appear to activate adenylate cyclase,
increase cAMP and promote cAMP-dependent pathways. Further studies are needed to
examine the effects of other phytoestrogens on cAMP-dependent pathways.

Phytoestrogens and EDHF—EDHF plays an important role in acetylcholine-induced
endothelium-dependent hyperpolarization and relaxation of VSM [99]. E2 stimulates EDHF
release [100]. EDHF may also play a role in phytoestrogen-induced vascular relaxation. In
male Sprague-Dawley rats treatment with daidzein or E2 for one week stimulates aortic
relaxation via a non-NO, non-PG factor acting through the opening of small conductance
Ca2+ dependent K+ channels [SKCa] and intermediate Ca2+ dependent K+ channels [IKCa],
and involving activation of Na/K-ATPase, inward rectifier K+ channel [KIR] and CYP450
epoxygenase, suggesting a role of EDHF in daidzein-induced vascular relaxation [83].
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Further studies are needed to investigate the contribution of EDHF to the vasorelaxant effect
of phytoestrogens.

Phytoestrogens and Endothelin (ET)—ET has three isoforms (ET-1, ET-2, and ET-3)
acting on 2 receptors, ETA receptor which is found in VSMCs and induces vasoconstriction
and ETB receptor which is found mainly in ECs and promotes vascular relaxation [101].
Changes in ET levels and metabolism are thought to contribute to CVD, and ET antagonists
are used for treatment of pulmonary hypertension and are being investigated for treatment of
other CVD [102]. E2 decreases ET production via an ER-dependent mechanism [70,103].
Phytoestrogens mimic the effects of E2 on ET. For example, genistein via ERs decreases ET
production in rat arteries probably by inhibiting the expression of ET converting enzyme-1
[104].

Phytoestrogens and Vascular Smooth Muscle (VSM)
Phytoestrogens and Inhibition of VSM Proliferation—VSMC proliferation is
involved in many pathological processes including vascular remodeling, neointimal
hyperplasia and atherosclerosis. E2 inhibits VSMC proliferation via cytosolic/nuclear ERs
and transcriptional genomic effects [105]. Phytoestrogens also inhibit VSMC proliferation.
In human VSMCs, the red clover-derived isoflavone metabolite cis-tetrahydrodaidzein
inhibits PDGF-induced extracellular receptor kinase (ERK-1) activation and cell
proliferation [106]. Also, genistein regulates the activation of apoptosis-related molecules in
TNFα-induced human aortic SMCs, leading to the suppression of proliferation and induction
of apoptosis [107]. In endothelium-denuded rabbit aorta both genistein and daidzein inhibit
VSMC proliferation via an effect independent from inhibition of TK activity by genistein
[108]. Also, in aortic SMCs of stroke-prone SHR, genistein, daidzein and glycitein inhibit
naturally and PDGF-induced VSMC proliferation and DNA synthesis [109]. In a study on
cholesterol-fed mice, acute neointimal proliferation was induced in the iliac artery by
mechanically damaging the endothelium and the damaged arteries were harvested after oral
administration of dihydrodaidzein for 4 weeks. The study showed that dihydrodaidzein
selectively inhibited neointimal proliferation, possibly by inhibiting VSMC migration and
proliferation and/or enhancing endothelial proliferation and function [110]. Also, in rat
aortic SMCs genistein inhibits PDGF-induced proliferation by blocking the progression
from the G0/G1 to S phase of the cell cycle [111]. It has also been shown that TGF-β-
stimulated clone-36, a matricellular protein induced by daidzein, inhibits human umbilical
artery SMC proliferation and migration in vivo and in vitro, and causes accumulation of
SMCs in G2 phase of the cell cycle [112]. Collectively, these studies support that
phytoestrogens inhibit VSMC proliferation.

Phytoestrogens and VSM Function—VSM contraction is triggered by increases in
intracellular free Ca2+ concentration ([Ca2+]i) (Fig. 4). Activation of myosin light chain
kinase (MLCK), Rho-K, protein kinase C (PKC) and MAPK also contribute to VSM
contraction. E2 causes rapid relaxation of endothelium-denuded blood vessels [7,113].
Phytoestrogens may mimic the effects of E2 on VSM. Genistein supplements improve VSM
function, vascular motor tone and systemic arterial compliance [61]. Phytoestrogens-induced
vasodilation is mediated by different mechanisms. Systemically, phytoestrogens inhibit the
renin-angiotensin system and Ang II production. At the cellular level, phytoestrogens
regulate Ca2+ and K+ ion fluxes and other signaling pathways such as TK, Rho-K, PKC and
MAPK.

Phytoestrogens and Angiotensin—Ang II is a potent vasoconstrictor and an important
regulator of electrolyte balance and blood pressure. E2 induces downregulation of vascular
Ang II type 1 receptor mRNA and protein [114]. Phytoestrogens also affect the renin-
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angiotensin system. Genistein inhibits the expression of angiotensin converting enzyme
(ACE) in rat aortic ECs via ER and ERK1/2 signaling pathway. The downregulation of ACE
could, in turn, change the circulating levels of Ang II, the vasorelaxant Ang-(1-7) and
bradykinin [115]. Also, in anaesthetized rats, genistein enhances the vasodilator response to
bradykinin as a result of ACE inhibition. Genistein decreases ACE activity both in vivo and
in vitro [116]. Further studies are needed to clarify the contribution of ACE inhibition to
phytoestrogens-induced vasodilatation.

Phytoestrogens and VSM Ca2+—Activation of VSM by various agonists is associated
with increases in [Ca2+]i due to Ca2+ release from the sarcoplasmic reticulum (SR) and Ca2+

