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Abstract
Understanding temporal change in human behavior and psychological processes is a central issue in
the behavioral sciences. With technological advances, intensive longitudinal data (ILD) are
increasingly generated by studies of human behavior that repeatedly administer assessments over
time. ILD offer unique opportunities to describe temporal behavioral changes in detail and identify
related environmental and psychosocial antecedents and consequences. Traditional analytical
approaches impose strong parametric assumptions about the nature of change in the relationship
between time-varying covariates and outcomes of interest. This paper introduces time-varying effect
models (TVEM) that explicitly model changes in the association between ILD covariates and ILD
outcomes over time in a flexible manner. In this article, we describes unique research questions that
the TVEM addresses, outline the model-estimation procedure, share a SAS macro for implementing
the model, demonstrate model utility with a simulated example, and illustrate model applications in
ILD collected as part of a smoking-cessation study to explore the relationship between smoking urges
and self-efficacy during the course of the pre- and post- cessation period.
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Introduction
Understanding temporal change is a central concern in the behavioral sciences. For example,
developmental psychologists are concerned with examining systematic psychological changes
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(e.g., cognitive, social, personality, and emotional development) that occur during different
stages and transitions (e.g., childhood, adulthood) in human beings. Understanding these
critical behavior changes includes (1) describing behavior change, (2) predicting behavior
change, and (3) identifying cause and effect explanations of behavior change. Accurately
describing behavior change is the foundation for both predicting change and identifying causal
mechanisms of change (Wohlwill, 1970, 1973). A careful description of behavior change
should cover, at minimum, how a specific behavior evolves over time (i.e., the shape of change)
and how it is systematically related to environmental, biological, and psychological factors.

To accurately characterize behavior change, three elements need to be ideally integrated: (a)
a well-articulated theoretical model of change, (b) a longitudinal study with suitable temporal
design that affords a clear and detailed view of the process, and (c) a statistical model that
operationalizes the theoretical model (Collins, 2006). Longitudinal panel data and widely used
statistical methods (e.g., hierarchical linear modeling; Raudenbush & Bryk, 2002) have been
useful for answering many important research questions, such as estimating the effect of a
treatment on a behavioral outcome and depicting the shape of a growth trend with familiar
forms. Understanding behavior change often goes beyond estimating treatment effects or fitting
a simple (e.g., linear, quadratic, or cubic) growth pattern; rather it requires “solid empirical
foundations built upon accurate depictions of change” (Adolph, Robinson, Young, & Gill-
Alvarez, 2008, p. 541). Panel data with a small number of waves coupled with commonly used
statistical methods are currently incapable of describing detailed features of behavior change
(e.g., irregular ups and downs and time-varying effects). Instead, more intensive longitudinal
data and advanced statistical models are needed for describing detailed behavior patterns and
changing relationships between a behavior and relevant factors.

The goal of this article is three-fold: (1) to introduce a new statistical model, emphasizing new
types of research questions that can be addressed, (2) to demonstrate applications of the model
to an intensive longitudinal study of positive affect and self-efficacy among participants in a
smoking cessations trial, and (3) to make this model readily available for applications by
presenting SAS code and SAS macro. Specifically, the current paper demonstrates that time-
varying effect modeling (TVEM; Hastie & Tibshirani, 1993; Hoover, Rice, Wu, & Young,
1998) is suited for studying the temporal change of behavioral or psychological outcomes and
their relationship to relevant covariates, using intensively sampled longitudinal data (ILD).
More importantly, this approach allows for assessing both temporal changes and their
relationship to covariates directly from observations, without posing any assumptions
regarding the shape (i.e., linear, quadratic, or cubic) of the trajectories.

This paper is organized as follows. In the first section, we provide an overview of the features
of behavior change, and argue why more flexible statistical models and more intensive
observation of behavior are needed in order to more accurately describe behavior. In the second
section, we detail the distinct features of ILD. In the third section, we provide a conceptual and
technical overview of TVEM. In the fourth section, we describe technical details for fitting
TVEM, implementation of this approach using SAS, and comparison of this approach with
other popular methods. In the fifth section, we apply TVEM to simulated and real examples.
A brief description of the syntax of a SAS macro for fitting TVEM is provided in the appendix.

A Review of Behavior Change
Change Score or Course of Change

The way that researchers have conceptualized change has evolved significantly. It was once
popular in many fields to describe change as the difference in a behavior at two time points
(e.g., before and after treatment; or ages 4 and 8). Measuring change with two observations is
sufficient for some purposes (e.g., estimating treatment effects) and remains useful. However,
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it ignores the course of change between the two points in time. That is, different courses of
change, which may represent different mechanisms of change, often give rise to the same
increment across only two waves of measurement. Hence, the course of change provides more
detailed information than change scores regarding the mechanism of change. Specifically, an
accurate portrayal of the course of change provides information about (1) the overall shape of
change (e.g., increasing, decreasing, U-shape, or sigmoidal?), and (2) when the greatest amount
of change takes place, or whether the rate of change is constant over the study period. Such
information may better shed light on what causes a specific change (i.e., mechanism of change),
offer a better prediction of behavior change, and/or provide information leading to new theories
of development (Gottlieb, 1976; Siegler, 2006; Wohlwill, 1973).

Change in Associations
Many factors may contribute to the temporal change of a specific behavioral or psychological
outcome. For example, stress may be affected by multiple environmental (e.g., retirement,
exam-taking) and social factors (e.g., marital satisfaction). Similarly, the urge to smoke can be
triggered by environmental cues (e.g., presence of other smokers) as well as psychological
factors (e.g., negative affect). In the current behavioral literature, it is a convention to assume
the association between an outcome of interest and covariate (environmental, social, or
psychological) is constant over time. This assumption implies that the outcome is associated
with covariates similarly (in both magnitude and direction) at any two points in time. Although
this assumption provides a parsimonious model, it may not capture the richness of the
underlying process of change. On the contrary, “no man ever steps in the same river twice, for
it's not the same river and he is not the same man” (Heraclitus). Naturally, the interaction
between a psychological outcome (the “man”) and relevant covariates (the “river”) might also
evolve over time. That is, timing may play a critical role in the magnitude and direction of the
association between particular explanatory variables and the behavior of interest. For example,
negative affect may play an important role in triggering smoking urges in early stages of
smoking cessation, but a much weaker role following the acquisition of coping strategies. To
contrast, the relation between time spent with family and mood might be positive during
childhood, but negative during adolescence (an example offered by a reviewer).

In recent years, a few articles have mentioned the phenomenon of time-varying associations
(e.g., Collins, 2006; Walls & Schafer 2006; Fok & Ramsay, 2006). In a smoking cessation
study, Li, Root, & Shiffman (2006) found that negative affect towards urge to smoke changed
during various stages of the smoking cessation process, illustrating that behavior change is a
complex, dynamic phenomenon. For a comprehensive understanding of complex behavior
changes, it is essential to consider the temporal changes in the associations between the
behavior and other covariates, in addition to change in the behavior itself.

