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Abstract
Pre-clinical studies provide compelling evidence that members of the Eph family of receptor
tyrosine kinases and their ephrin ligands promote tumor growth, invasion and metastasis, and
neovascularization. Tumor suppressive roles have also been reported for the receptors, and ligand-
dependent versus ligand-independent signaling has emerged as one key mechanism underlying
tumor suppressive function as opposed to oncogenic effects. Determining how these observations
relate to clinical outcome is a crucial step for translating the biological and mechanistic data into
new molecularly targeted therapies. Expression profiling in human patient samples bridges this
gap and provides valuable clinical relevance to laboratory observations. In addition to analyses
performed using privately assembled patient tumor samples, publically available microarray
datasets and tissue microarrays linked to clinical data have emerged as tractable tools for
addressing the clinical relevance of specific molecules and families of related molecules. This
review summarizes the clinical relevance of specific Eph and ephrin molecules in human breast,
colorectal, and lung cancers.
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Introduction
Tumorigenesis and malignant progression are complex processes that are regulated in part
by activation of oncogenic signaling pathways and inhibition of tumor suppressor pathways
[reviewed in [1–3]]. Oncogenic conversion, amplification, and/or overexpression of proto-
oncogenes, such as those encoding receptor tyrosine kinases (RTKs), contribute to
tumorigenesis [4]. Loss of tumor suppressor pathways that negatively regulate cell
proliferation also contributes to tumorigenesis [5]. In addition, a third class of molecules
displays dual roles in both tumor suppression and tumor promotion. The Eph family of
RTKs belongs to this dual regulatory category. This large family is subdivided into class A
and class B receptors based on sequence homology and binding affinity for two distinct
types of membrane-anchored ephrin ligands. Originally characterized as axon guidance
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regulators, ephrins and Eph RTKs regulate physiologic and pathologic processes in
development and disease [reviewed in {Brantley-Sieders, 2004 #7;Pasquale, 2010 #9].

The Eph family enhances tumor growth, invasion and metastasis, and neovascularization
[reviewed in {Brantley-Sieders, 2004 #7;Pasquale, 2010 #9]. Indeed, data derived from
laboratory research suggest that EphA2 and EphB4 function as oncogenes. Other studies,
however, provide evidence that Eph receptors, including EphA2 and EphB4, inhibit tumor
growth and progressson [reviewed in {Noren, 2007 #11}[6]]. These opposing functions
appear to be influenced by tissue type, oncogenic context, and ligand-independent versus
ligand-dependent signaling. Moreover, ‘reverse’ signaling that occurs downstream of
membrane-tethered ephrin ligands upon receptor binding adds to the complexity of Eph and
ephrin function [reviewed in [7]. Finally, the fact that this family is the largest RTK family
in the genome, encompassing at least 14 receptors and 8 ligands that often display
overlapping expression patterns in both tumor cells and the surrounding host stroma, also
presents a potential barrier in designing molecularly targeted Eph therapies in human cancer
[reviewed in {Pasquale, 2010 #9]].

Nonetheless, Eph receptors are very attractive therapeutic targets. They are expressed in a
broad range of human cancer types in both tumor and its stromal microenvironment. In fact,
several family members are known to simultaneously regulate tumor growth and
neovascularization [reviewed in [6, 8]], enabling a single anti-Eph inhibitor to potentially
disrupt at least two key processes in tumor progression. Translating the biological and
mechanistic data from the laboratory into novel clinical therapeutic strategies will require a
solid understanding of the expression patterns of individual Eph receptors, particularly in the
context of relevant ligands, within molecularly defined tumor subsets. Identification of those
patients who will receive the maximum therapeutic benefit can be achieved using expression
profiling of large tumor datasets. In this review, we summarize expression profiles derived
from a broad spectrum of human patient samples with an emphasis on how publically
available datasets and samples linked to clinical outcome data have emerged as tractable
tools for addressing the clinical relevance of Eph RTKs and ephrins to cancer. Due to space
constraints, we limit our discussion to profiling efforts in human breast, colorectal, and lung
cancers. Information and references for these data and a broader range of human epithelial
malignancies are provided in Table 1 (Class A Eph family members) and in Table 2 (Class
B Eph family members).

