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Abstract
The disposition effect is a phenomenon in which investors hold onto losing assets longer than they
hold onto gaining assets. In this study, we used functional magnetic resonance imaging (fMRI) to
measure the response of valuation regions in the brain during the decision to keep or to sell an
asset that followed a random walk in price. The most common explanation for the disposition
effect is preference-based: namely, that people are risk-averse over gains and risk-seeking over
losses. This explanation would predict correlations between individuals’ risk-preferences, the
magnitude of their disposition effect, and activation in valuation structures of the brain. We did
not observe these correlations. Nor did we find evidence for a realization utility explanation,
which would predict differential responses in valuation regions during the decision to sell versus
keep an asset that correlated with the magnitude of the disposition effect. Instead, we found an
attenuated ventral striatum response to upticks in value below the purchase price in some
individuals with a large disposition effect. Given the role of the striatum in signaling prediction
error, the blunted striatal response is consistent with the expectation that an asset will rise when it
is below the purchase price, thus spurring loss-holding behavior. This suggests that for some
individuals, the disposition effect is likely driven by a belief that the asset will eventually return to
the purchase price, also known as mean reversion.
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Introduction
The disposition effect is a behavioral phenomenon in which investors “sell winners too early
and ride losers too long” (Shefrin and Statman, 1985). There is robust field evidence that
investors sell shares of stock significantly more often after an increase in the value of the
shares, than they do after a decrease in value (Choe and Eom, 2009; Ferris et al., 1988;
Grinblatt and Keloharju, 2001; Odean, 1998). This occurs despite the behavior being
suboptimal in terms of profit earning (Choe and Eom, 2009; Odean, 1998). In experimental
settings, where complex market forces are not present and participants are not experienced
investors, the disposition effect still exists (Da Costa et al., 2008; Vlcek and Wang, 2008;
Weber and Camerer, 1998). Even when decision-makers are aware that losing assets are
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more likely to continue falling, they hold onto these assets more than they hold onto rising
assets (Weber and Camerer, 1998). These observations suggest that the disposition effect is
a common property of decision-making and not simply a product of the stock market or
limited to investors.

Several explanations for the disposition effect have been suggested. The most common is
preference-based: namely, that people are risk-averse over gains and risk-seeking over
losses (Kahneman and Tversky, 1979; Lakshminarayanan et al., 2010; Shefrin and Statman,
1985). Assuming that the purchase price of an asset is the reference point upon which
investors judge gains or losses, then risk-aversion over gains would lead to the selling of
assets when the value of the shares rise (the less risky option), while risk-seeking over losses
would lead to holding assets when the value of the shares fall (the more risky option). This
explanation is based on prospect theory, which assumes a value function that is concave
over gains, but convex over losses (Kahneman and Tversky, 1979). Although risk-
preference is often suggested as the driving force behind the disposition effect, several
theoretical papers and experimental studies have questioned whether a preference-based
explanation can fully explain the disposition effect (Barberis and Xiong, 2009; Kaustia,
2010; Vlcek and Wang, 2008). Alternatively, the realization utility hypothesis suggests that
investors receive utility from the act of realizing a gain or loss, driving investors to sell gains
to receive positive utility and hold losses to avoid negative utility (Barberis and Xiong,
2008). Another explanation suggests that investors have an irrational belief in mean
reversion (Barberis and Thaler, 2002). This explanation predicts that an investor would hold
onto a losing asset with the expectation that it would rise and sell a gaining asset with the
expectation that it would fall. Despite it being an important phenomenon in finance, there is
no consensus in the behavioral economics literature that mean reversion drives the
disposition effect, although some experimental studies have found evidence for such a
relationship (Andreassen, 1988; Hung and Yu, 2006). Hence, the question remains as to
whether the disposition effect is driven by asymmetric risk-preferences over gains and
losses, realization utility, or by belief-related mechanisms such as mean reversion.