Shape of Change
Change has long been an active topic in behavior science, as reflected in many books such as
Harris (1963), Nesselroade & Baltes (1979), Gottman (1995), Collins & Sayer (2001), Singer
& Willett (2003), Nagin (2005), as well as in an overwhelming number of journal articles. It
is a convention in behavioral research to assume a shape of change as a pre-specified form:
linear, quadratic, or exponential. Although for some situations such a specification can be
convincingly justified by a well-established theory, for most other situations, the actual course
of change may be quite complicated (Adolph et al., 2008) and may not be adequately captured
by any familiar or convenient parametric form. Often, a pre-specified or simple form for change
is the result of a lack of informative theoretical models, rich observations, or suitable statistical
methods. Although often necessary, reliance on pre-specified forms may cause mis-
specification of the functional form of change. This, in turn, could lead to inaccurate or even
misleading conclusions (e.g., imagine what conclusion would be reached if a linear curve were
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fit to human growth data, while the true growth curve is largely stable but with periods, like
infancy and puberty, of rapid change). Understanding the process of change is, in general, an
iterative learning process: one relies on prior knowledge (or theory) regarding the shape of the
underlying trajectory to inform a statistical function, while reliable prior knowledge should be
drawn from suitable analysis of observations from pilot studies. It is a process of trial-and-
error and “is difficult and fraught with uncertainty” (Collins & Graham, 2002, p. S94).

New Strategy
One strategy to speed up this iterative learning process and decrease uncertainty in the
exploratory trial-and-error process is to learn the shapes (of trajectory and of the change of
associations) directly from observations, instead of relying on prior knowledge of the form for
the shape, which is generally not available or reliable.

Figure 1 provides a hypothetical example illustrating the existence of temporal change in urge
to smoke, and in the effect of negative affect on urge to smoke. Instead of correlating smoking
urges and negative affect across the entire time interval, we broke down time into three periods
(i.e., [0,0.33), [0.33,0.67), and [0.67,10]) in order to explore whether direction and strength of
the relationship changes with time. From the three scatter plots at the bottom of Figure 1, it is
clear that the relationship between negative affect and smoking urge in the first time interval
(between 0 and .33) is positive, changing to negative in the middle, and zero during the last
time interval. Breaking the time period into 3 intervals was only an illustration. By breaking
the study period into much finer intervals, one might reveal how the relationship between
negative affect and smoking urge changes gradually as time progresses.

This hypothetical example also hints at what is needed to implement this strategy of learning
the shapes of change directly from data. First, we need dense observations so that the data
contain fine-grained information regarding the change of interest. Fortunately, as discussed in
the next section, ILD are available to serve this purpose. Second, statistical models and
estimation techniques are also essential. We will show in the following sections that TVEM
and relevant nonparametric techniques are suitable for this objective.

Intensive Longitudinal Data
Recent technological innovations such as web-based assessments, hand-held computers, GPS
systems, and automatic portable devices (e.g., pedometers, heart rate monitors, time-recording
pill and cigarette dispensers) allow for frequent and comprehensive sampling of human
behaviors and accompanying environmental, psychological, and physiological states. In
addition, many longitudinal studies of developmental trends across the life span have lasted
decades, resulting in more than ten repeated measurements for participants. The resulting data
are referred to as ILD (Walls & Schafer, 2006), to distinguish them from traditional longitudinal
data with, typically, only a few repeated observations. Although there is no agreed-upon
threshold for what constitutes ILD, ILD are generally collected at more than “a handful of time
points,” (Walls & Schafer, 2006, p. xiii) yielding tens or even hundreds of observations for
each study participant.

ILD share a similar form with traditional longitudinal data, as denoted by

where n represents the total number of subjects, and mi the total number of measurements for
subject i. In addition, tij is the measurement time of the j -th observation for the i -th subject;
yij is the outcome and (xij1, …, xijp) are the p covariates of subject i measured at time tij.
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Like traditional longitudinal data, ILD have a nesting structure, with repeated observations
within an individual likely to be correlated. In addition, such data are often unbalanced, with
different assessment times within and across individuals, leading to a preponderance of missing
values and unevenly spaced observations over time.

A distinct feature of ILD is that the number of measurements for each participant is substantially
larger, implying much denser or longer observation of phenomenons, compared to a traditional
longitudinal study. This dense observation is primarily motivated by new types of research
questions, focusing on fine-grained temporal changes in human behavior or psychosocial
processes, as well as related co-variation and causation (Collins, 2006). Due to the dense and
comprehensive observations ILD is expected to contain detailed information regarding
temporal changes of behaviors. Therefore, the development of appropriate statistical methods
to extract the information and capture the temporal changes of interest from ILD is needed.

Approaches to Answering Questions of Temporal Change
Multilevel or hierarchical modeling has been widely applied (Raudenbush & Bryk, 2002,
Singer & Willet, 2003), and has been successfully extended to handle ILD (Walls, Jung &
Schwartz, 2006; Schwartz & Stone, 1998). To capture the temporal changes in the outcome
and the association between the outcome and time-varying covariates, one general form of the
multilevel model (MLM) is conceptualized in the following manner:

(1)

when there is only one time-varying covariate xij. In this model, we call β00, β01, β10, β11 the
fixed effects, and r00i, r01i, r10i and r11i the random effects. When random effects are omitted,
this model reduces to the simple linear regression model for repeated assessments:

(2)

In the above MLM, the mean trajectory of the outcome is assumed to change linearly over
time, as is the association between the outcome and covariate. This MLM can be further
extended to consider more complex developmental forms (e.g., quadratic, cubic). However,
such a model quickly becomes complex, while not allowing much flexibility in terms of shape
(i.e., when the shape of change does not follow quadratic or cubic patterns or are unknown a
priori).

Time-Varying Effect Model
An extension of MLM is thus greatly needed to model the time-varying relationship between
the covariates and outcome with ILD. In this paper, we propose the use of a TVEM, which is
a special case of varying-coefficient model (Hastie & Tibshirani, 1993). For simplicity, we
start with the situation with a continuous outcome yij and a single time-varying covariate xij.
In this such situation, TVEM takes the following form:

(3)

The random errors εij1 in Equation 3 are assumed to be normally and independently distributed.
This equation implies that, at time tij, the mean of y (when x = 0) is β0(tij). In a similar fashion,

1Observations nested within a subject can be specified with certain dependence structures, following the typical specifications in
longitudinal analysis (Singer & Willett, 2003). However, the primary focus of this paper is restricted to illustrating the fixed-effect part
of TVEM. For this reason, a fairly simplistic model of dependence over time is assumed.
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the slope β1(tij) represents the strength and direction of the relationship between the covariate
and the outcome at a particular time point tij. It is important to notice that both the intercept
β0 and the slope β1 are time-specific and change their values at different points in time. That

is, at two different time points, for example, , the intercept  and the slope

 may be different from β0(tij) and β1(tij), respectively. Thus, not only xij but also its
regression coefficient for predicting yij depends on tij.

