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Abstract
The interactions among multiple pathogenetic mechanisms of diabetic peripheral neuropathy
largely remain unexplored. Increased activity of aldose reductase, the first enzyme of the sorbitol
pathway, leads to accumulation of cytosolic Ca++, essentially required for 12/15-lipoxygenase
activation. The latter, in turn, causes oxidative-nitrosative stress, an important trigger of MAPK
phosphorylation. This study therefore evaluated the interplay of aldose reductase, 12/15-
lipoxygenase, and MAPKs in diabetic peripheral neuropathy. In experiment 1, male control and
streptozotocin-diabetic mice were maintained with or without the aldose reductase inhibitor
fidarestat, 16 mg kg−1 d−1, for 12 weeks. In experiment 2, male control and streptozotocin-
diabetic wild-type (C57Bl6/J) and 12/15-lipoxygenase-deficient mice were used. Fidarestat
treatment did not affect diabetes-induced increase in glucose concentrations, but normalized
sorbitol and fructose concentrations (enzymatic spectrofluorometric assays) as well as 12(S)
hydroxyeicosatetraenoic concentration (ELISA), a measure of 12/15-lipoxygenase activity, in the
sciatic nerve and spinal cord. 12/15-lipoxygenase expression in these two tissues (Western blot
analysis) as well as dorsal root ganglia (immunohistochemistry) was similarly elevated in
untreated and fidarestat-treated diabetic mice. 12/15-lipoxygenase gene deficiency prevented
diabetesassociated p38 MAPK and ERK, but not SAPK/JNK, activation in the sciatic nerve
(Western blot analysis) and all three MAPK activation in the dorsal root ganglia
(immunohistochemistry). In contrast, spinal cord p38 MAPK, ERK, and SAPK/JNK were
similarly activated in diabetic wild-type and 12/15-lipoxygenase−/− mice. These findings identify
the nature and tissue specificity of interactions among three major mechanisms of diabetic
peripheral neuropathy, and suggest that combination treatments, rather than monotherapies, can
sometimes be an optimal choice for its management.
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1. INTRODUCTION
Diabetic peripheral neuropathy (DPN), affects at least 50% of patients with both Type 1 and
Type 2 diabetes, and is a leading cause of foot amputation [1–3]. DPN is manifested by
nerve blood flow and motor (MNCV) and sensory (SNCV) nerve conduction velocity
deficits as well as by increased vibration and thermal perception thresholds that progress to
sensory loss, occurring in conjunction with degeneration of all fiber types in the peripheral
nerve [4]. A significant proportion of patients with DPN also describe abnormal sensations
such as paresthesias, allodynia, hyperalgesia, and spontaneous pain [3–5].

The pathogenesis of DPN has extensively been studied in animal models of diabetes, and
involves complex interactions between vascular and and non-vascular mechanisms [6,7].
Multiple biochemical changes including, but not limited to, increased activity of the sorbitol
pathway of glucose metabolism [8,9], non-enzymatic glycation/glycoxidation [10,11],
activation of protein kinase C (PKC) and mitogen activated protein kinases (MAPKs) [12–
15], oxidative-nitrosative stress [16–19], impaired neurotrophism [20], activation of
poly(ADP-ribose) polymerase (PARP, [21,22]) as well as of the enzymes of arachidonic
acid metabolism, cyclooxygenase-2 [23] and 12/15-lipoxygenase (LO, [24,25]), participate
in the development of nerve conduction velocity deficits and small sensory nerve fiber
dysfunction. Increased sorbitol pathway activity [26–28], impaired neurotrophic support [29,
30], oxidative-nitrosative stress [31], and PARP [32], cyclooxygenase-2 [23], and LO [25]
activation have also been implicated in axonal atrophy of large myelinated fibers and/or
small sensory nerve fiber degeneration. The interactions among some of biochemical
mechanisms, e.g. 1) increased activity of the sorbitol pathway and oxidative-nitrosative
stress [8, 27, 28, 33–35], PKC [12], p38 MAPK [14], and PARP [33] activation; 2) oxidative
stress and impaired neurotrophic support [36]; 3) oxidative-nitrosative stress and PARP
activation [19,32], in DPN have been identified, but many others remain largely unexplored.
Diabetes-induced increase in activity of aldose reductase (AR), the first enzyme of the
sorbitol pathway, has been reported to lead to accumulation of cytosolic Ca++ [37],
essentially required for LO activation [38, 39]. The latter, in turn, causes oxidative-
nitrosative stress [24], an important trigger of MAPK phosphorylation [40]. The present
study therefore evaluated the interplay of AR, LO, and MAPKs in tissue-sites for DPN
including peripheral nerve, spinal cord, and dorsal root ganglion (DRG) neurons. The
experiments were performed in C57Bl6/J mice, a robust animal model of DPN, that is
manifested by MNCV and SNCV deficits, small sensory nerve fiber dysfunction and
degeneration, and axonal atrophy of large myelinated fibers [9,19,24,25,27], and is
amenable to treatment with AR [9,27], LO [24,41], and p38 MAPK [15] inhibitors.