In this paper, we utilize functional magnetic resonance imaging (fMRI) during an asset-
trading task to test these alternative theories of the disposition effect. We measured the
blood oxygenation level dependent (BOLD) response in valuation regions of the brain
during decisions to keep or to sell an asset that followed a random walk in price. A
preference-based explanation for the disposition effect would predict correlations between
individuals’ risk-preferences, the magnitude of their disposition effect, and activation in
valuation structures of the brain. A realization utility explanation would predict differential
responses in valuation regions during the decision to sell versus keep an asset that correlate
with the magnitude of the disposition effect. Finally, if participants believe that the asset
price will eventually revert to the mean, we would predict an attenuated ventral striatum
response to upticks in value below the purchase price and a greater response to upticks in
value above the purchase price for individuals with a disposition effect. The ventral striatum
has been shown to signal prediction error, and thus an expectation of a rise in asset price
followed by an uptick should result in lessened striatal activity. Conversely, if an
expectation of a fall in asset price is met by an uptick, striatal activity should increase. Of
these three theories, the fMRI data were most consistent with an irrational belief in mean
reversion.

Methods
Thirty-eight participants (18 female; 18 – 51 years) were recruited from the Emory
University campus and completed the asset-trading task. Of this group, thirty-three
participants were scanned using fMRI (17 female; 18 – 51 years). Of the thirty-three
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scanned participants, we excluded one participant from our imaging model because of
excessive motion and five participants because they lacked observations for the regressors of
interest. This was due to a high variability in participant behavior that was tied to the
number of observations in each of the regressors in our model. All participants were right-
handed, reported no psychiatric or neurological disorders, or other characteristics that might
preclude them from safely undergoing fMRI. All participants provided informed consent to
experimental procedures approved by the Emory University Institutional Review Board.
Prior to beginning the experiment, participants were told that they would be paid $20 for
showing up, and $30 for completing three questionnaires, including the BIS/BAS, EPQR,
and a risk-preference worksheet. The total amount of $50 had to be used in the subsequent
asset-trading task, where participants could earn an additional $50, or lose $50. Therefore
the total possible compensation ranged from $0 to $100 (actual $30 – $75).

Asset trading task
Participants completed 40 trials of an asset-trading task while undergoing fMRI. The main
screen of the asset-trading task consisted of a graph with relative value (in dollars) of an
asset on the y-axis, and time (in periods) on the x-axis. For each trial, participants were
initially forced to purchase an asset worth $50 using all of the money they earned prior to
entering the scanner ($50). A gray circle at relative value zero and period 10 indicated the
purchase point. To make sure that the current decision period was always centered on the
screen, each asset had a 10-period history prior to purchase that was different for all 40
assets. Each history was generated in the same manner as the forward asset price trajectory –
by generating a random walk beginning at the purchase price, but in this case going
backwards for ten periods. After a button press, the asset subsequently increased or
decreased in value by $5 with equal probability.

Participants were then given the choice of keeping the asset for another period, or selling the
asset for its worth in that period. If participants chose to keep the asset, it again increased or
decreased by $5 with equal probability after a 3 second delay. A single decision period is
shown in figure 1 (panel A). To avoid influencing participant decision-making by having a
finite number of periods where participants potentially behave differently towards the end of
the trial, we implemented an infinite horizon. This was accomplished by using a ‘soft’
ending, where the trial ended and asset force-sold with a 5% probability each time the
participant chose to keep the asset (Camerer and Weigelt, 1993; Noussair and Matheny,
2000). Participants could therefore keep the asset as long as they wanted, keeping in mind
that each trial had a 5% probability of ending each time they kept the asset. If participants
chose to sell the asset, they earned what the asset was worth in that period. Each sell period
was followed by five periods where they saw what trajectory the price would have followed
had they of kept the asset. Each time the asset was sold or force-sold, participants saw an
outcome screen stating the relative amount that their asset was sold for. The maximum
relative value that the asset could reach was +$50, and minimum of −$50. Participants were
given full information regarding the determination of asset price and the infinite horizon
prior. Participants were verbally tested on the probabilities and independence of the asset
pricing, and completed two practice trials prior to the actual asset-trading task.

Note that because the size and probability of an increase or decrease in asset value was
always equal and independent across periods, the expected value of keeping the asset was
the same as selling the asset at every decision point. Furthermore, because the random-walk
nature of the asset price, there is no optimal selling strategy that maximizes earnings in the
task. Therefore, no matter what strategy is taken, participants on average earn a relative
value of $0 across trials ($50).
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Behavioral data analysis
To measure the disposition effect for each individual, we computed the integral of asset
value (in dollars) relative to purchase price over time and averaged across all trials. If each
asset was held regardless of value and never sold, the average integral would be close to
zero because the price of the asset followed a random walk (Figure 1; panel B). If assets
below the purchase price were held longer than assets above the purchase price, then the
average integral would be negative (Figure 1; panel C).