entry from the extracellular space. E2 mainly inhibits Ca2+ influx rather than Ca2+ release
from the intracellular stores, and a direct effect of E2 on Ca2+ channels has been suggested
[117,118]. E2 may also decrease [Ca2+]i by stimulating Ca2+ extrusion via the
plasmalemmal Ca2+ pump [119]. Phytoestrogens may inhibit VSM contraction by inhibiting
Ca2+ influx or Ca2+ release from the SR, or by decreasing the Ca2+ sensitivity of the
contractile apparatus. In pregnant women who consume soy-derived products in their meals,
circulating isoflavones may play a role in the regulation of feto-maternal blood flow,
possibly by inhibiting both Ca2+ influx and Ca2+ release from the SR and decreasing [Ca2+]i
in umbilical SMCs [120]. Also, in swine carotid artery, genistein attenuates histamine-
induced [Ca2+]I, myosin light chain (MLC) phosphorylation and isometric stress via TK
inhibition [121]. However, the mechanisms by which phytoestrogens decrease [Ca2+]i may
vary in different blood vessels. In rabbit basilar artery, genistein, daidzein, zearalanone and
biochanin A cause vascular relaxation by blocking Ca2+ entry [122]. Also, in porcine
coronary artery, genistein and E2 cause relaxation of KCl-, 5HT- and CaCl2-induced
contractions mainly by inhibiting Ca2+ influx, and these effects may not be related to ER or
classical genomic activities [123]. Other studies suggest that the vasorelaxant effects of
phytoestrogens involve inhibition of intracellular Ca2+ release. In rat aortic SMCs, genistein
mainly suppresses the transient phase of VSM contraction and slightly inhibits the sustained
phase, suggesting that genistein decreases [Ca2+]i by inhibiting TK-linked Ca2+ release
[124]. Also, in endothelium-denuded rat aorta, the effects of genistein are more pronounced
on the norepinephrine-induced phasic contraction in the absence of extracellular Ca2+ than
on the tonic contraction in the presence of extracellular Ca2+, suggesting that genistein
inhibits contraction mainly by inhibiting intracellular Ca2+ release [125]. Other studies have
shown enhanced vascular reactivity in cardiomyopathic hamster aorta possibly due to
increased Ca2+ sensitivity of the contractile apparatus. The enhanced myofilament Ca2+

sensitivity by phenylephrine was markedly inhibited by genistein and to a less extent by
daidzein [126]. Thus phytoestrogens appear to cause vasorelaxation mainly by decreasing
Ca2+ influx and intracellular Ca2+ release, and may also decrease the Ca2+ sensitivity of the
contractile apparatus.

Phytoestrogens and K+ Channels—K+ channels play a role in the regulation of VSM
membrane potential and consequently the sensitivity to membrane depolarization and
contraction. K+ efflux through the opening of K+ channels causes membrane
hyperpolarization that closes voltage-gated Ca2+ channels, decreases Ca2+ entry, and lead to
VSM relaxation. K+ channels include large conductance Ca2+-activated K+ channels
[BKCa], intermediate-conductance [IKCa], small conductance [SKCa], inward rectifier [KIR],
voltage-dependent [KV] and ATP-sensitive K+-channels [KATP] [127]. E2 and
phytoestrogens cause VSM relaxation by activating K+ channels. In human coronary artery
SMCs, E2 via ERα induces stimulation of BKCa causing membrane hyperpolarization and
decreased Ca2+ influx [128]. Also, in rat aorta, treatment with daidzein or E2 stimulates the
opening of SKCa and IKCa channels, and activation of Na/K-ATPase and KIR [83]. Also, in
rat basilar artery SMCs, daidzein inhibits BKCa [129]. In rat mesenteric artery precontracted
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with norepinephrine, E2, genistein and daidzein cause relaxation that is antagonized by
blockers of BKCa and SKCa [130]. Genistein also activates KCa in rat aortic SMCs [131].
Formononetin and biochanin A activate BKCa and KATP in rat aortic SMCs whereas
daidzein is less potent [79]. Phytoestrogens may affect K+ channels via different signaling
pathways. In rabbit portal vein SMC, TK may play a role in the regulation of KATP activity
[132]. In contrast, in rabbit pulmonary artery genistein inhibits Kv current through a
mechanism not involving TK inhibition or PKC activity [133]. Thus, the effects of
phytoestrogens on different K+ channels may contribute to endothelium-independent
vasodilation. Further studies are needed to define the intracellular signaling pathways
mediating the effects of phytoestrogens on K+ channels.

Phytoestrogens and Tyrosine Kinase (TK)—Phosphorylation of tyrosine residues in
certain proteins affects a wide range of their properties such as enzyme activity, subcellular
localization, and interaction between molecules. TK activity in the nucleus is involved in the
control of the cell cycle and various transcription factors. E2 and phytoestrogens inhibit TK
activity. In OVX female SHR, treatment with E2 and low-dose genistein for 2 weeks is
associated with decreased renal artery contraction to Ang II, but not to norepinephrine, KCl
or ET-1, and these effects are likely due to TK inhibition [134]. Tyrosine phosphorylation
maintains Ca2+ channels in a susceptible state for depolarization. In isolated rat portal vein
SMC, genistein, which inhibits TK, decreases slow Ca2+ current (ICaL) in a concentration-
dependent manner while superfusion with daidzein, which does not inhibit TK, had no
inhibitory effect even at high concentrations [135]. Also, in rat aorta, genistein inhibits
intracellular Ca2+ release via TK inhibition [125]. Thus, TK inhibition appears to play a role
in the vascular relaxation induced by some phytoestrogens.

Phytoestrogens and Rho-Kinase—Rho-K is a downstream effector of the small GTP-
binding protein Rho. Rho/Rho-K pathway plays an important role in the regulation of VSM
contraction, and may be involved in the pathogenesis of vasospasm, arteriosclerosis,
systemic and pulmonary hypertension, and stroke [136]. Studies have shown that long-term
inhibition of Rho-K causes regression of coronary arteriosclerosis [137]. Also, in human
coronary VSM, inflammatory stimuli such as Ang II and IL-1β, increase the expression and
activity of Rho-K possibly via PKC and NF-κB [138]. In rat basilar artery, the Rho/Rho-K
inhibitor Y-27632 is 3-fold more potent as vasodilator in males than females. Also, in OVX
female rats, the vasodilator response to Y-27632 resembles the response in males, and
treatment of OVX rats with E2 normalizes the vasodilator effects of Y-27632 to those
observed in intact females. These observations suggest that endogenous E2 inhibits Rho/
Rho-K [139]. Phytoestrogens may also inhibit Rho/Rho-K. In male rat aorta, genistein and
daidzein cause relaxation of contraction induced by fluoride, a RhoA/Rho-K activator. The
phytotestrogen-induced relaxation occurs in the absence of TK inhibition or functional
endothelium, and is not antagonized by BKCa inhibitors, supporting that RhoA/Rho-K
inhibition is involved in genistein-induced vasodilation [140].