2. MATERIALS AND METHODS
A. Reagents

Unless otherwise stated, all chemicals were of reagent-grade quality, and were purchased
from Sigma Chemical Co., St. Louis, MO, USA. For Western blot analysis, rabbit
polyclonal (clone H-100) anti-12-lipoxygenase (LO) antibody, rabbit polyclonal (clone
H-147) anti-p38 MAPK antibody, mouse monoclonal anti-ERK antibody (clone MK1),
rabbit polyclonal (clone C17) anti-JNK1 antibody were obtained from Santa Cruz
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Biotechnology, Santa Cruz, CA. Rabbit polyclonal anti-phospho-p38 MAPK antibody,
rabbit monoclonal (clone D13.14.4E) anti-phospho-ERK antibody, and rabbit polyclonal
anti-phospho-SAPK/JNK antibody were purchased from Cell Signalling Technology,
Boston, MA, USA. For immunohistochemistry, 12-lipoxygenase (murine leukocyte)
polyclonal antiserum was purchased from Cayman Chemical, Ann Arbor, MI, USA. Rabbit
polyclonal antibodies against p38 MAPK (clone H147), SAPK/JNK (clone FL), phospho-
ERK, and phospho-SAPK/JNK were obtained from Santa Cruz Biotechnology. Rabbit
polyclonal anti-ERK antibody was purchased from Abcam, Cambridge, MA, USA, and
rabbit monoclonal (clone D3F9) anti-phospho-p38 MAPK antibody from Cell Signaling
Technology, Boston, MA, USA. Secondary Alexa Fluor 594 goat anti-rabbit antibody,
Prolong Gold Antifade Reagent, and Image-iI FX Signal Enhancer were purchased from
Invitrogen, Eugene, OR. VECTASHIELD Mounting Medium was obtained from Vector
Laboratories, Burlingame, CA, USA.

B. Animals
The experiments were performed in accordance with regulations specified by the National
Institutes of Health “Principles of Laboratory Animal Care, 1985 Revised Version” and
Pennington Biomedical Research Center Protocol for Animal Studies. Mature C57Bl6/J
mice were purchased from Jackson Laboratories. All the mice were fed standard mouse
chow (PMI Nutrition International, Brentwood, MO, USA) and had ad libitum access to
water.

In experiment 1, the mice were randomly divided into two groups. In one group, diabetes
was induced by streptozotocin (STZ) as we described previously [42]. Blood samples for
glucose measurements were taken from the tail vein three days after STZ injection and the
day before the animals were killed. The mice with blood glucose ≥13.8 mM were
considered diabetic. Then control and diabetic mice were maintained with or without
treatment with the aldose reductase inhibitor fidarestat (SNK-860, Sanwa Kagaku
Kenkyusho, Nagoya, Japan), at 16 mgkg−1d−1 for 12 weeks.

The “leukocyte-type” 12/15-lipoxygenase-null (LO−/−) mice were originally generated by
Dr.Colin Funk, and the procedure was described in detail [43]. In Dr. Jerry Nadler’s
laboratory, LO−/− mice have been backcrossed to the B6 background for at least six
generations before inbreeding for homozygosity in the experimental mice. Microsatellite
testing has confirmed >96% homology between the LO−/− and the C57BL/6J mice [44]. In
experiment 2, a colony of LO−/− mice was established from several breeding pairs provided
by Dr. Jerry Nadler’s laboratory. Part of wild-type and LO−/− mice was used for induction
of STZ diabetes [42]. Then non-diabetic and STZ-diabetic wild-type and LO−/− mice were
maintained for 12 weeks.