We estimated risk-preference and loss aversion parameters using a method developed by
Tanaka, Camerer, & Nguyen (2010). Participants were given three series of paired lotteries.
In each series, participants were asked to choose the point at which they would switch from
lottery A to lottery B. The expected value of lottery B increased downward in each series.
By solving a system of inequalities in which constant relative risk aversion is assumed (U(x)
= xα), a unique set of risk-preference and loss aversion parameters were estimated for each
participant.

To understand the factors that were most important in driving participants’ decisions to keep
or sell, and thus create an imaging model most relevant to participant behavior, we estimated
a mixed-effects logistic regression with “keep” or “sell” for each period as the outcome
variable (1 for sell, 0 for keep), five fixed-effects regressors which described local asset
price characteristics, and a subject-wise regressor describing the magnitude of a participant’s
disposition effect. Subject was included as a random-effects factor. The regression took the
following form:

Valuet was the value of the asset at time t (which ranged from −50 to 50 in multiples of 5).
Value′t was the difference in value from time t to t-1 (which could carry values −5 or 5). We
subsequently refer to value′t as “delta” throughout this paper. Value″t was the change in
price direction, calculated the following way: (valuet – valuet-1) – (valuet-1 – valuet-2). Thus,
value″t can carry values of 10, 0, or −10. DE was the average integral across trials for each
participant, which was a measure of the individual’s disposition effect. We also included
interaction terms between DE and the main effects in order to probe where people with a
disposition effect behaved differently.

fMRI data acquisition and analysis
Functional imaging was performed with a Siemens 3 T Trio whole-body scanner. T1-
weighted images (TR = 2600 ms, TE = 3.02 ms, flip angle = 8°, 240 × 256 matrix, 176
sagittal slices, 1 mm3 voxel size) were acquired for each subject prior to the four
experimental runs. For each experimental run, T2*-weighted images using an echo-planar
imaging sequence were acquired, which show blood oxygen level-dependent (BOLD)
responses (echo-planar imaging, TR = 2000 ms, TE = 30 ms, flip angle = 73°, FOV = 192
mm × 192 mm, 64 × 64 matrix, 33 3.5-mm thick axial slices, and 3 × 3 × 3.5 mm voxels).

fMRI data were analyzed using SPM8 (Wellcome Department of Imaging Neuroscience,
University College London) using a standard 2-stage random-effects regression model. Data
were subjected to standard preprocessing, including motion correction, slice timing
correction, normalization to an MNI template brain and smoothing using an isotropic
Gaussian kernel (full-width half-maximum = 8 mm). Task regressors were modeled using a
standard canonical hemodynamic response function. Our model focused on the decision
period, which encompassed the time at which the outcome of the asset increase or decrease
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was shown, to the time in which a participant made a response. To attempt to capture the
response only to the asset price increase or decrease outcome, we also created an alternative
model using an impulse function at the moment the asset increase or decrease was shown,
leaving the rest of the decision period in the model baseline. In both models, we separated
these periods into five separate regressors: the first period in the trial where participants hit
the ‘continue’ button to see whether the asset increased or decreased in value, decisions
above the purchase price, decisions below the purchase price, decisions at the purchase
price, and the periods after an asset was sold. Decisions above and below the purchase price
were modulated by choice (keep vs. sell), valuet, and delta (valuet – valuet-1). We also
included a regressor for the outcome screen. The 3-second interval where the participant’s
choice was highlighted was randomly assigned to four regressors of no-interest to prevent
correlation with the constant. Because individual behavior varied greatly, and was reflected
in the number of observations in each regressor, we concatenated all runs in our model
together, and included n – 1 dummy variables to account for run differences. This allowed
us to avoid complex contrast weights for each participant, given the high likelihood of
missing regressors for multiple runs. Six motion parameters and a single constant were also
included for each subject.

Statistical thresholds were determined based on the smoothness of the second-level
contrasts. We used AlphaSim, a routine in AFNI, to estimate the combination of height and
extent thresholds that yielded a whole-brain FDR < 0.05 (10,000) iterations. To do this, we
used 3dFWHMx to estimate image smoothness from the square root of the masked SPM-
generated residual (ResMS) image. We then used AlphaSim with a voxel-level threshold of
p < 0.001 to find the cluster threshold at which the whole-brain FDR would be < 0.05, and
which ranged from 42 to 57 voxels, depending on the specific contrast.