Phytoestrogens and PKC—Protein kinase C (PKC) is a ubiquitous enzyme that
comprises a family of Ca2+-dependent and Ca2+-independent isoforms, expressed in
different proportions in VSM of various vascular beds. During cell activation, PKC
translocation to the cell surface may trigger a cascade of protein kinases that ultimately
interact with the contractile myofilaments and cause VSM contraction [141]. E2 inhibits
PKC [142] and decreases the myofilament sensitivity to [Ca2+]i [143]. PKC activity may
also be modulated by phytoestrogens [144], and the effects of phytoestrogens on PKC-
dependent pathways need to be further investigated.
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Phytoestrogens and MAPK—MAPKs are serine/threonine-specific protein kinases that
respond to extracellular stimuli and regulate various cellular activities such as gene
expression, mitosis, differentiation, proliferation, and cell survival/apoptosis [145]. MAPK
also mediates some of the processes contributing to VSM contraction. Some of the effects of
E2 are mediated by inhibiting MAPK [146], and phytoestrogens may also inhibit MAPK.
Gene expression profiling revealed that MAPK signaling is one of the biological pathways
affected by genistein. In human aortic SMCs, several phytoestrogens inhibit/downregulate
MAPK activity in a concentration-dependent manner and in the following order of potency:
biochanin A > genistein > equol > daidzein > formononetin [147]. Also, resveratrol inhibits
ERK and p38 MAPK phosphorylation causing inhibition of IL-8 secretion in human
monocytic cell line [148]. Further studies are needed to define the role of MAPK in
phytoestrogens-induced vascular effects.

Phytoestrogens and Extracellular Matrix (ECM)
ECM is a major component of the blood vessel architecture, and plays an important role in
the control of vascular wall integrity and vascular remodeling. Pathogenic changes in the
ECM have been linked to elevated TGF-β levels, oxidative stress, and lipid accumulation.
ECM proteins also play a role in the formation of the atherosclerotic plaque [149]. E2 plays
a role in the regulation of the cellular cytoskeleton, ECM and vascular remodeling. For
instance, ERα interacts with the G protein Gα 13 to induce activation of the RhoA/Rho-K
pathway and phosphorylation of the actin-regulatory protein moesin, leading to remodeling
of the actin cytoskeleton and EC migration [150]. Phytoestrogens also affect various
components of ECM including collagens, elastin, glycoproteins, glycosaminoglycans and
proteoglycans.

Collagen is secreted by fibroblasts and is present in the form of elongated fibrils mostly in
fibrous tissues and also in blood vessels. Collagen is an essential component in the process
of fibrosis and in the pathophysiology of atherosclerosis and atherosclerotic events [151].
Phytoestrogens suppress the synthesis of new collagen fibers. Genistein inhibits the
proliferation of hypertrophic scar fibroblasts and ECM collagen synthesis via inhibition of
TK [152]. In rodent renal mesangial cells cultured in a high-glucose environment, which
stimulates collagen deposition, genistein attenuates the synthesis of type IV collagen and
fibronectin [153]. However, in SMCs of mature pigs coronary arteries, genistein upregulates
matrix protein expression [149].

While collagen fibers in blood vessels bear most of the strength at higher pressures, elastin
fibers are essential in determining the mechanical strength of the vessels at lower pressures
[3]. Heat-induced ROS may play a role in heat-induced expression of tropoelastin, a
precursor of elastin. Pretreatment of human skin with genistein for 24 h inhibits heat-
induced expression of tropoelastin in the epidermis [154]. More studies are needed to define
the effects of phytoestrogens on the different components of the vascular ECM.

Phytoestrogens and MMPs—Matrix metalloproteases (MMPs) are zinc-dependent
endopeptidases that play a role in vascular remodeling [155]. MMPs also degrade ECM
within the atherosclerotic plaque, and may be involved in plaque instability and CV events.
In Sprague-Dawley rats, E2 induces rapid ECM remodeling by upregulating different MMPs
[156]. Although MHT E2 downregulates MMPs, it induces acute MMP modulation of
vascular function [157]. Phytoestrogens may also regulate vascular remodeling via MMPs.
Studies have examined the effects of 4.5 months of genistein treatment on atherosclerosis
pattern and MMP expression in hypercholesterolemic rabbits. The average cross sectional
area of atherosclerotic lesions in rabbit aortas progressed in rabbits on continuous
hyperlipidemic diet (HD), increased mildly in genistein-treated rabbit on HD and decreased
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in rabbits on normal diet. Western blot analysis showed reduction of MMP-3 expression in
HD+genistein and normal diet groups than HD group, and suggested that genistein stabilized
the atherosclerotic lesions by inhibiting MMP-3 expression [158]. MMP-2 and MMP-9 play
a role in the pathogenesis of atherosclerosis. In human aortic SMCs, the naturally occurring
flavolignan deoxypodophyllotoxin (DPT) inhibits cell migration and MMP-2/9 activities,
and MMP-9 transcription [159].

MMPs also play a role in enhancing cancer metastasis. Studies on cancer cell lines have
supported an inhibitory effect of phytoestrogens on MMPs. Treatment of U87MG cancer
cells with genistein and biochanin A induced decreases in the enzymatic activity of MMP-9
and the protein levels of MT1-MMP and urokinase plasminogen activation which are
involved in the degradation of ECM proteins and subsequent tumor invasion [160].
Phytoestrogens also prevent the degradation of ECM and subsequent tumor invasion in
breast cancer cells [161], prostate cancer [162] and melanomas [163]. Thus phytoestrogens
regulate various ECM proteins, and further studies are needed to investigate the effects of
phytoestrogens on different components of ECM, and the implications of these effects in
postmenopausal CVD.