C. Anesthesia, euthanasia and tissue sampling
The animals were sedated by CO2, and immediately sacrificed by cervical dislocation.
Sciatic nerves and spinal cords were rapidly dissected and frozen in liquid nitrogen for
further assessment of glucose, sorbitol, fructose, LO expression, and 12(S)HETE
concentrations in experiment 1, and total and phosphorylated p38 MAPK, ERK, and SAPK/
JNK expression in experiment 2. Dorsal root ganglia were dissected and fixed in normal
buffered 4% formalin, for subsequent evaluation of LO expression (experiment 1), and total
and phosphorylated p38 MAPK, ERK, and SAPK/JNK expression in experiment 2.

D. Specific Methods
D.2.1. Glucose and sorbitol pathway intermediates in sciatic nerve and spinal
cord—Sciatic nerve and spinal cord glucose, sorbitol, and fructose concentrations were
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assessed by enzymatic spectrofluorometric methods with hexokinase/glucose 6-phosphate
dehydrogenase, sorbitol dehydrogenase, and fructose dehydrogenase as we described in
detail [45]. Measurements were taken at LS 55 Luminescence Spectrometer (Perkin Elmer,
MA).

D.2.2. Western blot analysis of LO and total and phosphorylated p38 MAPK,
ERK, and SAPK/JNK in sciatic nerve and spinal cord—To assess LO and total and
phosphorylated p38 MAPK, ERK, and SAPK/JNK expression by Western blot analysis,
sciatic nerve and spinal cord materials (~ 3–10 mg) were placed on ice in 100 μl of RIPA
buffer containing 50 mmol/l Tris-HCl, pH 7.2; 150 mmol/l NaCl; 0.1% sodium dodecyl
sulfate; 1% NP-40; 5 mmol/l EDTA; 1 mmol/l EGTA; 1% sodium deoxycholate and the
protease/phosphatase inhibitors leupeptin (10 μg/ml), pepstatin (1 μg/ml), aprotinin (20 μg/
ml), benzamidine (10 mM), phenylmethylsulfonyl fluoride (1 mM), sodium orthovanadate
(1 mmol/l), and homogenized on ice. The homogenates were sonicated (4 × 10 s) and
centrifuged at 14,000 g for 20 min. All the afore-mentioned steps were performed at 4° C.
The lysates (20 and 40 μg protein for sciatic nerve and spinal cord, respectively) were mixed
with equal volumes of 2x sample-loading buffer containing 62.5 mmol/l Tris-HCl, pH 6.8;
2% sodium dodecyl sulfate; 5% β-mercaptoethanol; 10% glycerol and 0.025% bromophenol
blue, and fractionated in 10 % (total and phosphorylated MAPKs) or 7.5% (LO) SDS-PAGE
in an electrophoresis cell (Mini-Protean III; Bio-Rad Laboratories, Richmond, CA).
Electrophoresis was conducted at 15 mA constant current for stacking, and at 25 mA for
protein separation. Gel contents were electrotransferred (80 V, 2 hr) to nitrocellulose
membranes using Mini Trans-Blot cell (Bio-Rad Laboratories, Richmond, CA) and Western
transfer buffer (10X Tris/Glycine buffer, Bio-Rad Laboratories, Richmond, CA) diluted with
20% (v/v) methanol. Free binding sites were blocked in 5% (w/v) BSA in 20 mmol/l Tris-
HCl buffer, pH 7.5, containing 150 mmol/l NaCl and 0.05% Tween 20, for 1 h. LO and p38
MAPK, ERK, and SAPK/JNK antibodies were applied at 4° C overnight, after which the
horseradish peroxidase-conjugated secondary anti-rabbit antibody (for phosphorylated p38
MAPK, ERK, and SAPK/JNK as well as total p38 MAPK and SAPK/JNK analysis) or anti-
mouse antibody (for total ERK analysis) were applied at room temperature for 1 h. After
extensive washing, protein bands detected by the antibodies were visualized with the
Amersham ECL™ Western Blotting Detection Reagent (Little Chalfont, Buckinghamshire,
UK). Membranes were then stripped in the 25 mmol/l glycine-HCl, pH 2.5 buffer containing
2% SDS, and reprobed with β-actin antibody to confirm equal protein loading.