Results
We found evidence for a robust disposition effect in our task. As a measure of the
disposition effect, we took the integral of asset price averaged across trials. Across all
participants (38 including behavioral and scanned), the average integral was −27.7
$*periods (σ = 31.4, range = −113.6 – 18.9), which was significantly different from zero
[t(37) = −5.4, p < 0.001]. This indicates that participants spent significantly more time
below the purchase price than above the purchase price across trials. The majority of
participants displayed the disposition effect (31 of 38 had integrals less than zero). As
another measure of the disposition effect, participants sold the asset when it was below the
purchase price significantly less often (mean = 6.5 trials, σ = 5.6) than when the asset was
above the purchase price (mean = 14.4 trials, σ = 5.5; t(37) = 5.4, p < 0.001]. Furthermore,
the average number of periods the asset was kept above the purchase price (mean = 6.3
periods, σ = 3.0) was significantly lower than the average number of periods below the
purchase price [mean = 9.3, σ = 5.2; t(37) = −4.9, p < 0.001].

The magnitude of the disposition effect varied widely across participants, ranging from a
large disposition effect (integral of −113.6 $*periods) to an anti-disposition effect (integral
of 18.9 $*periods). The heterogeneity in the disposition effect could be driven primarily by
individual differences in gain-selling behavior, loss-holding behavior, or both. The mean
integral was significantly correlated with the average period in which an asset was sold or
force-sold below the purchase price (r = −0.73, p < 0.001), but not the average period in
which an asset was sold or force-sold above the purchase price (r = −0.13, p = 0.43). This
suggests that the heterogeneity in the disposition effect was driven primarily by the length of
loss holding. For this reason we focused the imaging analysis on decision-making below the
purchase price, i.e. in the loss domain.
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A preference-based explanation of the disposition effect would suggest that risk-preference
should be correlated with the magnitude of the disposition effect. Overall, our risk-
preference questionnaire revealed that participants were slightly risk-averse, with a mean α
= 0.91 (σ = 0.34), which was consistent with past studies on risk preference (Tversky and
Kahneman, 1992). The mean loss aversion parameter, however, was higher (λ = 3.8, σ = 3.6)
than is typically reported in the literature (λ ~ 2). This was driven primarily by several
outliers with unusually high estimates for the loss aversion coefficient. The median value of
λ = 2.7 was closer to that found in the literature. We found no correlation between the risk-
preference parameters, the loss aversion coefficients, and the disposition effect, providing
further behavioral evidence against a preference-based explanation of the disposition effect
(Vlcek and Wang, 2008).

Participants were not asked in a structured manner about their beliefs in the task, however
casual conversation during debriefing revealed that a large portion of participants expressed
a ‘hope’ that the asset would return to the purchase price when at a loss, despite being aware
of the random-walk nature of the price. It is important to note that self-reporting of the
motivation behind investment decisions might not accurately reflect the underlying process
driving decisions. More formally, psychological aspects of participant behavior were
gathered through BIS/BAS and EPQR questionnaires. We found no significant correlations
between these personality measurements and the disposition effect. A negative correlation
between BAS reward and the disposition effect approached significance (r = −0.32, p =
0.06), however using Bonferroni correction for multiple comparisons makes the trend much
less compelling.

In order to build an imaging model that best reflects participant behavior, we ran a logistic
regression with the decision to sell or keep as the outcome variable, and characteristics of
the asset price as regressors. We found that for any given period there was a low probability
of selling (Table 1). The largely negative constant represents the fact that for each trial, the
participant could sell on only one period (what would be the final one). Consequently, the
default prediction, with all other values set to zero, was that a participant would keep the
asset for any particular period. We found that three regressors significantly (p < 0.05)
predicted participant choice behavior: the value of the asset, the change in value of the asset
from the previous period, and the change in price direction. These three characteristics of the
asset price were subsequently included in our imaging model.