Phytoestrogens and Atherosclerosis
Atherosclerosis is a multifactorial vascular disease. Dysfunctional endothelium recruits
different inflammatory pathways leading to intimal hyperplasia, VSMC proliferation, ox-
LDL deposition, platelet activation and aggregation resulting in the formation of an
atheroma of fat, collagen and elastin with a thin fibrous cap (Fig. 5). Hypertension is a major
risk factor of endothelial dysfunction and atherosclerosis. E2 reduces atherogenesis by
inhibiting SMC proliferation, LDL oxidation and deposition, and attenuating vascular
inflammation by decreasing cell adhesion molecules (CAM), macrophage accumulation and
monocyte adhesion [164]. E2-induced vasodilatation may also contribute to its anti-
atherogenic properties. However, anti-atherogenic effects of E2 depend on the patient’s age
and the stage of atherosclerosis. MHT containing E2 given early during perimenopause may
decrease the development/progression of the atherosclerotic lesion. In contrast, in already
established atheromatous plaques E2 may increase inflammation, MMP expression and
neovascularization leading to lesion progression, plaque instability and rupture/hemorrhage.
This may explain the reduced vascular benefits of MHT in Post-MW with preexisting CVD.
Some studies suggest that dietary supplementation of phytoestrogens prevent the
progression of atherosclerosis (Fig. 5). Grape phytoestrogens prevent cholesterol
accumulation in cultured monocytes from Post-MW [165]. In HUVECs, genistein reverses
homocysteine- and ox-LDL induced decrease in the anti-atherogenic proteins annexin V and
lamin A [166]. Animal studies also support the anti-atherogenic properties of
phytoestrogens. In the proximal left circumflex coronary artery of atherosclerotic rhesus
monkeys, E2 and dietary soy isoflavones enhance the dilator response to acetylcholine
[167]. Also, genistein inhibits atherogenesis in hypercholesterolemic rabbits mainly by
improving EC dysfunction [158]. Compared with genistein, its derivative 7-
difluoromethyl-5,4′-dimethoxygenistein has a better protective effect against EC damage in
rabbits [168]. Also, resveratrol exhibits multiple anti-atherogenic effects [169] including
inhibition of intimal hyperplasia [170], attenuation of TXA2-induced platelet aggregation
[171] and inhibition of LDL oxidation [172]. However, other studies showed that isoflavone
treatment of cholesterol fed rabbits failed to exert the same anti-atherogenic effects of E2
[164]. Whether phytoestrogens improve the clinical course of atherosclerosis and whether
their effects are consistent throughout the different atherosclerotic stages needs to be further
examined. Also, the different factors underlying the potential anti-atherogenic effect of
phytoestrogens including inhibition of platelet aggregation, improvement of lipid
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metabolism, attenuation of vascular inflammation, anti-angiogenic and antioxidant effects
need to be further examined.

Phytoestrogens and Platelet Aggregation
Platelet aggregation plays a role in atherogenesis and thromboembolic events. An ex vivo
study on platelets from 18 Post-MW showed that E2 inhibits the activity of thrombin-
activated platelets by inhibiting Ca2+ influx and raising cAMP [173]. However, other studies
have shown that E2 potentiates thrombin-induced platelet aggregation in platelets from
healthy men through ERβ and Src kinase [174]. Phytoestrogens may inhibit platelet
aggregation. Genistein suppresses platelet aggregation induced by collagen when
administered intravenously in the mouse femoral artery [175]. Genistein also inhibits TXA2-
and collagen analogs-induced platelet aggregation [176]. The mechanism of genistein-
induced inhibition of platelet aggregation likely involves alteration of the early event
signaling pathways involved in platelet activation [177]. NO production could play a role in
genistein-induced inhibition of platelet aggregation, since the NOS inhibitor L-NAME
suppresses the platelet anti-aggregation effect of genistein in rat aortic strips [178]. The
inhibitory effects of phytoestrogens on platelet aggregation could also be due to their ability
to compete for binding to the TXA2 receptor [179]. Resveratrol also inhibits collagen- and
epinephrine-induced platelet aggregation in acetyl salicylic acid resistant platelets [180].
Thus studies showed inhibitory effects of phytoestrogens on platelet aggregation, but the
pathways involved need to be further defined.

Phytoestrogens and Lipid Profile
Lipid deposition, especially the oxidized form, plays an integral part in atherogenesis. E2
has a favorable effect on the lipid profile [181]. Phytoestrogens may also improve the lipid
profile. In mice fed a high fat diet (HFD), and then 6 weeks later either treated or not treated
with a daidzein derivative, the daidzein-treated HFD group showed a reduction in body and
fat pad weight and an improvement of HFD-induced hyperlipidemia. Daidzein ameliorates
HFD-induced hyperlipidemia and reduces body fat by inhibiting the activity of both
pancreatic lipase (which promotes lipid absorption) and lipoprotein lipase (which promotes
fat tissue deposition). Daidzein also inhibits the differentiation of rat pre-adipocytes and
stimulates lipolysis by activating hormone-sensitive lipase [182]. Genistein also inhibits the
oxidation of LDL in human ECs and bovine aortic ECs in the presence of copper ions or
superoxide/NO radicals [183]. Similar beneficial effects on lipid profile are observed with
dietary fiber and lignans [184] possibly due to induction of adiponectin gene expression
through an increase in PPAR-γ DNA binding activity [185]. However, a study in cholesterol
fed OVX female rabbits found no significant effect of E2 or isoflavones on serum total
cholesterol levels [164]. Also, genistein could transform synovial fibroblasts into adipocytes
and enhance glucocorticoid-mediated synovial fibroblast adipogenesis [186]. Thus, while
most of the experimental evidence suggests beneficial effects of phytoestrogens on lipid
metabolism, few studies have not supported these findings.

Phytoestrogens and Angiogenesis
Angiogenesis involves EC proliferation and differentiation into new vascular capillaries.
Angiogenesis is also involved in several disease conditions such as diabetic retinopathy,
tumor growth and atherosclerosis [187]. E2 promotes angiogenesis through enhancing the
release of VEGF and promoting its angiogenic effects [188]. E2 also disrupts adherens
junctions which are important regulators of EC migration and proliferation and thereby
enhances the angiogenic effect of VEGF [189]. Some phytoestrogens have similar
angiogenic effects. Formononetin promotes early fracture healing and increases the number
of vessels and expression of VEGF and VEGF receptor 2 in the early stage of
chondrogenesis in rats [190]. Other studies suggest that phytoestrogens may suppress
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angiogenesis. Genistein inhibits cell proliferation, induces apoptosis, and suppresses in vivo
angiogenesis in human renal carcinoma cells injected into rats [191]. Genistein also inhibits
oxLDL-induced angiogenesis in HUVECs [192]. The anti-angiogenic effect of genistein
may be due to downregulation of cell adhesion related genes and impairment of cell
adhesion [193]. Genistein may also activate anti-angiogenic molecules such as tissue factor,
endostatin and angiostatin [194]. Isoflavones may promote anti-angiogenic effects and cell
growth arrest by inhibiting TK and targeting growth factors such as FGF, PDGF, EGF and
VEGF. Flaxseed lignans may also inhibit E2-induced VEGF secretion in MCF-7 cancer
cells [195]. Thus most of the experimental evidence supports anti-angiogenic effects of
phytoestrogens which could be of benefit in CVD and neoplastic disease.