1.1 Eph expression profiles in human breast cancer
EphA2 and EphB4 are the two Eph RTK family members that have been most extensively
studied in breast cancer [reviewed in [9]]. Ogawa et al. first reported expression of EphA2
and its primary ligand, ephrin-A1, in both tumor epithelium and associated vascular
endothelium in human breast cancers, [10], and EphA2 overexpression in human breast
cancer relative to benign human breast epithelium was also reported by Zelinksi et al. [11],
and may be associated with estrogen receptor (ER) expression [12]. Subsequent studies
reported that increased ephA2 mRNA expression levels, which are relatively low in normal
human breast tissue, correlated with poor patient prognosis in two independent breast cancer
microarray datasets [13, 14]. These data are consistent with cell culture, biochemical, and
genetic laboratory studies that support the oncogenic function of EphA2 in human breast
cancer [reviewed in [9]]. In addition, EphA2 appears to play a role in both intrinsic and
acquired resistance to trastuzumab (Herceptin), a monoclonal anti-HER2 antibody used as a
first line of treatment for HER2 amplified breast cancer [15]. These data are consistent with
laboratory studies showing a physical and functional interaction with ErbB/EGFR RTKs
[16–19]. Indeed, elevated ephA2 mRNA expression correlated significantly with decreased
overall and recurrence-free survival in HER2-positive patients in a microarray dataset [15],
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providing clinically relevant evidence to support this association. These data suggest that
expression profiling for ephA2 and/or other resistance-associated gene products in resistant
versus sensitive patient samples could be used to identify patients who may benefit from
EphA2-targeted therapies. In addition, expression profiling in host endothelium may also
provide valuable diagnostic information. A recent study reported that EphA2-positive
human breast tumor endothelium correlated with diminished expression of Slit2, a tumor
suppressive angiocrine signal. Negative regulation of endothelial Slit2 by EphA2 in murine
endothelial cells enables increased tumor growth [20]. These data support a novel role for
endothelial EphA2 in regulation of tumor growth and motility independent of its angiogenic
function, suggesting additional therapeutic benefits for EphA2 inhibition in human breast
cancer.

Elevated mRNA and protein expression of EphB4 and EphB2 have also been reported in
human breast cancer [21, 22]. While elevated EphB2 expression was associated with poorer
overall and disease-free survival, EphB4 protein expression increased with grade and stage
but showed no clear association with survival. Indeed, stronger EphB2 and EphB4 staining
was observed in normal breast glandular epithelium than in malignant tumor epithelium
[22]. An independent profiling study reported similar trends, with higher expression in
normal breast tissue and low histologic grade tumors relative to invasive human breast
carcinomas [23]. These expression data illustrate the often paradoxical findings regarding
Eph RTKs in tumor promotion versus tumor suppression [8]. For example, laboratory
studies demonstrated that systemic delivery of ephrin-B2-Fc inhibits the growth of MDA-
MB-435 tumor xenografts [24]. EphB4 forward signaling activates the Abl/Crk pathway,
inhibiting tumor cell growth and motility in breast cancer cells [24]. In contrast, a more
recent expression analysis of multiple large patient datasets correlated elevated ephB4
mRNA expression with reduced overall and recurrence-free survival (Brantley-Sieders et al.,
in preparation). Together, these data suggest that further analysis of EphB4 expression, in
both tumor parenchyma and the surrounding stroma, should be performed using large sets of
human patient samples carefully stratified by stage and grade, as well as by molecular
subtype and treatment regimen. Particular attention should be paid to expression profiles in
tumor endothelium, given the role of B class receptors like EphB4 in angiogenesis and
tumor neovascularization [8], as well as vessel maturation and vascular integrity [25].