Imaging
Our neuroimaging model was based on two behavioral observations: 1) that heterogeneity in
the disposition effect was mostly due to decisions below the purchase price; and 2) that the
repressors in our behavioral model that described local asset price characteristics (valuet,
valuet′, valuet″), predicted participant keep/sell behavior. We therefore created a model
focusing on the decision period, which was divided into decisions above the purchase price
(gains), and decisions below the purchase price (losses). These decision periods were
modulated by participant choice (keep vs. sell), value, and delta. We report coordinates of
activation and their corresponding statistics in Table 2. As would be expected, a simple
contrast between decisions over gains versus losses revealed robust ventral striatal
activation. Ventral striatal activity was not significantly correlated with overall asset price
relative to the purchase (neither in the gain nor loss domain). Instead, we found that the
ventral striatum responded to upticks in delta both above and below the purchase price,
which was the difference between the current asset price, and the price in the previous
period (Figure 2). This suggests that a change in asset price from the previous period best
explains variation in the BOLD response during the decision-making period within the
ventral striatum, as opposed to the total present value of the asset.
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Because of the evidence implicating the striatum in the process of valuation during decision-
making, and its role in explaining individual heterogeneity in decision-making strategies
(Venkatraman et al., 2009), we extracted beta values from the left and right ventral striatum
and putamen clusters from the aforementioned delta contrast for decisions below the
purchase price (right panel; Figure 2). These beta values describe the slope of the
relationship between the BOLD response and delta and were correlated with the magnitude
of the disposition effect; both correlations approached significance (r = .367, p = .055; r = .
360, p = .057, left and right respectively). However, in an alternative model where an
impulse function was used to model the immediate response to an increase or decrease in
asset value (as opposed to the entire decision period), we find significant correlations in the
left and right ventral striatum (r = 0.384, p = 0.044 and r = 0.395, p = 0.037 for left and
right, respectively). This suggests that our results are likely driven by immediate outcome
response as opposed to deliberation over keeping vs. selling the asset. Participants who did
not have a disposition effect displayed positive striatal responses to upticks in value, but
participants who had large disposition effects showed little striatal response (Figure 3; left
ventral striatum/putamen cluster). This relationship was not seen for decisions above the
purchase price, where the BOLD response was significantly modulated by delta but not
correlated with the magnitude of the disposition effect (r = .252, p = .187). We found no
correlation between the measured utility curvature (indicative of risk-preference) of
individual participants and overall activity in the left and right ventral striatum/putamen
below the purchase price (r = 0.09, p = 0.64 and r = 0.10, p = 0.60 for both, respectively), as
well as above the purchase price (r = −0.18, p = 0.36). Whole-brain correlation analysis
revealed no brain regions whose response to delta correlated with utility curvature, above or
below the purchase price.

To test whether the disposition effect was driven by a differential response to realized (sold)
versus paper (kept) gains and losses, we contrasted sell versus keep decisions (averaged
across gains and losses). We found a significant difference for this contrast in bilateral
insula, DLPFC, thalamus and ACC, among other regions (Figure 4; Table 1), areas
consistently activated for risk-averse choices and decisions to quit loss-chasing behavior
(Campbell-Meiklejohn et al., 2008; Paulus et al., 2003; Preuschoff et al., 2008). However,
none of these regions were significantly correlated with the magnitude of the disposition
effect. We found no activation in typical reward-related regions, such as the ventral striatum
or medial prefrontal cortex (MPFC) that was greater for sell than keep decisions (even at a
liberal threshold of p < 0.05, k ≥ 10). We also found no regions significantly more active for
keep than sell decisions at our statistical threshold (p < 0.001, k ≥ 57). However, at a more
liberal threshold (p < 0.005, k ≥ 10) we found greater activation in the ventral striatum and
MPFC for keep versus sell (Campbell-Meiklejohn et al., 2008; Kuhnen and Knutson, 2005).
Neither the ventral striatum nor MPFC activation from the [keep – sell] contrast correlated
with the magnitude of the disposition effect (r = −0.23, p = 0.26, and r = 0.24, p = 0.24, for
ventral striatum and MPFC, respectively). Even when separated for decisions above and
below the purchase price, whole-brain correlation analysis on [keep – sell] and [sell – keep]
contrasts revealed no brain regions whose activity significantly correlated with the
disposition effect or with participant risk-preference.