Phytoestrogens and Vascular Inflammation
Low-grade inflammation is implicated in atherogenesis, and E2 may affect the course of
atherosclerosis by inhibiting vascular inflammation. E2 attenuates vascular expression of
inflammation-associated genes and inhibits adhesion of monocytes to ECs [196]. CD40L
activates antigen-presenting cells and regulates B cell function by engaging CD40 on the B
cell surface. E2 via an ERα-mediated pathway blocks Interferon-γ induced CD40 and
CD40L protein expression and prevents neutrophil adhesion [197]. E2 also attenuates TNF-
α-induced mRNA expression of inflammatory mediators [198]. Similar to E2,
phytoestrogens may exert vascular anti-inflammatory effects, and the anti-inflammatory
effect of several medicinal herbs could be due to their phytoestrogen content [199].
Genistein protects against inflammatory factor-induced EC dysfunction and inhibits
leukocyte-endothelium interaction [200]. Genistein, and to a lesser extent daidzein, decrease
TNFα-induced secretion of monocyte chemotactic protein-1, a cytokine recruiting white
blood cells to sites of inflammation [201]. In human brain microvascular ECs, genistein
pretreatment reduces cytokine-mediated upregulation of blood leukocytes transmigration
[202]. Also, in HUVECs, genistein inhibits TNFα-induced signaling and plasminogen
activator inhibitor (PAI-1) transcription likely due to inhibition of TK because daidzein does
not exert the same effect [203]. Genistein also reduces mRNA expression levels of E-
selectin, CAM-1 and P-selectin which are elicited by the proinflammatory bacterial LPS
[59]. Genistein also inhibits the activity of the key inflammatory enzyme secretory
phospholipase A2 in mice [199]. Other studies support the anti-inflammatory properties of
phytoestrogens and suggest the utilization of these properties in preventing graft rejection
[204], treating arthritis [205], protection against UV rays-induced skin inflammation [206]
and treating bronchial asthma [207]. In contrast to isoflavones, resveratrol may have a
vascular pro-inflammatory activity as shown in normoglycemic and diabetic rat aortic SMCs
[208]. Thus studies support that most phytoestrogens have anti-inflammatory effect in
vascular ECs and several other tissues.

Phytoestrogens as Antioxidants
CVD is partly caused by decreased bioavailability of NO due to increased oxidative stress,
ROS production and lipid peroxidation. E2 alters the expression of ROS-generating and -
scavenging enzymes and decreases oxidative stress in different cells [209]. Phytoestrogens
especially soy isoflavones have multiple protective effects against oxidative stress in
vascular ECs [210]. In HUVECs, genistein inhibits the potential of glucose-oxidized LDL to
increase tissue factor synthesis [211]. Bcl-2 protein is critical for regulation of cell
proliferation and apoptosis under both normal and oxidative conditions. Soy isoflavones
prevent oxidative stress-induced apoptosis via ERβ and Bcl-2/Bax expression and
modulation of cell survival signaling [212]. Also, treatment of HUVECs with equol reduces
O2

•− production by NAD(P)H oxidase [62]. Animal studies have also supported antioxidant
effects of isoflavones. Genistein and daidzein through ER-independent mechanisms restore
EC function in male SHR by increasing NO production and protection of NO from O2

•−-
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driven inactivation [91]. Also, in rat aortic ECs, soy and alfalfa extract potently inhibit the
formation of ox-LDL [213]. In porcine coronary artery, the inhibitory effect of genistein and
resveratrol on ROS-induced vasoconstriction is greater than that of E2 [214]. 8-Oxo-2′-
deoxyguanosine (8-OHdG) is one of the major products of DNA oxidation and its
concentration within a cell is used as a measure of oxidative stress. In SHR-Stroke Prone
and Wistar-Kyoto rats, genistein, daidzein, and resveratrol decrease the levels of 8-OHdG
and prevent oxidative DNA damage induced by advanced glycation end products.
Phytoestrogens also increase the levels of the antioxidant glutathione in VSMCs [215]. The
antioxidant effects of various phytoestrogens may vary in different tissues and cell types. In
rat basilar artery where there is a high O2

•− level, equol exerts weak antioxidant effects, and
the effects of daidzein are insignificant [78]. However, in bovine aortic ECs, equol potently
inhibits H2O2-induced cell death by reducing ROS production [216]. Collectively, studies
support the antioxidant activity of phytoestrogens which adds to their potential benefits in
CVD.

Epidemiological Evidence and Clinical Trials of Vascular Benefits of Phytoestrogens
The potential vascular benefits of phytoestrogens demonstrated in epidemiological and
experimental studies have prompted more observational and interventional studies to further
investigate the clinical effects of phytoestrogens on vascular function and CVD. However,
the clinical trials have been limited in many aspects and showed inconsistent results.

Human studies examining the effects of phytoestrogens on the endothelium have suggested
beneficial effects on endothelial functions and vasorelaxant effects of phytoestrogens (Table
2). However, these results have not been consistent in all studies. Of note, in the studies that
showed no beneficial effects of phytoestrogens on endothelial functions, the cohort group
had normal endothelial function at baseline.

Studies have also examined the effects of phytoestrogens on plasma lipid profile (Table 3).
Observational population-based studies have shown better lipid profile in individuals with
high dietary soy intake. However, these beneficial effects should be viewed with caution
because individuals who consume soy as a source of protein may have a lower intake of
animal proteins, causing further reduction in cholesterol and saturated fat intake [12]. Most
clinical studies supported that phytoestrogens decrease LDL-C, total cholesterol and
triglycerides, and increase HDL-C. However, some studies did not support beneficial effects
of phytoestrogens on lipid profile (Table 3).

Epidemiological studies demonstrated that even in the absence of other risk factors (e.g.
diabetes, hypertension, hypercholesterolemia), advanced age increases CV morbidity by
enhancing vascular oxidative stress and inflammation [217]. Studies suggest that dietary
intake of phytoestrogens reduces vascular inflammation especially in Post-MW (Table 4).

Phytoestrogens may delay the onset of atherosclerotic CVD by reducing vascular
inflammation, oxidative stress, platelet aggregation and plasma lipid levels. Also, by
improving vascular compliance, phytoestrogens may improve hypertension, a major
atherosclerosis risk factor. Epidemiologic studies, Crossover RCT including the WHO-
CARDIAC study have shown that phytoestrogens may have beneficial effect on CVD
[19,218]. Clinical trials have examined the effect of phytoestrogens on different CVD risk
factors and end points, but the results have not been consistent (Table 5).