EphA5 was recently identified as a putative tumor suppressor through expression profiling,
as mRNA expression was significantly downregulated in human breast cancer samples
relative to normal human breast tissue, likely due to aberrant promoter methylation [26].
While several laboratory studies present evidence supporting EphB6 promoter methylation
and tumor suppressor function [27–31], our analysis of mRNA expression in patient datasets
revealed a significant association between elevated ephB6 and poorer overall and
recurrence-free survival in breast cancer (Brantley-Sieders et al., in preparation). In addition,
we also observed negative associations between survival/recurrence and elevated mRNA
expression of ephA2, ephA4, ephA7, and ephB4 (Brantley-Sieders et al., in preparation).
These observations are consistent with laboratory data for some Eph family members (e.g.
EphA2, EphA7), but not others (e.g. EphA4, EphB4, EphB6), in human breast cancer cell
lines [27], suggesting that cell line models must be carefully selected and multiple cell lines
should be used so that they accurately recapitulate trends in human disease. At least one
explanation for these conflicting data may reside in ligand-independent versus dependent
signaling. For example, though we found no clear positive or negative correlations between
expression of ephrin ligands and clinical outcome, we did observe an inverse correlation
between EphA2 and ephrin-A1 protein expression in a significant number of invasive ductal
carcinoma samples in lymph node relative to normal breast and ductal carcinomas confined
to the breast, which co-express both (Brantley-Sieders et al., in preparation). This
observation is consistent with profiling studies in breast cancer cell lines [16] and with the
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laboratory observations that ephrin-A1 ligand inhibits tumor cell growth and invasion [16,
32, 33]. Thus, future profiling efforts should include the full spectrum of relevant ephrin-
ligands as well as Eph RTKs in order to elucidate potential differences in clinical outcome
associated with the presence or absence of ligand. Moreover, soluble, monomeric ephrin-A1
has been detected in human breast cancer line supernatants [34, 35]. Soluble ligand can
impose alternate biological outcomes compared to membrane-tethered ligands [35–37].
Therefore, assessing the localization (membrane versus soluble) of these ligands in situ may
provide insight into the behavior of receptors detected in human cancers.

Together, these profiling efforts identified several A and B class Eph RTKs that may serve
as tractable targets for human breast malignancies. Further analysis of how ligand
expression profiles track with RTK expression will help elucidate the function of these
receptors in specific malignancies. In addition, protein expression profiling, particularly
studies geared toward detection of soluble ligands and post-translational modifications (e.g.
serine/threonine versus tyrosine phosphorylation) of Eph RTKs and ephrin-B ligands, will
no doubt shed light on the complex function of these molecules in cancer.

1.2 Eph expression profiles in human colorectal cancer
In addition to roles in normal gastrointestinal homeostasis and cell sorting in the gut, several
B class Eph RTKs have been implicated in colorectal cancer [reviewed in [38, 39]]. Using
commercial cDNA arrays coupled with immunoblot and immunohistochemical methods,
Stephenson et al. reported elevated EphB4 expression in 82% of colon cancer tissues
relative to matched normal tissue from the same patients, with protein expression localizing
to tumor epithelium [40]. Martiny-Baron et al. reported elevated mRNA expression of
ephB4 in human colon carcinomas relative to adjacent normal tissue controls [41].
Expression of ephB2, ephB3, and ephB4 mRNA was reported in human colon cancer tissue,
along with B class ligand ephrin-B2. Interestingly, these tumors, as well as a panel of
colorectal cancer (CRC) cell lines, were negative for ephB1, ephrin-B1, and ephrin-B3 [41,
42]. While these early studies suggested that several EphB family members play a role in
human CRC, the relative number of patient samples analyzed was low [n=15 to 60; [40–42]]
and the samples were not stratified by stage, grade, or level of invasiveness.