The intercept β0(·) and slope β1(·) are assumed to be continuous functions of time and are called
coefficient functions. These functions can be summarized numerically for each separate time
point, but it is more common to depict them graphically as a function of time. Figure 2 presents
an example of such hypothetical intercept and slope functions. The dotted line in Figure 2
summarizes an intercept function (i.e., an outcome trajectory for individuals with a zero level
on the time-varying covariate), while the solid line corresponds to the impact of a time-varying
covariate (X) on outcome (Y) over time. Specifically, at the beginning of the study (time = 0.0),
the mean of Y is about 0.4 (i.e., β0(0.0)=0.4), and the slope is about 0 (β1(0.0)=0; i.e., change
in X is not associated with change in Y). When time equals .25, the mean of Y is about 0.5 (i.e.,
β0(0.25)=0.5) and the slope is about 1 (β1(0.25)=1.0; i.e., a change of 1 unit in X would
correspond to an increase of 1 unit in Y). Suppose we have collected measurements of X and
Y generated by a model with intercept function and slope function as shown in Figure 2. Then,
for observations measured around time 0, we may expect a scatter plot similar (qualitatively)
to the third plot at the bottom of Figure 1, and for observations around time 0.25, we may
expect a scatter plot similar (qualitatively) to the first plot at the bottom of Figure 1. The gradual
and smooth change in both the intercept and the slope reveals that we can expect a gradual
transition in the outcome and the relationship between the outcome and the covariate from one
point to the next. Overall, there is a progressive increase in Y, and the association between X
and Y follows a periodic trend. In the real world, such a periodic trend in association may
suggest that certain biological process (e.g., cyclic hormone fluctuation) may be involved in
the temporal change of outcome and association. In addition, using Equation 3 to describe such
a phenomenon, one would end with a linear trajectory and a constant slope function (since
there is no obvious increasing or decreasing trend in β1(t) in Figure 2), and miss the richness
in the change phenomenon.

Thus, one of the goals of TVEM is to reveal the shape of the coefficient functions over time.
Conveniently, this model does not pose any parametric assumptions on these functions, since
their shapes are largely unknown in advance. Rather, TVEM assumes only that the relationship
changes over time in a smooth fashion. Specifically, the coefficient functions can take any
form, given that they are smooth (i.e., with no sudden jumps or break points). We call a function
smooth if its first-order derivative function is continuous. Visually, a smooth function should
change its value gradually over time. More details about how a TVEM can be fit will be
presented in the next section.

While TVEM closely resembles Equation 2, the difference between them is fundamental.
Equation 2 pre-specifies polynomial or other parametric forms to the coefficient functions, but
TVEM allows these functions to take nearly any form, and the form is revealed directly from
data. In other words, while Equation 2 tries to force the data into a prespecified shape, TVEM
tries to find a shape that follows the change in the data. Consequently, Equation 2 is vulnerable
to model misspecification when there is a lack of reliable prior information to assure a correct
model specification, but TVEM is free of such model misspecification and is expected to
objectively reveal the shapes of these coefficient functions. This freedom comes with a price:
more data are needed to fit a TVEM than to fit a similar parametric model. This is due to the
need to estimate functions in TVEM, in contrast to a few unknown parameters in a parametric
model. Fortunately, ILD provide suitable resource to encourage applications of TVEM.

Tan et al. Page 6

Psychol Methods. Author manuscript; available in PMC 2013 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Finally, Equation 3 can be readily extended to include multiple covariates. Some of which can
be time-invariant, and others time-varying. In case of time-invariant covariates (e.g.,
treatment), it is possible to explore how their effect changes with time, instead of assuming a
constant overall effect. Furthermore, one can specify some of these coefficient functions to
follow certain parametric forms in situations where there is sufficient evidence for such
specification, while others are allowed to change freely. Random effects to capture between-
individual differences in the effects of time-varying covariates can also be added, as
demonstrated in the implementation part in the next section.

Estimation of the Time-Varying Effect Model
This section focuses on the estimation procedure of TVEM and contains some technical details.
Estimation of unknown functions (e.g., intercept β0(·) and slope β1(·) functions in Equation 3)
has been studied extensively in the statistical literature (e.g., Wu & Zhang, 2006; Fitzmaurice,
Davidian, Verbeke, & Molenberghs, 2007). Current popular methods can be broadly classified
into spline-based methods such as smoothing spline (Wahba, 1990), P-spline (Eilers & Marx,
1996; Ruppert & Carroll, 2000; Ruppert, Wand, & Carroll, 2003), and regression splines
(Stone, Hansen, Kooperberg, & Truong, 1997), and kernel-based methods like LOESS
(Cleveland, 1979) and local polynomial kernels (Fan & Gijbels, 1996; Wu & Zhang, 2002).
While there are proponents and critics of each of these approaches, we selected the P-spline
method as the estimation procedure for TVEM due to its flexibility and computational
efficiency. At the end of this section, we briefly describe alternative methods including
smoothing spline, regression spline, and kernel-based methods.

P-Spline-Based Methods
Parameter-function estimation based on P-spline contains two major steps.

Step 1: approximation using truncated power basis. We noted that one of the assumptions
of TVEM is that parameter functions follow a smooth changing pattern. Mathematically, any
smooth function defined over an interval [a, b], e.g., f(t) t,∈[a, b], can be approximated with a
polynomial function. However, very high-order polynomials may be needed to approximate
such a function satisfactorily; therefore, this is not recommended due to the so called, “Runge
Phenomenon” (i.e., oscillation at the boundaries of an interval that occurs when using high-
order polynomials for polynomial interpolation or approximation) (Dahlquist & Björk, 1974).
Instead, a simpler approach is to locally approximate the function over a small sub-interval of
[a, b] with lower-order polynomials, because a lower-order polynomial can provide a good
approximation to a function over a small interval (i.e., consider the idea of Taylor expansion)
even though it does not fit the function well over the whole range. On this basis, we could
partition the interval [a, b] into K + 1 smaller intervals, which are determined by K dividing
points, or knots, with {τ1, τ2, …, τK} with a = τ0 < τ1 < τ2 < ⋯ < τK < τK+1 = b. Then, within
each small interval [τr, τr+1), 0 ≤ r ≤ K, we consider approximating f(t) accurately with lower-
order polynomial functions.

One approach to implementing this idea is to use the following truncated power basis:

(4)

where
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and is called truncated power function of order q with knot τ. The first q + 1 functions in
Equation 4 are the q + 1 power functions of t of order 0,1,2, …, q, and the remaining K functions
are truncated q order power functions determined by the K knots τ1, …,, τK, respectively. The
specification of q is, in general, less crucial, and we set q = 2 hereafter. It can be shown that a
linear combination of these truncated power basis functions is a quadratic polynomial within
each interval [τr, τr+1) for r = 0,1, …, K, and, hence, is a piecewise quadratic function over
[a, b]. Such piecewise polynomials have continuous first-order derivatives. Approximating f
(t) t,∈[a, b] with a linear combination of the basis functions in Equation 4, say,

(5)

is essentially equivalent to approximating f(t) interval by interval with quadratic polynomials
(since q = 2). Piecewise polynomials are also called spline functions, which explains the word
spline in the term P-spline. In practice, the number K is specified by the researchers and its
selection will be discussed at the end of this section. Given K, the K knots are either equally
spaced over [a, b] such that

where a and b are the smallest and largest observation times, respectively; or they are equally
spaced over sample quantiles of all observation times:

where N = ∑imi is the total number of observations, t(k) denotes the k th observation time after
sorting all N observation times from small to large, and [rN / (K + 1)] denotes the integer part
of [rN / (K + 1)]. The latter method results in a nearly equal number of observations in each of
the K + 1 intervals.