Thus while several clinical studies have suggested a variety of beneficial vascular effects of
phytoestrogens, there have been discrepancies in the results. The causes of these
discrepancies may be related to the number of subjects, type of phytoestrogen, study
duration, clinical end points, and subjects compliance. The number of subjects involved in
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the interventional trials was too low to extrapolate the results to the general population. The
phytoestrogens examined in clinical trials have been mainly isoflavones, and other classes of
phytoestrogens could have different or perhaps better outcomes. The duration of the clinical
studies has been limited to few weeks or months, and more chronic studies are needed to
investigate the long-term effects of phytoestrogens. The clinical studies used different
parameters with no clear clinical end points, and used different and incomplete sets of
diagnostic tools. Finally, as with other clinical trials involving a change in diet, the
compliance of the enrolled subjects is an important issue due to the difficulty of changing
dietary habits of a large population consistently over a long period of time.

Conclusions and Perspectives
Phytoestrogens are currently being evaluated for their potential vascular benefits and as
alternatives for MHT. Like E2, phytoestrogens bind to ERs and induce both genomic and
non-genomic vascular effects. Phytoestrogens maintain endothelial integrity and decrease
vascular permeability, increase NO, PGI2 and/or EDHF release leading to endothelium-
dependent vasodilation. Phytoestrogens also inhibit VSM proliferation, and inhibit VSM
contraction by activating cAMP- and cGMP-dependent pathways, decreasing Ca2+ influx
and release, activation of different K+ channels, regulating the RhoA/Rho-K dependent
pathway, and inhibition of TK. Phytoestrogens improve lipid metabolism, reduce oxidative
stress, inhibit angiogenesis and attenuate vascular inflammation. Several clinical studies
support beneficial vascular effects of soy isoflavone extracts, and phytoestrogens may
improve endothelial function, the lipid profile and vascular inflammation biomarkers
especially in Post-MW. However, the data from clinical studies showed inconsistent results
and have been limited due to factors related to the study design and the subjects’
compliance.

Thus phytoestrogens may improve the course of several diseases. The vasorelaxant effects
of phytoestrogens could be of value in delaying the progression of hypertension in certain
populations. Phytoestrogens could also alter the course of diseases characterized by severe
vasoconstriction such as pulmonary hypertension and thromboangiitis obliterans. The
vasorelaxant and anti-proliferative effects of phytoestrogens could be of benefit in
preventing/delaying vascular stent restenosis. The vascular anti-inflammatory effects of
phytoestrogens could be of value as a co-therapy in inflammatory vascular diseases and
vasculitis. Phytoestrogens could also prevent or delay the progression of atherosclerosis and
decrease the incidence of CV events.

Future studies are needed to investigate the effects of phytoestrogens other than isoflavones.
Also, some of the signaling pathways of phytoestrogens are not clearly defined. The
recently-discovered nongenomic effects of phytoestrogens are one of the areas that need
further research. Also, the interactions between different phytoestrogens, E2, SERMs are yet
to be investigated.

Future clinical trials need to enroll larger number of subjects, compare different
phytoestrogens, include the other dietary components of the population enrolled, study the
long-term effects of dietary modifications, and use clear clinical end points (e.g. myocardial
infarctions, stroke). The results from these clinical trials could help in answering important
questions regarding the relative potencies of different phytoestrogens, the proper quantity of
dietary supplement needed to produce measurable effects and the differences in the effects
depending on the subjects’ ethnicity, age, gender and preexisting CVD. As for now, while
studies suggest several beneficial vascular and metabolic effects of phytoestrogens and a
tendency to reduce the risk of CVD, there is insufficient evidence to recommend specific
quantities or types of phytoestrogens for prevention or treatment of CVD.
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Figure 1.
Classification of phytoestrogens. Phytoestrogens include isoflavones, flavanones, flavonols,
flavones, lignans, coumestans, and stilbenes with different core structure and side chains.
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Figure 2.
Absorption, metabolism and excretion of isoflavones. Phytoestrogens, found in diet as
glucoconjugates (daidzin, genistin), are hydrolyzed in the intestine, by the action of UDP-
glucuronosyltransferase (UGT) secreted by intestinal bacteria, into the active forms
aglycones (daidzein and genistein). Genistein and daidzein are also produced from the
demethylation of their precursors biochanin A and formononetin, respectively. The
aglycones are absorbed from the intestinal tract to the liver where they are mainly
conjugated with glucuronic acid and sufates. Some of the conjugated aglycones are excreted
in the bile where they are hydrolyzed, and some of the unconjugated aglycones are excreted
in the feces, while some are reabsorbed to the liver via enterohepatic circulation. In blood,
Isoflavones are metabolized mainly into equol and O-desmethylangolensin (O-DMA) which
are excreted in urine.
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Figure 3.
Phytoestrogens-induced NO release from endothelial cells. Like estradiol, phytoestrogens
bind to ER on EC and increase the formation of inositol 1,4,5-trisphosphate (IP3), which
stimulates Ca2+ release from the endoplasmic reticulum. Ca2+ forms a complex with
calmodulin (CAM), which in turn binds to and causes initial activation of eNOS, its
dissociation from caveolin-1, and translocation to intracellular sites. Phytoestrogens may
also activate phosphatidylinositol 3-kinase (PI3-K), leading to transformation of
phosphatidylinositol-4,5-bisphosphate (PIP2) into phosphatidylinositol 3,4,5-trisphosphate
(PIP3), which activates Akt. ER-mediated activation of Akt or MAPK pathway causes
phosphorylation of cytosolic eNOS and its second translocation back to the cell membrane
where it undergoes myristoylation and palmitoylation, a process required for its full
activation. Activated eNOS promotes the transformation of L-arginine to L-citrulline and the
production of NO, which is released by EC and causes VSM relaxation.
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Figure 4.
Effects of phytoestrogens on ECs and VSMCs. In ECs, phytoestrogens such as genistein or
daidzein bind ERs and GPER and increase [Ca2+]i, PI3K/Akt, MAPK and cAMP which
cause phosphorylation and activation of eNOS and promote the production of NO. NO
release activates guanylate cyclase (GC) in VSM leading to increased cGMP and stimulation
of cGMP-dependent protein kinase (PKG). PKG decreases [Ca2+]i by stimulating Ca2+

extrusion pump in the plasma membrane and Ca2+ uptake pump in the sarcoplasmic
reticulum (SR) and/or decrease the sensitivity of the contractile myofilaments to [Ca2+]i.
Phytoestrogens also activate cyclooxygenase (COX) to produce prostacyclin (PGI2) and in
turn activate adenylate cyclase (AC) and the PGI2-cAMP-PKA pathway, leading to VSM
relaxation. Phytoestrogens may also induce EDHF release and activate Ca2+-activated K+

channels causing hyperpolarization and relaxation of VSM. Phytoestrogens also inhibit ET-1
release and thereby decrease VSM contraction. In VSM, phytoestrogens may activate K+