Discussion
The disposition effect is a robust behavioral phenomenon in which individuals hold onto
losing assets longer than they hold onto gaining assets. Here, we tested three theories on
why people display a disposition effect using an asset-trading task and fMRI: a risk-
preference, realized utility, and an irrational belief in mean reversion. We found three pieces
of evidence suggesting that a preference-based explanation of the disposition effect does not
fully explain the phenomenon. First, we found that a behavioral measure of risk-preference
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did not correlate with the magnitude of the disposition effect. Second, we found no
correlation between measured risk-preference parameters and BOLD response in valuation
regions. Third, we found no correlation between the disposition effect and activation in
regions previously shown to be correlated with risk attitude, namely the MPFC. Similarly,
we did not find a relationship between the disposition effect and differences in keep/sell
activations in reward-related brain regions, as would be predicted by differences in realized
utility. Instead, our results are more consistent with a mean reversion hypothesis. We show
that for decisions below the purchase price, a greater disposition effect is correlated with a
blunted ventral striatum response to upticks in value in some individuals. Given the
established role of the ventral striatum in signaling reward-prediction errors (RPE) (Pagnoni
et al., 2002; Schultz, 2010), this blunted response is consistent with meeting an expectation
of an uptick towards the mean.

Behaviorally, our data did not point towards a risk-preference view of the disposition effect.
According to this explanation, the disposition effect reflects an asymmetry in risk-preference
across gains and losses (Kahneman and Tversky, 1979; Lakshminarayanan et al., 2010).
Risk-preference is often measured using choice-based paradigms that estimate utility
function curvature (Binswanger, 1980; Holt and Laury, 2002; Tversky and Kahneman,
1992). Often these measurements are tied to individual variation in aspects of financial and
non-financial decision-making, suggesting validity in their ability to predict real-world
decision-making (Anderson and Mellor, 2008; Barsky et al., 1997). We used a similar
choice paradigm that estimated both utility function curvature (risk-preference) and loss
aversion (Tanaka et al., 2010). Consistent with past literature, we found that our participants
were both risk-averse and loss-averse on average (Tversky and Kahneman, 1992). However,
neither curvature of the utility function nor loss aversion correlated with the disposition
effect in our task, which builds on evidence that risk attitude is not driving the disposition
effect (Vlcek and Wang, 2008).

Our imaging data further suggest that risk-preference does not fully explain the disposition
effect. A large body of evidence has demonstrated that a network of brain regions, including
the ventral striatum, MPFC, and orbitofrontal cortex (OFC) is closely associated with the
economic concept of expected utility and the behavioral concept of reward (Berridge and
Robinson, 2003; Delgado, 2007; Knutson et al., 2001; Montague and Berns, 2002;
Plassmann et al., 2007). Activity in these regions scale with both the expected and subjective
value of stimuli (Kable and Glimcher, 2007; Knutson et al., 2001). Moreover, the ventral
striatum and MPFC are not limited to the processing of gains, but they also process expected
loss during decision-making (Brooks et al., 2010; Tom et al., 2007). Individual risk-
preference is directly related to the subjective valuation (i.e. utility) of potential outcomes
during choice. Thus, if risk attitude played a role in our task, we should have found that
activity in the aforementioned brain regions was correlated with risk-preference parameters.
However, none of the relative activations between keep versus sell decisions were correlated
with subject risk-preference in these regions. In addition, there were no brain regions where
the BOLD response to delta was correlated with risk-preference. This suggests that subject
heterogeneity in risk-preference did not significantly contribute to decisions in our asset-
trading task.

In addition to finding no valuation regions that correlated with measures of risk-preference,
we found no significant correlation between the magnitude of the disposition effect and
activity in these same regions. For example, activity in the ventral MPFC has been found to
positively correlate with individual measures of risk seeking when risky decisions are made,
while activity in the lateral OFC and dorsal MPFC positively correlates with risk-aversion
when less-risky decisions are made (Christopoulos et al., 2009; Tobler et al., 2007; Xue et
al., 2009). When we compared risky (keep) versus riskless (sell) decisions below the
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purchase price, we found no correlation between ventral MPFC, lateral OFC, or dorsal
MPFC activity and the disposition effect. We found the same absence of correlation when
comparing riskless (sell) versus risky (keep) decisions.

The realization utility theory suggests that investors get a jolt of positive utility when they
sell a stock at a gain, and a jolt of negative utility when they sell a stock at a loss (Barberis
and Xiong, 2008). In this theory, people want to avoid the pain of negative utility so they
hold onto losses, and because they want to receive the pleasure of positive utility they sell
gains. This hypothesis would suggest that individual differences in the disposition effect
should be correlated with the magnitude of the BOLD response in valuation-related brain
regions during the decision to sell versus keep an asset, as others have found (Frydman et
al., 2011). In our study, we did not find such correlations. However, if the receipt of
realization utility requires the act of completing a successful investing episode (including
purchase and sale), it is possible that our experimental design did not capture this because
our participants did not have a choice about purchasing the assets (only selling).