D.2.3. 12(S)HETE measurements—For assessment of 12(S)HETE, sciatic nerve and
spinal cord samples were homogenized on ice in 15 mM Tris-HCI buffer (1:100 w/v)
containing 140 mM NaCl, pH 7.6, and centrifuged. 12(S)HETE was measured in
supernatants with the 12(S)-hydroxyeicosatetraenoic acid [12(S)HETE] Enzyme Immuno
Assay kit (Assay Designs, Ann Arbor, MI).

D.2.4. Fluorescence immunohistochemistry in dorsal root ganglia—LO and total
and phosphorylated p38, ERK, and SAPK/JNK immunoreactivities in DRG neurons were
assessed by immunofluorescent histochemistry. In brief, sections were deparaffinized in
xylene, hydrated in decreasing concentrations of ethanol, and washed in water. All sections
were processed by a single investigator and evaluated blindly. The following dilutions were
used for primary antibodies: 12-LO antiserum, 1:1000; antibodies to total p38 MAPK, ERK,
and SAPK/JNK, 1:50; and antibodies for phosphorylated p38 MAPK, ERK, and SAPK/
JNK, 1:200. The secondary Alexa Fluor 594 goat anti-rabbit antibody was used in a working
dilution 1:400. Sections were mounted in Prolong Gold Antifade Reagent. Low power
observations of DRG sections stained for LO and total and phosphorylated p38 MAPK,
ERK, and SAPK/JNK were made using a Zeiss Axioplan 2 imaging microscope. Color
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images were captured with a Photometric CoolSNAPTM HQ CCD camera at 1392 × 1040
resolution. Low power images were generated with a 40X acroplan objective using the RS
ImageTM 1.9.2 software. LO and MAPK fluorescence intensity of individual DRG neurons
was quantified using the ImageJ 1.43q software (National Institutes of Health, Bethesda,
MD), and normalized per neuronal area. 12–20 neurons per mouse were counted, and
fluorescence intensity was expressed as Mean ± SEM for each experimental group.

E. Statistical analysis
The results are expressed as Mean ± SEM. Data were subjected to equality of variance F
test, and then to log transformation, if necessary, before one-way analysis of variance.
Where overall significance (p<0.05) was attained, individual between group comparisons for
multiple groups were made using the Student-Newman-Keuls multiple range test. When
between-group variance differences could not be normalized by log transformation (datasets
for body weights and plasma glucose), the data were analyzed by the nonparametric
Kruskal-Wallis one-way analysis of variance, followed by the Bonferroni/Dunn test for
multiple comparisons. Significance was defined at p ≤ 0.05.

3. RESULTS
3.1. Body weights and blood glucose concentrations

In experiment 1, weight gain was reduced by 14% and 18% in untreated and fidarestat-
treated diabetic mice compared with controls (Table 1). Fidarestat treatment slightly (6.1%),
but significantly, increased weight gain in non-diabetic mice (p < 0.01 vs untreated
controls). On the contrary, weight gain in diabetic mice was slightly (4.7%), but
significantly, reduced by fidarestat treatment (p < 0.05 vs untreated diabetic group). Final
blood glucose concentrations were elevated by 239% and 231% in untreated and fidarestat-
treated diabetic mice compared with controls. Fidarestat treatment did not affect blood
glucose concentrations in either non-diabetic or diabetic mice. In experiment 2, weight gain
was reduced by 28% and 38% in diabetic wild-type and diabetic LO−/− mice compared
with the corresponding control groups. Interestingly, LO gene deficiency reduced weight
gain in diabetic mice, without affecting this variable in controls. Blood glucose
concentrations were similarly elevated in diabetic wild-type and diabetic LO−/− mice
compared with the corresponding control groups.

3.2. Glucose and sorbitol pathway intermediates
In experiment 1, sciatic nerve glucose, sorbitol, and fructose concentrations were increased
by 290%, 344%, and 1059% in diabetic mice, compared with controls (Table 2). Fidarestat
treatment did not affect sciatic nerve glucose concentrations in either control or diabetic
mice. It normalized both sorbitol and fructose concentrations in diabetic mice, indicative of
a complete inhibition of excessive sorbitol pathway activity. In a similar fashion, spinal cord
glucose, sorbitol, and fructose concentrations were increased by 490%, 77%, and 102% in
diabetic mice compared with controls. Fidarestat treatment did not affect spinal cord glucose
concentrations in either control or diabetic mice. Diabetes-induced spinal cord sorbitol and
fructose accumulation was completely (sorbitol) or essentially (by 83%, fructose) prevented
by fidarestat.