Although increased EphB RTK expression was detected in colorectal tumors, subsequent
expression analyses coupled with genetically engineered mouse models suggest tumor
suppressive functions for EphB receptors. Reduction or loss of EphB2 and EphB4
expression correlated with the shift from adenoma to invasive carcinoma in a panel of 108
human CRC samples, and loss of ephB3 mRNA was also observed in a smaller panel of
tumors [43]. Similar results were reported in independent EphB2 [44] and EphB3 [45]
profiling studies for human CRC. Reduced expression of EphB1 was also reported in
poorly-differentiated, invasive CRCs [46] and in invasive gastric carcinomas [47]. In normal
gut epithelium, the Wnt/β-catenin/TCF pathway regulates expression of EphB receptors in
the Paneth/progenitor cell domain within the lower regions of crypts in a counter gradient to
ephrin-B ligands that are expressed in differentiating cells higher in the crypt and in the
villus. Thus, loss of EphB receptor expression may disrupt the normal cues that restrict
tumor cell movement and enable unrestricted repopulation of the epithelial compartment as
tumor progression proceeds [reviewed in [38]]. Indeed, a positive correlation between
EphB2 expression and better overall and recurrence-free survival in human CRC patients
has been identified in three independent studies [48–50]. Similar trends were reported for
EphB4 expression in human CRC patient samples [51]. Moreover, EphB4 may have
prognostic value for risk of relapse in human CRC [52]. Together, these data suggest that
EphB receptors function as tumor suppressors in human CRC.
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Relative to B class receptors and ligands, EphA RTKs have not been investigated
extensively in human CRC. EphA1, EphA7, and EphA8 are reported to be downregulated in
human CRC [53–56], and reduced EphA1 expression correlated with poor overall survival
[53, 55]. These data suggest that, like their B class counterparts, these A class receptors may
function as tumor suppressors in human CRC. Elevated EphA2 expression, however,
correlated with liver/lymph node metastasis, lymphatic vessel infiltration, and clinical stage,
as opposed to E-cadherin [57], and a similar trend was also reported for EphA2 [58, 59] and
E-cadherin [59] in gastric cancer. EphA2 and ephrin-A1 expression were also correlated
with MVD in human CRC samples [60], suggesting they might regulate neovascularization
as well as tumorigenesis. These clinical observations are consistent with data derived from
cell culture and animal studies [61–63]. Elevated EphA4 expression was reported for CRCs
in the presence of liver metastasis, whereas lower EphB2 levels correlated with liver
metastasis [64].

As with breast carcinoma, several Eph RTKs display expression profiles suggesting
complex roles in CRC tumor progression. An emerging theme from analysis of clinical
specimens and laboratory models is that Eph RTKs differentially regulate tumor growth
versus tumor suppression in a stage-dependent manner. Thus, expression must be scored in
the context of stage and grade. In addition, future profiling efforts should be geared toward
looking at RTK expression in the context of ligand. In the case of CRC, this may be
particularly important in determining the invasive potential of individual tumors, as
localization of ligand relative to receptor may restrict invasion until receptor expression is
lost, similar to what has been observed in development and normal gut homeostasis
[reviewed in [38, 65]].