channels, leading to membrane hyperpolarization, inhibition of Ca2+ entry through Ca2+

channels, and inhibition of Ca2+-dependent MLC phosphorylation and VSM contraction.
Phytoestrogens through activation of plasma membrane ERs may also inhibit protein kinase
C (PKC), Rho-K and/or the MAPK pathway and thereby further inhibit VSM contraction.
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Figure 5.
Potential protective effects of phytoestrogens in vascular disease. Increased vascular tone
and blood pressure cause hypertension, leading to vascular injury, inflammatory cell
infiltration, lipid deposition, atherosclerosis, narrowing of vessel lumen and platelets
aggregation. Phytoestrogens promote vasodilation and may ameliorate hypertension.
Phytoestrogens could also reduce vascular permeability, reactive oxygen species (ROS), and
inflammatory cell infiltration. Phytoestrogens may also retard the progress of atherosclerosis
by improving lipid profile, and reduce thromboembolism by decreasing platelets
aggregation.
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Table 1

Sources of Phytoestrogens

Isoflavones Coumestans Lignans

Food Daidzein Genistein Coumestrol Secoisolariciresinol

Soy based foods

Black bean sauce 2304.0 2486.6 tr tr

Miso soup 430.2 1009.8 nd tr

Soy beans 56621.4 44213.4 tr 79.1

Soy bean sprouts 268.3 514.6 nd tr

Soy milk 921.3 1852.2 tr tr

Soy nuts 28351.2 36264.0 tr tr

Soy sauce tr 100.6 tr tr

Soy yogurt 3364.4 6565.1 tr tr

Tempeh 6974.8 10729.6 tr tr

Tofu 9337.5 17050.2 tr tr

Veggie burger 461.5 1111.5 tr tr

Vegetables and legumes

Alfalfa sprouts 151.7 117.6 105.3 tr

Broccoli tr tr tr 414.0

Clover sprouts 71.3 70.9 97.7 nd

Mung bean sprouts 91.4 135.2 136.6 97.0

Beans, green tr 32.9 nd 30.9

Beans, white tr 25.3 tr 29.9

Nuts and oil seeds

Almonds tr tr tr 70.3

Chestnuts tr tr tr 172.7

Flaxseed 58.2 173.2 46.8 375321.9

Hazelnuts tr tr tr 60.5

Pistachios 73.1 103.3 tr tr

Sunflower seeds nd nd nd 127.8

Walnuts 35.2 tr tr 78.0

Peanut butter tr 38.2 tr 28.6

Fruits

Dried apricots tr tr tr 147.6

Dried dates tr tr tr 106.2

Dried prunes tr tr tr 103.8

Strawberries tr tr tr 1210.0

Cranberries tr tr nd 1500.0

Blackberries tr tr nd 3710.0

Breads
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Isoflavones Coumestans Lignans

Food Daidzein Genistein Coumestrol Secoisolariciresinol

Bread, flax 85.0 212.3 tr 7208.3

Bread, rye tr tr nd 122.0

Bread, multigrain tr tr tr 4770.4

Bread, whole wheat 155.8 141.8 tr tr

Beverages

Tea, black na na na 159.0

Tea, green na na na 246.0

Wine, red tr tr nd 29.4

Phytoestrogen levels are indicated in μg/100 g; tr, trace defined as ≤ 25 μg/100 g; nd, none detected; na, information not available. Also, see
references [22,219,220]
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Table 2

Representative Human Studies Examining the Effects of Phytoestrogens on EC Function

Phytoestrogen - Clinical
Trial Subjects Study Design Outcome Ref

Isoflavones - Observational 126 High risk CV
patients

Dietary questionnaire Isoflavone intake is associated with
enhanced brachial artery FMD and
reduced mean carotid intima-media
thickness

[221]

Genistein - RCT 79 Healthy Post-MW
age 56±4 yr

1 year of either E2/progesterone
or genistein therapy

Genistein increased nitrites/nitrates
levels, decreased plasma ET-1 levels
in brachial artery and improved EC
function to the same extent as E2/
progesterone regimen

[222]

Genistein Resveratrol - RCT 12 Post-MW with CHD
& 14 age- matched
controls

One hour incubation of
resistance subcutaneous arteries
with genistein, resveratrol, ERα
agonist and E2.

Arterial dilatation to phytoestrogens
was enhanced in CHD group as
compared to controls. Inhibition of
NO synthase had no effect on
dilatation induced by the
investigated compounds. ERβ
expression was enhanced in the
vascular wall from CHD women,
while ERα predominated in controls.

[223]

Dehydroequol - Clinical trial 6 Healthy males Brachial artery infusion of
dehydroequol in forearm
resistance arteries in the
absence and presence of eNOS
inhibition

Dehydroequol demonstrated potent
vasodilator properties in human
forearm resistance arteries via a NO-
dependent mechanism

[224]

Soy - RCT 22 Healthy Post-MW 6 wk of either daily raloxifene,
soy phytoestrogens 55 mg or
placebo in random sequence
with intervening 6 wk wash-out
periods

No change from baseline endothelial
function

[225]

Lignan - RCT 22 Healthy Post-MW Daily consumption of a low- fat
muffin enriched with a lignan
complex, providing 500 mg/d of
secoisolariciresinol diglucoside
for 6 wk periods separated by a
6-wk wash-out intervals.

No difference in FMD and
nitroglycerine-mediated
endothelium-independent
vasodilation, plasma nitrites/nitrates,
ET-1, or asymmetric
dimethylarginine between the lignan
complex intervention period and the
placebo period

[226]

Isoflavones - RCT 62 Post-MW age 45-60
yr

72 mg of soy-derived
isoflavones or placebo

No effect on endometrial thickness
or the pulsatile index of the uterine
and cerebral arteries

[227]

Isoflavones - Meta-analysis 17 RCTs Isoflavones can modestly, but
significantly improve endothelial
function

[228]

Isoflavones - Meta-analysis 9 RCTs Isoflavone supplementation
improves endothelial function in
Post-MW with low baseline FMD
levels, but not in women with high
baseline FMD levels

[229]

FMD, flow-mediated dilation
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Table 3

Representative Human Studies Examining the Effects of Phytoestrogens on Lipid Profile

Phytoestrogen - Clinical
Trial Subjects Study Design Outcome Ref

Soy Phytoestrogens -
Epidemiological

1242 Japanese M, 3592 F Semiquantitative Food Frequency
Questionnaire

Intake of soy products is
associated with lower TC levels

[230]