Figure 3 presents a truncated power basis with q = 2 and knots .2, .4, .6, and .8 over the range
[0,1]. It includes the first three polynomials 1, t, t2, and the four truncated power functions with
nonzero values starting at knots .2,.4,.6 and .8, respectively.

The key to the effectiveness of this approach is that we can approximate any smooth function
f(·) over a specified interval by a spline as defined in Equation 5 as accurately as possible, given
large enough K. To demonstrate this, we consider approximating and assessing the accuracy
of the approximation for the following three functions over the interval [0,1]:

We define the accuracy of approximation as the maximum absolute difference between a
function f(t) and its approximation function f̃(t):

For a given K and for each of the three functions, we can find the optimal linear combination
of the basis functions. Here we define “optimal” as being closest to the original function in
term of the absolute difference. Table 1 lists the maximum absolute differences between these
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three functions and their corresponding optimal approximations for different numbers of knots
that are equally spaced. When K = 0, quadratic polynomials are used to approximate these three
functions over the whole interval [0,1]. As shown in Table 1, the overall trend is such that as
K increases, the distance between the original and optimal approximating function decreases,
indicating a progressive increase in approximation accuracy. Because the function 8t(1 − t) is
actually a quadratic function, it is expected that we can find its perfect approximation. For the
most complicated sinusoid function, sin2(2πt), we can still obtain a quite accurate
approximation, in that the maximum absolute difference d is less than 0.1, when K ≥ 6. It should
be noted that using quadratic function (K = 0) to fit this sinusoid function leads to significant
bias (i.e., d >1.0).

From the above example, it is reasonable to assume that the two unknown functions β0(·) and
β1(·) in Equation 3 can be well-approximated by certain linear combinations of basis functions
in Equation 4:

and

given an appropriate number of knots K. Thus, to estimate the unknown coefficient functions
β0(·) and β1(·), it suffices to estimate the unknown coefficients of the linear combinations, a0,
a1, …, a2+K and b0, b1, …, b2+K.

Replacing the unknown functions β0(·) and β1(·) in Equation 3 with the above linear
combinations, we obtain

(6)

This turns out to be a linear regression model with

 as
covariates, and a0, a1, …, a2+K and b0, b1, …, b2+K as coefficients, which can be easily
estimated with ordinary least squares (OLS). Denoting â0, â1, …, â2+K and b̂0, b̂1, …, b̂2+K as
estimates for a0, a1, …, a2+K and b0, b1, …, b2+K, the functions β0(·) and β1(·) can be estimated
by

(7)

(8)
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Step 2: smoothing using penalty. The estimates of coefficient functions based on OLS (i.e.,
Equations 7 and 8) might be quite rough and contain unnecessary fluctuations, especially when
K is large but the underlying coefficient functions are relatively simple. This is because the
resulting model (Equation 6) corresponding to large K is more complicated than needed for
fitting the underlying pattern in data, and hence exaggerates minor fluctuations (due to
randomness) in the data. This phenomenon is also called overfitting. To avoid overfitting, the
P-spline based method goes one step further and smooths the estimated functions, instead of
stopping at Equations 7 and 8. Because the second derivative of the function  is 0 when
t ≤ τ, and 1 when t > τ, the coefficients {a2+j, j = 1,2, … K} and {b2+j, j = 1,2, … K} of the
truncated power functions represent “amounts of jump” in the second order derivatives of the
estimated functions at knots τ1, …, τK, and are directly related to smoothness of the estimated
functions. Thus, one approach to obtain smoother estimates, suggested by Ruppert (2002) and
Wand (2003), is to shrink the coefficients, {a2+j, j = 1,2, …, K} and {b2+j, j = 1,2, …, K},
toward zero by minimizing

(9)

with respect to the coefficients {aj, bj, j = 0, 1, 2, …, K + 2}, where SSE stands for sum of
squared errors such that

This method reduces to OLS when λ1 = λ2 = 0, however, if λ1 or λ2 are very large, this approach
will shrink the estimated β0(·) or β1(·) towards a global quadratic polynomial by forcing
{a2+j, j = 1,2, … K} or {b2+j, j = 1,2, … K} to 0. Thus, λ1 and λ2 control the trade-off between
the goodness of fit and the smoothness of the estimated functions and are called smoothing

parameters or tuning parameters. The term  in Equation 9 can be
viewed as a penalty term, which prevents {a2+j, j = 1,2, … K} and {b2+j, j = 1,2, … K} from
being too large in absolute value. This explains the P in the P-spline method, which stands for
penalized.

Using suitable smoothing parameters is crucial to obtaining satisfactory estimates of coefficient
functions. In the literature, the generalized cross-validation (GCV; Wahba, 1990) score, can
be used to select optimal smoothing parameters. However, optimizing GCV score with respect
to multiple smoothing parameters effectively relies on carefully designed algorithms (Gu &
Wahba, 1991; Wood, 2008) which are available only in several specific R packages (e.g.,
Wood, 2011; Gu, 2004). Alternatively, Wand (2003) suggested a different approach by
exploring the connection between P-spline and mixed effect models. Instead of optimizing
Equation 9 with certain tuning parameters λ1 and λ2, this approach treats {a2+k, b2+k, k = 1, 2,
…, K} in Equation 6 as random variables with normal distributions:

and expands Equation 6 into a linear mixed effect model in which a0, a1, a2 and b0, b1, b2 are
fixed effects, and a2+1, …, a2+K and b2+1, …, b2+K are random effects, with variance parameters
η1 and η2, respectively. Intuitively, the variance parameters have similar effect as the tuning
parameters on shrinking the coefficients (i.e., a2+1, …, a2+K and b2+1, …, b2+K). For example,
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small variance parameters imply that the coefficients should not bound away from 0 too much.
These small variance parameters have the same effect as large tuning parameters (i.e., λ1, λ2).
On the contrary, large variance parameters imply that the coefficients can deviate from 0 more
freely, and have the same effect as small tuning parameters,. More formally, we notice that the
logarithm of the joint density of response yij and random effects of the resulting linear mixed
effect model is

(10)

The last three terms in Equation 10 equal to Equation 9 multiplied by −1/2σ2, if we denote

. This suggests an intrinsic connection between the variance parameters
η1 and η2 and the tuning parameters λ1 and λ2: by choosing suitable variance parameters, we
can also reach “optimal” balance between fitness and smoothness. Naturally, one would choose
the restricted maximum likelihood (REML) estimate of η1 and η2. Denote σ̂2, η̂1, η̂1 as the

REML estimate of variance components. It has been shown that  are comparable
(though different because they are derived from different criteria) to the “optimal” tuning
parameter (λ1, λ2) selected by GCV score (Krivobokova & Kauermann, 2007). Consequently,
the MLE of {al, bl : l = 0,1,2} and the best linear unbiased predictor (BLUP) of {a2+k, b2+k,
k = 1,2, …, K} for the reduced linear mixed model are comparable to the {al, bl : l = 0,1,2, …,
2 + K} under the optimal choice of (λ1, λ2) based on GCV. In addition, the mixed-effects model
approach is shown to be less sensitive to mis-specification of error dependence structure,
compared to GCV-based approach (Krivobokova & Kauermann, 2007). Furthermore, the
existence of robust mixed model software on several platforms (e.g., SAS PROC MIXED, R
package nlme) make this approach an excellent choice in practice, without having to use
specialized algorithms.