3.3. LO expression and 12(S)HETE concentrations
Sciatic nerve and spinal cord LO expression was increased by 20% and 21%, respectively,
in diabetic mice compared with controls (Fig. 1, A–D). Fidarestat treatment did not affect
sciatic nerve and spinal cord LO expression in either control or diabetic mice. Sciatic nerve
and spinal cord 12(S)HETE concentrations, a measure of LO activity, were increased by
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95% and 62% in diabetic mice compared with controls (Fig. 1, E and F). Fidarestat
treatment prevented diabetes-associated sciatic nerve 12(S)HETE accumulation. It reduced
spinal cord 12(S)HETE accumulation to the levels that were not significantly different from
those in either control (p = 0.114) or diabetic (p = 0.074) mice. LO fluorescence was
similarly elevated in DRG neurons in untreated and fidarestat-treated diabetic mice
compared with controls (Fig. 1, G and H). Fidarestat did not affect LO fluorescence in DRG
neurons of control mice.

3.4. MAPK expression
Diabetic wild-type mice displayed 173%, 49%, and 44% increase in sciatic nerve p38
MAPK, ERK, and SAPK/JNK phosphorylation, compared with the corresponding control
group (Fig. 2). LO gene deficiency did not affect the phosphorylation state of any of three
MAPKs in non-diabetic mice. It significantly reduced p38 and ERK phosphorylation (p <
0.05 vs diabetic wild-type mice for both comparisons), but not SAPK/JNK phosphorylation,
in diabetic mice. Spinal cord p38 MAPK, ERK and SAPK/JNK phosphorylation was
elevated in both diabetic wild-type and diabetic LO−/− mice, compared with the
corresponding control groups (Fig. 3). LO gene deficiency did not affect the
phosphorylation state of any of three MAPKs in either non-diabetic or diabetic mice.
Diabetic wild-type mice displayed 28%, 28%, and 35% increase in p38 MAPK, ERK, and
SAPK/JNK phosphorylation in DRG neurons compared with the corresponding control
group (Fig. 4). LO gene deficiency reduced phosphorylation of all three MAPKs in diabetic
mice, and did not affect the phosphorylation state of p38 MAPK, ERK, or JNK in non-
diabetic mice.

4. DISCUSSION
The findings described herein identify the relationships among three major mechanisms
implicated in the pathogenesis of DPN. They provide the first evidence of a key role of
increased AR activity in diabetes-associated LO activation in peripheral nerve and spinal
cord. They also point to LO contribution to p38 MAPK and ERK activation in the peripheral
nerve and to p38 MAPK, ERK, and SAPK/JNK activation in DRG. Note, that neither
diabetes-induced SAPK/JNK activation in the peripheral nerve, nor the phosphorylation
state of any of the three MAPKs in the spinal cord depended on LO presence and activity.

The observations of the present study are consistent with the previous reports on the
presence of increased sorbitol pathway activity in peripheral nerve and spinal cord of
diabetic rats [8,12,14,26,46] and mice [9,19,27,41], and on the important role of AR in the
pathogenesis of DPN in both experimental animal models [8,9,12,26,27] and human subjects
with diabetes mellitus [47–49]. The findings in DRG neurons are contradictory. One group
reported that AR immunoreactivity is present in satellite, but not neuronal, cells of DRG
[50]. However, these observations are in disagreement with several other reports suggesting
that AR participates in diabetes-associated morphological abnormalities in DRG neurons
[51–53]. Furthermore, AR activation has been linked to multiple biochemical changes in
tissue-sites for DPN including, but not limited to, mitochondrial and cytosolic NAD+/NADH
redox imbalances and energy deficiency [8], oxidative-nitrosative stress [8,27,33–35], nerve
growth factor deficit [54], activation or inhibition of PKC [12,51], and PARP [28,33],
COX-2 [55], and p38 MAPK [14] activation. The relationship between AR and several of
these biochemical alterations, and, in particular, oxidative-nitrosative stress, PKC inhibition
as well as PARP and p38 MAPK activation has been described for DRG neurons
[14,28,34,51].