Though the aforementioned lack of results supporting alternative hypothesis is not
definitive, our results are more consistent with an irrational belief in mean reversion. We
found a negative correlation between the magnitude of the disposition effect and the ventral
striatum response to upticks in value when the asset price was below the purchase price.
This finding is consistent with models of reward prediction error (RPE) in the striatum
(Hollerman and Schultz, 1998; O’Doherty et al., 2003; Schultz, 1997) which suggest that the
striatum responds only to unexpected upticks in value. In its simplest form, the RPE is
computed by taking the difference between the reward received and the reward that was
expected. At each period in our task there was a 50/50 probability of an increase or decrease
in asset value. Thus, the objective expected value of the asset was always $0. Any uptick in
value should therefore result in a positive RPE, and consequently a ventral striatum
response, regardless of the total present value of the asset. Although one might predict a
decreasing marginal striatal response as the total asset value increases, one would not predict
a blunted response to upticks in value when the asset value was negative. Thus, the lack of a
striatal response would suggest no RPE, even though the asset had increased in value.
Previous neuroimaging studies have shown that the striatal response to reward disappears
when the subject can fully predict the reward (Berns et al., 2001; McClure et al., 2003;
O’Doherty et al., 2003; Pagnoni et al., 2002). Thus, the lack of striatal response to upticks in
value suggests that some subjects with a large disposition effect predicted the uptick when
the asset was in the loss domain, implying that they were expecting a return to the mean.
Our results build on previous behavioral research that supports an irrational belief in mean
reversion (Andreassen, 1988; Vlcek and Wang, 2008; Weber and Camerer, 1998).
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Figure 1.
Asset trading task overview. (A) Participants were forced to purchase an asset for $50
(purchase point marked by a gray circle). The asset price then followed a random walk,
always increasing or decreasing in increments of $5 with equal probability. At each period,
participants chose to keep or sell the asset (first panel). After the participant made a choice,
the choice was highlighted for 3 seconds (second panel). The next period outcome was then
shown and the participant could immediately make a decision (third panel). An infinite
horizon was implemented, where there was a 5% probability of the trial ending (and asset
being force-sold). Therefore, participants were able to keep the asset as many periods as
they liked, with the caveat that each time they kept the asset, there was a 5% chance of the
trial ending. (B) and (C) show data from subjects without a disposition effect (left; average
integral of 10.4 $*periods) and with a disposition effect (right; average integral of −46.8
$*periods). Each data point represents the period in which an asset was sold or force-sold
(assets that were held until the trial ended). Trials in which the overall integral of asset price
through time was positive are shown in blue, negative in red, and zero in green. Forty trials
are shown for each participant.

Brooks et al. Page 12

Neuroimage. Author manuscript; available in PMC 2013 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Whole-brain analysis for identifying brain regions responding to positive delta. Regions are
shown whose BOLD response increased with an increase in asset price from the previous
period, above (left) and below (right) the purchase price. We find ventral striatal activity
both above and below the purchase price in response to upticks in value. Below the asset
price, we also find DLPFC and motor area activation. Coronal sections are shown here
(MNI y = 11 above, and y = 2 below). Statistical thresholding was set at p < 0.001, k ≥ 53
(above), and k ≥ 42 (below), resulting in a whole-brain FDR<0.05 for both contrasts.
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Figure 3.
Relationship between striatal response to upticks in value below the purchase price and the
magnitude of the disposition effect. Beta values in the left ventral striatum during decisions
below the purchase price, modulated by the change in asset price from the previous period
(delta), correlated with the magnitude of the disposition effect, as measured by the integral (r
= 0.367, p = 0.055). A more negative integral is associated with a larger disposition effect.
Participants who showed a larger disposition effect were more likely to show little or no
response in the ventral striatum to upticks in value.
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Figure 4.
Whole-brain contrast between decisions to sell versus keep. A greater BOLD response was
observed in the bilateral insula, DLPFC, and ACC during decisions to sell versus keep an
asset (MNI y = 11). This is consistent with past research where participants quit chasing
losses, but inconsistent with a realization utility explanation of the disposition effect.
Statistical thresholding was set at p < 0.001, k ≥ 57, resulting in a whole-brain FDR< 0.05.
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