Implementation Using SAS
The implementation of the P-spline approach to estimating TVEM using SAS is quite
straightforward. Here we demonstrate the procedure using a real example, which we describe
in more detail in the next section. The real data set contains four variables: ID (subject id), T
(measurement time in days, which range from −3 to 13 with day 0 being the quit day), SE (self
efficacy), and PA (positive affect). In order to study positive affect and how the relationship
between positive affect and self-efficacy change over time, we fit the following TVEM

For illustration purposes only, suppose we use 4 knots at (τ1, …, τ4) = (0,3,6,9), though we
have tried different number of knots (i.e., K = 1 to 5) in empirical analysis. Replacing the
coefficient functions with splines, and treating the coefficients of truncated power functions
as random effects, the above TVEM becomes a linear mixed effect model:

with
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Thus, to implement the above steps in SAS, we first need to generate new covariates
representing

. The following SAS code is used for this.

DATA SEPA;
SET SEPA;
T2 = T**2;
PT1 = ((T−0)**2)*(T>0);
PT2 = ((T−3)**2)*(T>3);
PT3 = ((T−6)**2)*(T>6);
PT4 = ((T−9)**2)*(T>9);
XT = T*PA; XT2 = (T**2)*PA;
XPT1 = ((T−0)**2)*(T>0)*PA;
XPT2 = ((T−3)**2)*(T>3)*PA;
XPT3 = ((T−6)**2)*(T>6)*PA;
XPT4 = ((T−9)**2)*(T>9)*PA;
RUN;

With the new covariates added to the data set, we now fit the above mixed effect model using
SAS PROC MIXED.

PROC MIXED DATA = SEPA METHOD=reml;
Class ID;
Model SE = T T2 PA XT XT2 /solution;
Random PT1–PT4 /S TYPE=TOEP(1);
Random XPT1–XPT4 /S TYPE=TOEP(1);
RUN;

Notice that in the SAS code we put “PT1–PT4” and “XPT1–XPT4” into two groups of random
effects to reflect the fact that the variance components η1 and η2 could be different. This step
will produce estimates of fixed effects “T”, “T2”, “PA”, “XT”, and “XT2” (â1, â2, b̂0, b̂1, b̂2)
plus the intercept (â0) and BLUP of random effects “PT1–PT4” (â3 through â6) and “XPT1–
XPT4” (â3 through b̂6). We can then estimate the coefficient functions:

One may repeat the above steps using different K, to obtain satisfactory fit. Thus, it would be
convenient to have a SAS macro which treats K as a parameter and automatically generates
required covariates, invokes PROC MIXED, and outputs the estimates needed. To this end and
also to make TVEM conveniently accessible to applied researchers, we developed a user-
friendly SAS macro that is available for download from http://methodology.psu.edu. Some
details of the syntax of this SAS macro as well as the sample code are provided in the Appendix.
The application section illustrates the use of the macro with simulated and empirical examples.
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Before we move to the more technical issue of knots selection and model selection, we
comment here that the P-spline-based approach can be extended to estimate a more complicated
TVEM which includes random effects and certain error dependence structure. To illustrate
this, we consider a TVEM with random intercepts (i.e., different subjects may have different
initial values of SE)

and assume, for illustration, that {εij, j = 1,2, …, mi} follows AR(1) model. To fit this model,
we only need to change the SAS code for fitting mixed effect models:

PROC MIXED DATA = SEPA METHOD=reml;
Class ID;
Model SE = T T2 PA XT XT2 /solution;
Random PT1–PT4 /S TYPE=TOEP(1);
Random XPT1–XPT4 /S TYPE=TOEP(1);
Random Int /S TYPE=TOEP(1) Subject = ID;
Repeated / type=AR(1) Subject=ID;
RUN;

That is, we added a “Random” statement for random intercepts, and a “Repeated” statement
for the error dependence structure (AR(1) here). Clearly, through careful specification of the
corresponding statements in PROC MIXED, one can fit a very specific TVEM by using the
P-spline-based approach.

Selection of the Number of Knots
Theoretically, we only need to choose a large enough K in the P-spline based approach, and
then optimally estimate the coefficients using the linear mixed-effects model. However, there
is no common knowledge of how large K should be. For example, Wand (2003) suggested K
= min(N/4,35) with N being the number of distinctive measurement times, while Ruppert
(2002) suggested that K around 10 is enough for estimating monotone or single mode functions,
but K around 20 is needed for estimating more complicated functions with multiple modes.

In practice, one often needs to try different number of knots and compare their model fittings.
We suggest to start with a moderate number of knots, like K = 10. Such a number of knots is
sufficient for capturing overall features of rather complicated shapes and providing useful
information about the complexity of the time-varying phenomena for further adjustment of
K. In addition, in practice, we may expect that the shapes of change may range in complexities:
some may follow familiar parametric forms, but others may be too complicated to be described
by any familiar forms. A moderate number of knots is in the mid-range of enabling moving up
to fit more complicated models and moving down to simpler (or even parametric) models.
Taking this into account, we propose the following procedure for choosing K in psychology
research:

1. Start from a reasonable number of K (e.g., 10), and record the Akaike's information
criterion (AIC; Akaike 1974) or Bayesian information criterion (BIC; Schwarz
1978) values of the fitted model;

2. Inspect the shapes of the estimated coefficient functions;

3. Decrease K gradually if the estimated coefficient functions are mostly stable
(constant, or linear in time). Increase K gradually if the functions change substantially
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over time. Record the values of AIC and BIC for models with different numbers of
knots.

4. Choose the optimal K based on the smallest values of AIC or BIC indices.

In the calculation of AIC or BIC for model comparison, we let the degrees of freedom be the
“effective degrees of freedom,” as defined in Ruppert (2002), to take into account the effect
of the penalty terms in Equation 9. AIC and BIC may choose different final models because
the penalty for additional parameters in BIC is stronger than that of the AIC. Consequently,
BIC prefers a simpler model than AIC does. We leave the choice between AIC and BIC up to
researchers, since different researchers may have different preferences regarding the two
model-selection criteria. A systematic comparison of AIC, BIC, and other criteria for the
selection of K is an important direction for further research. In general, when K is large enough,
further increasing K will not cause significant change in AIC/BIC and in the estimated
coefficient functions (since appropriate penalty will counter the effect of overfitting).