1.3 Eph expression profiles in human lung cancers
Recent studies suggest that Eph RTKs, particularly of the A class, play important roles in
tumor progression or tumor suppression, depending on the individual family member. Initial
presentation with high levels of EphA2 expression in non-small cell lung cancer (NSCLC)
patients correlates with a history of smoking and is prognostic for metastasis, particularly
brain metastasis, whereas low levels in the primary tumor correlate positively with disease-
free survival or contralateral lung metastasis [66–68]. Subsequent studies demonstrated that
ephA2 is part of a gene signature in NSCLC patients harboring somatic mutations in EGFR
[69], an interesting parallel to the interaction between EphA2 and EGFR family members in
breast cancer [reviewed in [9]]. EphA2 is also mutated in human NSCLC, as reported by
Faoro et al. who demonstrated that an activating mutation G391R in EphA2 confers
constitutive activation and activated signaling pathways that promote invasion [70]. Ephrin-
A3 is also reportedly upregulated in human lung cancer [56]. In addition to changes in
receptor levels, somatic mutations have been found in nearly all Eph receptors. Notably, 11
somatic mutations in EphA3 receptor were identified in 5–10% of lung cancer, placing
EphA3 among 27 most frequently mutated genes in human lung adenocarcinoma [[52, 71–
73]; Zhuang et al., submitted]. However, as these mutations are scattered throughout the
receptor, and it is unclear whether they are "driver" or biologically neutral "passenger"
genetic mutations. Elucidating the effects of these mutations will greatly improve our
understanding of how Eph receptor functions in cancer. Indeed, insight into the function of
individual domains, particularly putative and confirmed phosphotyrosine residues, will no
doubt be provided by studies such as those conducted by Shi et al. [74]. We did observe,
however, that overexpression of wild-type EphA3, but not several variants harboring
mutations found in human cancers, significantly inhibited tumor cell survival in culture and
in xenograft models, suggesting that they do play an important, possibly tumor suppressive
role, in NSCLC (Zhuang et al., submitted).
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Class B family members have also been detected in human lung cancer. EphB3
overexpression in human NSCLC samples correlated with tumor size, differentiation, and
metastasis, in agreement with laboratory studies showing tumor promoting effects in culture
and in mouse models [75]. Recent phosphoproteomic profiling analysis suggests that
interplay between ephrin-B3 silencing in NSCLC lines and stabilization of EphA2 by
phosphorylation Akt target Ser-897 may promote stability of EphA2 to support tumor cell
survival [76]. It would be of great interest to determine if these observations are relevant to
human disease, as they suggest that cross-talk between class A and class B Eph family
molecules may also play a critical role in tumor progression.

Conclusions
In summary, Eph RTKs are altered in several types of human cancers and many represent
promising targets for novel, molecularly targeted therapies, particularly in breast, colon, and
lung carcinomas. While the studies discussed here demonstrate the relevance of Eph RTKs
and their ligands to human malignancies, several questions remain. In spite of the wealth of
information regarding expression profiles in human cancer, gaps remain in our knowledge
for some family members, as well as for the spectrum of tumor progression (e.g. stage and
grade). Given the complexity of signaling regulated by this RTK family, as well as extensive
cross-talk with other RTK families involved in cancer, future efforts should be aimed at
understanding how Eph receptor expression and function is modulated in the context of
relevant cancer pathways.
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Table 1

Expression profiles for Eph A class RTKs and ligands in human epithelial malignancies

Eph A Class
Family Member

Cancer Type ↑/↓ Relative to
Normal Tissue

References

EphA1 Ovarian
Colon, Gliobastoma

Gastric
Pancreatic

Hepatocellular

↑
↓ (↑associated with

necrosis)
↑

↑(associated with
tumor size)

↑(associated with
angiogenesis)

[77]
[53, 55, 56, 78]

[79, 80]
[81]

[82, 83]

EphA2 Breast, Lung, Gastric,
Colon, Kidney;

Breast
Breast

Lung (NSCLC)
Ovarian
Colon
Gastric

Esophageal
Gliobastoma
Pancreatic

Hepatocellular
Prostate

Urinary Bladder

↑ (tumor and
endothelium)

↑
↑ (HER2+ samples)
↑(correlates with
smoking history,
brain metastasis,
EGFR somatic

mutation); mutation
G391R associated

with invasion
↑(correlates with

MVD)
↑(correlates with

MVD)
↑
↑

↑(PS897-EphA2)
↑(associated with

patient age)
↑
↑
↑

[10–12, 14, 84]
(Brantley-Sieders et
al., in preparation)

[15]
[66–70]
[77, 85]
[57, 60]

[58, 59, 86]
[87, 88]
[89–91]
[81, 92]