Daidzein - Observational 483 F with CHD risk
factors

Blood genistein and daidzein levels,
lipoprotein levels, E2 levels, and
angiographic CAD

Higher blood levels of daidzein
associated with lower TG,
higher HDL-C levels, and an
improved TC to HDL-C ratio

[231]

Isoflavones - RCT 20 Healthy Post-MW Age
50-70 yr

After 3 wk stabilization on low fat
diet, phytoestrogens or placebo intake
for 8 wk in random order, separated
by 8 wk washout

No effect on BP and plasma
lipid or lipoprotein levels

[232]

Isoflavones - RCT 156 Volunteers, mildly
high TC

NCEP Step I diet, One of 5 daily
diets: 25 g casein or 25 g isolated soy
protein containing 3, 27, 37, or 62 mg
of isoflavones

Isoflavones reduced plasma
concentrations of TC and LDL-
C without affecting
concentrations of TG or HDL-C

[233]

Phytoestrogens - RCT 19 Post-MW 2 Month supplementation with
Pueraria mirifica plant (rich in
phytoestrogens)

Increased HDL-C &
apolipoprotein A-1, decreased
LDL-C and Apo B. and
decreased LDL-C/HDL-C.
Miroestrol and coumestrol
enhanced ERα-& ERβ-
mediated transactivation.
Daidzein & genistein,
preferentially enhanced ERβ-
mediated transactivation

[234]

Soy Phytoestrogens -
Clinical trial

24 Post-MW with high
TC

25 g soy protein supplement or a mild
protein placebo for 6 wk, separated
by 4 wk washout.

Serum TG increased, TC and
LDL levels decreased
significantly, HDL showed
mild change

[235]

Isoflavones - RCT 30 Post-MW Isoflavones or placebo for 3 month
interrupted by a 2 month washout
period. Cholesterol efflux from cells
used as a marker of improved lipid
metabolism.

No differences between the
isoflavone and the placebo
group

[236]

Lignans - RCT 22 Healthy Post-MW Daily low-fat muffin enriched with a
lignan complex for 6 wk separated by
a 6-wk washout. Different markers
measured at the beginning and end of
each intervention.

No effect on plasma lipid
concentrations, serum
lipoprotein oxidation resistance,
or plasma antioxidant capacity

[237]

Isoflavones - RCT 49 Post-MW 47-66 yrs in
Brazil

40 mg of isoflavone (n = 25) or 40
mg of casein placebo (n = 22). Lipid
profile monitoring at baseline and
after 6 month of treatment

No significant effects of
isoflavone on LDL or TC

[238]

TC, total cholesterol, NCEP, National Cholesterol Education program
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Table 4

Representative Human Studies Examining the Effects of Phytoestrogens on Vascular Inflammation

Phytoestrogen - Clinical
Trial Subjects Study Design Outcome Ref

Phytoestrogens- - Cross-
sectional study

151 Middle age elderly
males and 91 Post-MW

Secoisolariciresinol, matairesinol,
pinoresinol, lariciresinol intake was
evaluated. Soluble ICAM-1
(biomarker of inflammation
involving damage to the endothelium
and platelets), insulin, CRP, glucose,
TC, HDL-C and triglycerides
measured in fasting blood samples.
FMD (only in 56 M and 55 F)

Plasma concentrations of
soluble ICAM-1 significantly
decreased in the whole group.
Marked decrease in soluble
ICAM-1 accompanied with
relevant improvement of FMD
only in the matairesinol group.

[239]

Isoflavones - RCT 60 Post-MW Isoflavone or placebo tablets for 6
month

Significant improvement of
endothelium dependent
vasodilation in the isoflavone
treatment group. Plasma
ICAM-1, VCAM-1, and E-
selectin decreased in the
isoflavone group compared to
placebo.

[240]

Genistein - Cross-sectional 30 Males Either a placebo or high-genistein
treatment. Blood samples were
collected before and within 5 min,
and after 30 min of 80% peak O2
consumption exercise. Measurements
were taken before and after 4-week
supplementation.

Isoflavones decreased
homocysteine levels.
Phytoestrogens were shown to
have antioxidant effects, but a
limited ability to diminish an
abrupt surge of oxidative stress
due to acute exercise

[241]

Isoflavones - Crossover RCT 117 Healthy Post-MW Isoflavone-enriched or placebo
cereals consumed for 8 wk, with
washout of 8 wk

Lower CRP levels but no effect
on other inflammatory markers

[242]

Lignan - RCT 22 Healthy Post-MW Low-fat muffin, with or without a
lignan complex, for 6 weeks,
separated by a 6-week washout
period.

No differences between the
lignans and placebo periods in
IL-6, TNFα, ICAM-1,
VCAM-1, and MCP-1 levels.
Lower CRP in the lignans-
added period.

[243]
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Table 5

Representative Human Studies Examining the Effects of Phytoestrogens on CVD

Phytoestrogen - Clinical Trial Subjects Study Design Outcome Ref

Flavonoid - Observational 34489 Healthy Post-
MW age 55-69 yr

Flavonoid food
composition data, 16
years follow-up

Inverse association between flavanones
intake and CHD, and between flavones
intake and total mortality. No
association between flavonoid intake
and stroke mortality. Individual
flavonoid-rich foods associated with
significant mortality reduction: bran,
apples, pears, red wine (CHD and
CVD), grapefruit (CHD), strawberries
(CVD), and chocolate (CVD)

[244]

Lignan - Cross- sectional study 301 Post-MW, 60-75
yrs in the Netherlands

Food frequency
questionnaire covering
the year prior to
enrollment

Lower systolic & diastolic BP & lower
prevalence of hypertension observed
with lignan intake, but no association
with ankle-arm BP index or EC
function.

[245]

Biochanin A & formononetin -
Clinical trial

80 Healthy subjects,
age 45-75 yr

Biochanin A&
formononetin in two 6-
week periods. Large
artery stiffness,
endothelial function, 24-
hour ambulatory BP, and
total peripheral resistance
measured at baseline and
after each intervention.

In normotensive men and Post-MW,
formononetin reduced arterial stiffness
and total vascular resistance, but had no
effect on BP

[246]

Phytoestrogens - Meta-analysis 133 Clinical trials Structured search
strategy using
MEDLINE, EMBASE,
and Cochrane databases

Chocolate increased FMD after acute &
chronic intake and reduced systolic &
diastolic BP. Soy protein isolate
reduced diastolic BP and LDL-C. Acute
black tea consumption increased
systolic & diastolic BP. Green tea
reduced LDL.

[17]
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