In exploratory research, one does not have to stop at the estimated coefficient functions under
the selected optimal K. Rather, further model selection, leading to a more parsimonious model,
is often possible. When some estimated coefficient functions under the optimal K have familiar
shapes (i.e., linear, quadratic), it is reasonable to hypothesize that these coefficient functions
may indeed have parametric forms. One could then fit a semi-parametric TVEM in which some
coefficient functions follow a parametric form, and use AIC or BIC to compare the fit of the
simplified model to that of the full TVEM. In this way, TVEM enables researchers to follow
an objective evidence-based modeling procedure: (a) starting from the most flexible model,
and (b) gradually reducing to a parsimonious model based on knowledge revealed by more
general models.

Alternative Methods
The P-spline-based approach described in the last section is just one of several popular
approaches to estimating coefficient functions of TVEM. In this section, we first briefly
describe other popular approaches which have also been well-established in the statistical
literature, and then compare these approaches, and explain why we choose to introduce the P-
spline based approach in this article.

Smoothing splines—Considering estimating Equation 3 again, the smoothing splines
approach (Wahba, 1990; Green and Silverman, 1994) minimizes the following penalized log-
likelihood function:

with respect to function β0(t) and β1(t), where the first term represents the fidelity of the model
to the data, and ∫{β″(t)}2dt is a roughness measurement of the function β(t), and ∫{β″(t)}2dt =
0 if β(t) is a linear function. Solving the above optimization problem is equivalent to estimating
the coefficient functions using piecewise polynomials (i.e., natural cubic splines, Wahba,
1990) using all the distinct measurement times as knots. Again, in this approach, the smoothing
parameters λ1 and λ2 control the trade-off between goodness of fit and smoothness of the fitted
coefficient functions, and one can use GCV (Wahba, 1990) or generalized maximum likelihood
(GML; Wahba, 1985) to choose appropriate smoothing parameters.

Regression splines—Like the P-spline-based approach and smoothing splines, the
regression spline approach (Stone et al, 1997) also uses splines to approximate coefficient
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functions. In contrast to P-spline-based approach or smoothing splines, regression splines uses
a small number of knots (e.g., 3–5). In order to obtain satisfactory fit, this approach relies on
careful choice of the number of knots and the locations of knots, which could be achieved by
the adaptive knot allocation strategies recommended in Stone et al. (1997). Fok & Ramsay
(2006) employs regression splines, using different number of knots without adjusting the
locations of the knots, in the analysis of the personality study of Brown & Moskowitz
(1998).

Kernel-based methods—Unlike spline-based approaches which approximate unknown
coefficient functions with splines over a given study period, the kernel-based methods, also
called locally weighted polynomial regression methods, estimate the unknown intercept
function β0(t) and coefficient function β1(t) pointwise. More specifically, to estimate β0(t0)
and β0(t0) for a given time point t0, kernel based methods approximate the coefficient functions
with linear functions (i.e., β0(t) ≈ a0 + a1 · (t − t0) and β1(t) ≈ b0 + b1 · (t − t0)) in a time window
[t0 − h, t0 + h], and transform the nonparametric model into a (locally) linear regression model.
The choice of bandwidth (h) balances the smoothness and fitness of the estimated coefficient
functions: the larger the bandwidth, the smoother the estimated functions but at the cost of
larger bias. The discussion of the specification of weights and the choice of bandwidth are
beyond the scope of this article. Interested readers are referred to Fan & Gijbels (1996), and
Wu & Zhang (2002). In addition, Li et al (2006) contains an application of using local
polynomial method to fitting a smoking cessation data set.

Summary—Although these approaches look quite different, they actually share similar ideas:
they all approximate unknown functions with simpler functions, globally or locally, and they
all consider balancing the trade-off of fitness (good approximation) and smoothness (less
fluctuation) by adjusting certain tuning parameters (i.e., bandwith h for kernel-based approach,
smoothing parameters for smoothing splines and P-spline-based approach, and knots positions
for regression splines). These approaches will obtain similar results. However, these
approaches do differ with respect to implementation: the regression splines and smoothing
splines require specific algorithms and software, which is not widely used among behavioral
scientists, while the kernel-based approach may require an advanced bandwidth selection
procedure (Fan & Gijbels, 1996), which is beyond the reach of practical users. Thus, we suggest
the use of P-spline based approach because it very easy to implement using popular software
like SAS PROC MIXED, and also flexible enough to consider more complicated TVEM with
random effects and certain error dependence.

Applications
This section provides two examples of implementing TVEM in ILD research. Our first example
is simulated, where we evaluate performance of the model. The second example presents
empirical data from a smoking cessation study, testing the time-varying effect of positive affect
on self-efficacy towards smoking cessation.

A Simulated Example
Our first demonstration uses a simulated data set. The advantage of using simulated data for
illustration purposes is that the true model is known and, thus, the method's performance can
be evaluated by comparing the estimated results to the true model.

Data generation—Two ILD sets were generated for samples of 50 and 100 individuals,
respectively, with 30 repeated assessments per person. Measurement times for each individual
were set to be uniformly distributed over the interval of [0,1]. To mimic a real situation, each
individual was designed to have approximately responses missing completely at random. This
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yields, on average,30 × 0.8 = 24 observations per person. For an individual i, two covariates,
xij1 and xij2, and the outcome variable, yij, were generated at measurement times tij. To create
xij1 and xij2, we first generated two independent standard normal random numbers, zij1 and
zij2. Then, we let xij1 equal if zij1 > 0 and equal otherwise, and specified xij2 as .
In this way, xij1 was created as a binary variable and xij2 followed a standard normal distribution.
Furthermore, the covariates were correlated (Pearson r ≈ 0.56) as in many practical situations.

Model specification: For both data sets, the following TVEM specifies the relationship
between the covariates and the outcome:

(11)

where

and the error term follows the AR(1) structure:

with εij being independent and identically distributed Gaussian random variables with variance
σ2. Specifically, in our simulations, we set ρ = 1 and σ2 = 1.

Estimation procedure: To estimate the coefficient functions in Equation 11, we started by
specifying the number of knots at 5, and progressively increasing them up to 9, recording the
AIC and BIC model fit statistics. To mimic a real situation, we pretended that we did not know
the true covariance structure, but assumed a working independence structure for the error terms
in the estimation.

Results: The values of AIC and BIC for different numbers of knots in the estimation are listed
in Table 2. For both data sets, the BIC suggests a model with 6 knots, while the AIC suggests
one with 6 knots (n=50) and one with 7 knots (n=100). Figure 4 presents the estimated
coefficient functions using 6 knots, which are nearly indistinguishable from those using 7 knots.

Overall, the performance of the P-spline based method is satisfactory in that it revealed the
underlying shapes of all three coefficient functions: the true coefficient functions are largely
within the 95% confidence band of the estimated coefficients and quite close to the estimated
coefficients. The confidence bands for the estimated coefficient functions in the right column
are narrower than their counterparts in the left column in Figure 4. This indicates that the
increased sample size could lead to more accurate estimates of these coefficient functions, as
expected. Another important finding from the simulation study is that the number of knots in
the final model is not essential for recovering the true underlying function, as long as it is large
enough. The estimated functions with larger than 6 knots look very similar; the AICs are similar
as well.