Numerous findings from our group [8,33] and others [34,35] suggest that increased sorbitol
pathway activity contributes to rather than results from [56] oxidative-nitrosative stress in
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both neural and vascular tissues in diabetes. The mechanisms underlying the relationship
between the two phenomena are not well understood, although several reports suggest that
increased AR activity is involved in depletion of the major non-enzymatic antioxidants,
GSH, ascorbate, and taurine [8,35,57], as well as in PARP activation [33] implicated in
oxidative damage [58,59].

We previously reported that diabetes-induced GSH depletion in peripheral nerve may be
mediated through p38 MAPK activation [60], an AR-dependent event [14]. Two groups
implicated increased activity of the second enzyme of the sorbitol pathway, sorbitol
dehydrogenase (SDH), in activation of the superoxide-generating enzyme, NAD(P)H
oxidase [61,62]. Note, however, that these findings are not consistent with other reports
describing 1) an important role of AR rather than SDH in DPN [46, 63], and 2)
exacerbation, rather than amelioration, of oxidative stress with SDH inhibition in tissues of
diabetic rats [64, 65]. The present study suggests that increased AR activity contributes to
diabetes-associated oxidative-nitrosative stress in peripheral nerve and spinal cord through
LO activation, likely mediated through accumulation of cytosolic [Ca++]i. This leads to
increased formation of 12(S)HETE and a number of its lipid-like derivatives, which undergo
spontaneous peroxidation [38,39] and cause oxidative-nitrosative injury in both tissues
[24,41]. Note, that LO protein overexpression in peripheral nerve, spinal cord, and DRG
neurons of diabetic mice appeared independent of AR, thus suggesting that the latter is not
involved in transcriptional regulation of LO through the interleukin-4/STAT-6 pathway
[38,39]. This is an unexpected observation, considering that the interleukin-4/STAT-6
pathway requires nuclear factor-κB (NF-κB) and activator protein-1(AP-1) for interleukin-4
promoter activity. AR inhibition has been reported to blunt high glucose-induced NF-κB
activation in cultured Schwann cells [66], and both NF-κB and AP-1 activation in other cell
types [67].

Increased AR activity was previously implicated in diabetes-induced peripheral nerve
SAPK/JNK activation in diabetic mice [27]. This is an important observation considering
that SAPK/JNK activation has also been identified in sural nerve of human subjects with
diabetes mellitus [40]. In the present study, increased phosphorylation of p38 MAPK, ERK,
and SAPK/JNK was detected in peripheral nerve, spinal cord, and DRG of diabetic mice,
consistent with the data for DRG reported for diabetic rats by others [14, 40, 68]. The
mechanisms underlying MAPK activation in tissue-sites for DPN remain unknown, although
oxidative stress was implicated in p38 MAPK and ERK, but not SAPK/JNK, activation in
DRG neurons [14, 40]. The present findings suggest that LO may be an important mediator
in diabetes-induced p38 MAPK and ERK activation in the peripheral nerve, and p38 MAPK,
ERK, and SAPK/JNK activation in DRG neurons. In contrast, peripheral nerve SAPK/JNK
activation and activation of all three MAPKs in the spinal cord appeared independent of LO
activity. The latter is consistent with our previous observations of relatively modest effect of
LO inhibition or LO gene deficiency on diabetic sensory neuropathy [24, 25], in which
impaired MAPK signaling plays an important role [15].