[93]
[94]
[95]

EphA3 Lung (NSCLC)
Hepatocellular
Glioblastoma

Melanoma

↓(and/or mutated)
mutated
mutated
mutated

[[71, 72, 96, 97];
Zhuang et al.,

submitted]
[98]
[99]
[99]

EphA4 Breast
Colon

Glioblastoma
Pancreatic

↑
↑(correlates with
liver metastases)

↑
↑(associated with

proliferation)

(Brantley-Sieders et
al., in preparation)

[64]
[100]

[81, 101]

EphA5 Breast
Pancreatic

↓
↑(associated with

prognosis)

[26]
[81]

EphA6 Colon
Kidney

↓
↓

[56]
[56]

EphA7 Breast
Colon

Glioblastoma
Pancreatic
Prostate

↑
↓
↑

↑(associated with
prognosis)
↓(promoter

hypermethylation)

(Brantley-Sieders et
al., in preparation)

[54]
[102]
[81]
[103]

EphA8 Colon, Glioblastotma ↓ [56]
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Eph A Class
Family Member

Cancer Type ↑/↓ Relative to
Normal Tissue

References

Ephrin-A1 Breast, Lung, Gastric,
Colon, Kidney

Ovarian
Gastric

Esophageal
Melanoma

Urinary Bladder
Glioblastoma

↑(tumor and
endothelium)

↑
↑
↑
↑
↑
↓

[10]
[77]

[58, 86]
[87]
[104]
[95]
[91]

Ephrin-A2 Hepatocellular ↑ [105]

Ephrin-A3 Lung ↑ [56]

Ephrin-A5 Ovarian
Glioblastoma

↑
↓

[77]
[106]
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Table 2

Expression profiles for Eph B class RTKs and ligands in human epithelial malignancies.

Eph B Class Family
Member

Cancer Type ↑/↓ Relative to
Normal Tissue

References

EphB1 Colon
Gastric

↓(transition to
invasive cancer)
↓(transition to

invasive cancer)

[46]
[47]

EphB2 Breast
Colon
Gastric

Glioblastoma
Neuroblastoma
Hepatocellular

↑
↑/↓(transition from

adenoma to
carcinoma)

↓
↑tyrosine

phosphorylation
↑(higher levels in

low stage)
↑

[22]
[42]/[43, 44, 48, 49]

[50]
[107]
[108]
[56]

EphB3 Colon
Lung (NSCLC)

↑/↓ (transition from
adenoma to
carcinoma)*

↑

[42]/[43, 45]
[75]

EphB4 Breast
Ovarian
Cervix

Endometrium
Colon

Prostate

↓/↑
↑

↑(correlates with
MVD)

↑
↑/↓(transition from

adenoma to
carcinoma)

↑

[21–23]/(Brantley-
Sieders et al., in

preparation)
[73]

[109, 110]
[111, 112]

[40–42]/[43, 51]
[113]

EphB6 Breast
Glioma

Neuroblastoma
Melanoma

↓/↑
↑variant protein
↑(higher levels in

low stage)
↓

[27–31] /(Brantley-
Sieders et al., in

preparation)
[114, 115]
[116–118]

[119]

Ephrin-B1 Ovarian
Glioblastoma
Hepatocellular

↑
↑total and tyrosine

phosphorylated
↑associated with

tumor angiogenesis

[120]
[121]
[122]

Ephrin-B2 Ovarian
Cervix

Endometrium
Colon

Esophageal
Glioblastoma

Melanoma

↑
↑(correlates with

MVD)
↑
↑
↑

↑total and tyrosine
phosphorylated

↑

[73, 120]
[109, 110]
[111, 112]
[41, 42]
[123]
[121]
[124]

Ephrin-B3 Ovarian
Glioblastoma

Neuroblastoma

↑
↑/increased tyrosine

phosphorylation
↑(higher levels in

low stage)

[120]
[125]/[126]
[116–118]
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