Note that we assumed an independent error process in estimation, while our data were generated
from a model with an AR(1) covariance structure. This model mis-specification did not
compromise the results. According to Liang & Zeger (1986), mis-specification of the
covariance structure does not affect the consistency of the estimated coefficient functions,
although it does result in wider confidence bands due to decreased estimation efficiency.
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An Empirical Example: Smoking Cessation Study
The ILD for our empirical example come from a randomized controlled clinical trial designed
to evaluate the efficacy of the scheduled reduced smoking (SRS) cessation intervention
(Cinciripini, Wetter & McClure, 1997) in a sample of newly diagnosed cancer patients awaiting
a cancer-related surgery (Shiyko, Li, & Rindskopf, in press). SRS is a behavioral intervention,
entailing a gradual reduction of smoking on a pre-determined schedule delivered by a personal
digital assistant (PDA). By asking people to smoke on PDA prompts, SRS attempts to eliminate
the “free will” component of the smoking behavior and increase self-efficacy (SE) for quitting
smoking (Cinciripini, Lapitsky, Seay, Wallfisch, Kitchens, & Van Vunakis, 1995; Cinciripini
et al., 1997). In addition, PDAs were used to assess the momentary affective state and self-
efficacy at random points throughout a day. The effect of momentary positive affect on smoking
abstinence self-efficacy over the course of behavior monitoring period is the focus of the current
analysis.

Data description—Sixty-six individuals in the SRS condition yielded 1665 momentary
assessments of positive affect (PA) and self-efficacy, averaging 24.5 assessments per person
(SD = 25.2, median = 17.5, min = 1, max = 117). Analytically, we were interested in the
relationship between positive affect and self-efficacy for smoking abstinence immediately
prior to and following a quit attempt (QA). The QA was defined as the originally scheduled
quit date or a person-initiated quit date, depending on which occurred earlier. Time of QA
served as an origin of the time scale, taking negative values for days preceding a QA (for the
minimum of −3) and positive values for days following a QA (for the maximum of 13). In
addition, time (days before or after QA), could take fractional value, to accommodate multiple-
times-per-day assessment schedule.

Self-efficacy of the ability to abstain from smoking was assessed by two 5-point Likert-type
questions, targeting confidence in one's ability to refrain from smoking after surgery and in the
following 6 months, ranging from 0 (not at all confident) to 4 (completely confident).
Responses to these two items (Pearson r = .90, SE = .004) were averaged to comprise an overall
post-surgery abstinence self-efficacy. The measure of positive affect was an average of
responses to four PANAS scale items (Cronbach's alpha = .93; Watson, Clark, & Tellegen,
1988), assessing the degree of feeling strong, proud, inspired, and determined on a 4-point
scale, ranging from 0 (very slightly or not at all) to 4 (extremely). Average level of positive
affect across all time points and all individuals was 1.77 points (SD = 1.24). Average level of
self-efficacy was 2.52 (SD = .87).

Drop-out occurred when a smoker stopped using PDA before his/her scheduled stopping time
(i.e., having surgery). Relapse did not necessarily lead to drop-out, because some smokers still
responded to PDA prompts even after after they relapsed. In total, 28 of 60 smokers stopped
using PDA. We divided the 60 subjects into drop-out (stopped using PDA) and non-drop-out
subgroups, and compared the spaghetti plots (not shown here) of self-efficacy post-QA of these
two sub-groups. The two spaghetti plots look quite similar, which indicates that the drop-outs
did not depend on self-efficacy level. Hence, in our analysis, we assumed the drop-outs were
non-informative, and analyzed them the same way as complete data.

Model specification and model fitting—To examine temporal changes in the relationship
between positive affect (PA) and smoking abstinence self-efficacy (SE), the following TVEM
was fitted:

(12)
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In Equation 12, β0(·) is the intercept function, representing the self-efficacy trajectory over the
course of about 2 weeks for patients who reported very low positive affect (PA = 0). Of note,
13.3% of affect assessments were at that level. The slope function β1(·) characterizes the
progressive pattern of the relationship between the intensity of positive affect and abstinence
self-efficacy over the same time interval. Changes in the magnitude and direction of the
relationship between positive affect and self-efficacy pre- and post- QA are of particular
interest to us. Practically speaking, the slope function tells us by how much the outcome, SE,
is expected to change with a unit change in PA, across the study time continuum. Thus, instead
of a single slope parameter, commonly estimated in MLM, we obtain a magnitude of
parameters, the values of which change with time. In cases in which an estimated function is
not constant, the effect of a covariate should be interpreted with reference to a specific time
interval.

The P-spline-based method was employed to progressively fit the specified model. The number
of knots for intercept and slope functions were varied, and changes in BIC and AIC fit indices
were compared to determine the best fitting model.

Results—Table 3 presents values of BIC and AIC indices for models with zero through five
knots. Based on the smallest BIC and AIC criteria, the model with a single knot for the intercept
and slope function parameters was identified as the best fitting model. More complicated
models (knots > 5) were not considered due to progressive worsening of the fit indices (i.e.
increasing AIC and BIC). Since both intercept and slope functions were estimated with a single-
knot TVEM, Equations (7) and (8) which define shapes of the functions, would simplify to
contain only one additional term a3(t − τ4)2, where a single knot K = 1 is placed at 4 days, a
point that is splitting the study time into two equal intervals (a default option in the TVEM
macro).

Parameter estimates of the final model are summarized graphically in Figure 5. Because of the
fluctuating magnitude and direction of intercept and slope parameters, it appears that time
serves an important role in defining the model. In the graphical summary of the intercept
function, we can see that individuals who reported zero positive affect experienced a decrease
in self-efficacy following their QA. Initially, they were more than moderately (Self-Efficacy
≈ 2) confident in their ability to refrain from smoking in the post-surgical period, but they
gradually transitioned to being less than moderately (SE < 2) confident. There was a slight
increase in intercept function towards the study end with a widening confidence interval, which
is attributable to more sparse observations. Thus, the interpretation of this change should be
cautious. Likely, SE is leveling off towards the end.

The slope function shows that the effect of positive affect on quitting self-efficacy increased
with time. Prior to QA, the effect of positive affect ranged somewhere from .14 to .26; following
the QA, it ranged from .26 to .39, signifying an increased association between positive affect
and one's self-efficacy to abstain from smoking. Similarly to the intercept function, temporal
changes towards the end of study are likely to be an artifact of data sparseness.