In conclusion, the findings of the present study identify the nature and tissue specificity of
interactions among three major mechanisms in the pathogenesis of DPN. They implicate
increased AR activity in LO activation and 12(S)HETE accumulation in peripheral nerve
and spinal cord. They also suggests that combination treatments, and, in particular, with LO
inhibitors plus other agents acting on spinal cord MAPKs, rather than LO inhibitor
monotherapies, could be a preferable choice for management of this devastating
complication of diabetes mellitus.
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Fig. 1.
Aldose reductase inhibition does not affect diabetes-induced sciatic nerve or spinal cord
12/15-lipoxygenase overexpression (A–D); essentially prevents diabetes-induced sciatic
nerve 12(S)HETE accumulation and partially prevents spinal cord 12(S)HETE accumulation
(E,F); and does not affect DRG 12/15-lipoxygenase overexpression (G,H). C – control
group; D – diabetic group. LO – 12/15-lipoxygenase. Mean ± SEM, n = 7–8 per group (A–
D, G,H) and n = 7–9 per group (E,F). *p < 0.05, **p < 0.01 vs controls. #p < 0.05 vs
untreated diabetic group.
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Fig. 2.
12/15-lipoxygenase gene deficiency partially prevents diabetes-associated sciatic nerve p38
MAPK phosphorylation (A,B), essentially prevents ERK phosphorylation (D,E), and does
not affect SAPK/JNK phosphorylation. (G,H). Sciatic nerve total MAPK expression was
similar among the four groups (C,F,I). C – control group; D – diabetic group. LO – 12/15-
lipoxygenase. Mean ± SEM, n = 8–14 per group. **p < 0.01 vs controls; #p < 0.05 vs
diabetic wild-type mice.
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Fig. 3.
12/15-lipoxygenase gene deficiency does not affect diabetes-induced increase in spinal cord
p38 MAPK, ERK, or SAPK/JNK phosphorylation (A,B,D,E,G,H). Spinal cord total MAPK
expression was similar in the four groups (A,C,D,F,G,I). C – control group; D – diabetic
group. LO – 12/15-lipoxygenase. Mean ± SEM, n = 8 per group. *p < 0.05, **p < 0.01 vs
controls.

Stavniichuk et al. Page 14

Biochem Pharmacol. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
12/15-lipoxygenase gene deficiency completely prevents diabetes-induced increase in
phosphorylated p38 MAPK, ERK, and SAPK/JNK immunoreactivities in DRG
(A,B,E,F,I,J). DRG total MAPK immunoreactivities were similar among the four groups
(C,D,G,H,K,L). C – control group; D – diabetic group. LO – 12/15-lipoxygenase. Mean ±
SEM, n = 5–8 per group. *p < 0.05, **p < 0.01 vs controls. #,## p < 0.05 and < 0.01 vs
diabetic wild-type mice.
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Table 1

Body weights (g) and blood glucose concentrations (mM) in control and diabetic mice maintained with and
without fidarestat treatment.

Variables Groups Body weight, g Blood glucose, mM

Experiment 1

Control 30.6 ± 0.4 7.7 ± 0.5

Control + Fidarestat 32.5 ± 0.4** 8.8 ± 0.2

Diabetic 26.4 ± 0.4** 26.2 ± 1.7**

Diabetic + Fidarestat 25.0 ± 0.5**,# 25.5 ± 1.4**

Experiment 2

Control LO+/+ 40.2 ± 0.8 9.6 ± 0.2

Control LO−/− 39.4 ± 0.8 9.9 ± 0.3

Diabetic LO+/+ 29.1 ± 0.3** 32.1 ± 0.4**

Diabetic LO−/− 24.4 ± 0.4**,## 31.9 ± 0.4**

Data expressed as Mean±SEM. n = 10–18 per group in Experiment 1, and n = 33–40 per group in Experiment 2.

**
p < 0.01 vs control mice,

#, ##
p < 0.05 and p < 0.01 vs diabetic mice.
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Table 2

Sciatic nerve and spinal cord glucose, sorbitol, and fructose concentration (nmol mg−1 protein) in control and
diabetic mice maintained with and without fidarestat treatment.

Groups Variables Control Control+Fidarestat Diabetic Diabetic+Fidarestat

Sciatic nerve

Glucose 16.30 ± 1.47 18.75 ± 1.31 63.53 ± 9.04** 64.52 ± 6.84**

Sorbitol 0.27 ± 0.03 0.23 ± 0.02 1.20 ± 0.13** 0.22 ± 0.02**,##

Fructose 1.27 ± 0.50 0.23 ± 0.02 14.72 ± 0.72** 1.00 ± 0.08##

Spinal cord

Glucose 1.38 ± 0.27 1.07 ± 0.39 8.14 ± 1.76** 7.15 ± 1.52**

Sorbitol 0.84 ± 0.06 0.79 ± 0.08 1.49 ± 0.12** 0.77 ± 0.08##

Fructose 0.83 ± 0.22 0.85 ± 0.23 1.68 ± 0.25* 0.99 ± 0.20#

Data expressed as Mean ± SEM. n = 7–12 per group.

*,**
p < 0.05 and p < 0.01 vs control mice,

#,##
p < 0.05 and p < 0.01 vs diabetic mice.
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