Implications from Empirical Data
Self-efficacy towards smoking cessation has been long considered one of the defining factors
of success in quitting smoking (e.g., Dornelas, Sampson, Gray, Waters, & Thompson, 2000;
Gritz, Carmack, de Moor, Coscarelli, Schacherer, Meyers, & Abemayor, 1999; Houston &
Miller, 1997; Ockene, Emmons, Mermelstein, Perkins, Bonollo, Voorhees, & Hollis, 2000;
Smith, Kraemer, Miller, DeBusk, & Taylor, 1999; Taylor, Houston-Miller, Killen, & DeBusk,
1990; Taylor, Miller, Herman, Smith, Sobel, Fisher, & DeBusk, 1996). Some cross-sectional
studies explored correlates of SE, with positive affect being one of them (e.g., Martinez, Tatum,
Glass, Bernath, Ferris, Reynolds, & Schnoll, 2010). Negative affect has been previously linked
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with an increase in smoking urges post quit (e.g., Li et al., 2006; Shiffman, Paty, Gnys, Kassel,
& Hickcox, 1996), but no studies explored possible time-varying associations between NA
and SE.

Based on the results of TVEM, time was shown to play an important role in defining the strength
of the association between PA and SE. Overall, individuals with higher levels of PA reported
higher SE. This relationship was magnified, however, following the quit attempt. This finding
may suggest that future smoking cessation intervention strategies could target a patient's
positive affect around the quit attempt. Traditional approaches like multilevel modeling would
estimate the average effect of PA on SE. However, the flexibility of TVEM allowed for a full
exploration of the relationship without setting a priori constraints on the shape of intercept and
association functions.

In this example, a model with one knot was sufficient to describe the relationship. In other
word, these estimated coefficient functions were piecewise (two pieces to be exact) quadratic
functions which can be represented as

since the single knot was placed at τ = 4in this example when K = 1. It might be reasonable to
hypothesize that these coefficient functions can be represented by cubic or quartic functions.
This implies that TVEM can be used as an exploratory tool to hint at whether the course of
changes follow certain familiar parametric form. In this study, however, we are reluctant to try
higher order polynomials due to the Runge phenomenon.

Discussion
In this paper, we introduced TVEM as a novel approach for analyzing ILD to study the course
of change. With technological innovations, collection of ILD in the behavioral sciences is
increasing, which opens new opportunities to address empirically important questions about
the relationship between time-varying covariates and outcomes of interest. TVEM provides a
flexible medium for exploring this relationship and incorporating time as a third dimension.
In the model, the influence of a covariate is reduced to a momentary period, such that the
strength and magnitude of the association vary as time changes.

While TVEM has not been previously used in psychological research, its potential is evident.
ILD are frequently being collected for quickly changing phenomena, such as positive or
negative affect, self-efficacy, urges, and blood pressure. Not only do these factors change on
a momentary basis, but their influence on each other may also be subject to fluctuations. TVEM
allows studying this change as a function of time. Importantly, the model does not assume any
specific pattern of the relationship, and the underlying non-parametric nature allows any
longitudinal shapes to be accommodated.

The non-parametric nature of the model can be used in several ways. First, it can account for
inherently non-linear longitudinal relationships, resulting in a model with temporal ups and
downs. The simulated data is an example of such applications. Alternatively, TVEM can be
used as a diagnostic tool to help simplify the shape of a certain varying relationship to a known
parametric function, based on graphical summaries and fit statistics.

While the focus of this article was on time-varying covariates, TVEM can be expanded to
incorporate invariant covariates as well to study how their impact changes with time. For
instance, the effect of a treatment (e.g., for smoking cessation, for regulation of blood-sugar
in diabetics, or for improving exercise habits) may change over time. In those cases, researchers
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may be interested in observing the trajectories of behavior change in response to an
intervention. For example, by including gender in the model, we can obtain separate estimates
of coefficient functions for males and females.

We introduced a very basic TVEM in this paper, and this model can be extended to more
complicated TVEMs to describe individual differences (i.e., by including random effects), and
inter-correlation of repeated observations. However, it is worth noting that ILD may contain
complicated (unique) error structures, since observations may be nested within the same days,
month, and so forth. Such error structures are not standard options in popular software like
SAS PROC MIXED, and extensive research on how to incorporate specific error structure of
ILD is needed.

As TVEM has not yet been extensively studied, little is known about the required sample size,
the required number of repeated assessments,2 the impact of missing data, and inter-variability
across individuals on the robustness of model estimation. The answers to these questions await
future research. Our simulated example with 100 individuals and about 25 measurements per
individual, however, demonstrates satisfactory model performance.

Future extensions of TVEM might allow the modeling of non-normally distributed outcomes
employing generalized linear models, and modeling inter-individual variability in coefficient
functions through incorporating random coefficient functions. Such extensions could make
TVEM more appealing in applications, and this motivates our continued work in this area.
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Appendix
To facilitate the implementation of the spline-based method for the estimation of the time-
varying effect model, we have developed a SAS Macro, %TVEM, to estimate the time-varying
effect model. The source code for this macro is available on the APA website
(http://apa.apa.org) and the website of the Methodology Center of the Pennsylvania State
University (http://methodology.psu.edu). In this section, we will briefly describe the syntax of
this macro using an artificial example.

Suppose the SAS data set new_data contains the following variables:

• subjects' identification, character variable;

• measurement time for each observation, different subjects may have different times
of measurement;

• a dependent variable;

2In our experience, 10 or more observations per person is generally adequate to fit a TVEM, if there are enough subjects (e.g., 100 or
more), and the subjects followed different measurement schedules, so that the pooled measurement times (from all subjects) are densely
distributed in the study period.
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• an intercept, the value of which equals 1 for all observations;

• a binary covariate;

• a continuous covariate.

The data set new_data has a longitudinal structure (Table 4).

The model with varying effect to be estimated is as follows:

Below is the SAS code to fit this model:

%TVEM(
mydata = new_data, /* dataset, longitudinal data structure */
id = subj, /* subject ID indicator */
time = t, /* time indicator */
dep = y, /*the outcome */
class_var = , /* classification variables */
tcov = x0 x1 x2, /* variables with time-varying coefficients */
cov_knots = 5 5 5, /*the number of knots for each time-varying covariate
*/
cov = , /* covariates with time-constant coefficients */
evenly = 0, /*knots evenly in space (0) or on quantiles (1) */
scale = 100, /* the number of time points to be plotted */
outfilename = /* name of a file to save plot data */
);

The meanings of the first four parameters: mydata, id, time, dep, in the above macro code are
self-explanatory. The meaning of the other 6 parameters are explained as follows.

The Meaning of the Last 6 Parameters in SAS Macro %TVEM

Parameter Description

class_var Names the classification variables in the analysis. Classification variables can be either character or numeric
(e.g., day of week, race).

tcov The names of all covariates with time-varying effect in the time-varying effect model. Notice that an all 1
variable, like x0 in this example, should be included in this parameter if the time-varying effect includes
an intercept function.

cov_knots The number of inner knots are specified for all time-varying parameters (e.g., intercept and slopes).

cov The names of all covariates assumed to have non-varying coefficients are listed in this parameter. These
covariates (value) can be time-varying. In our example, we don't have such covariates and simply leave the
statement blank.

evenly This parameter determines the positions of inner knots. We provide two methods: one (evenly=1) is to place
inner knots evenly in space over the range of measurement times of all observations, zero (evenly=0) is to
place them on evenly distributed quantiles of the pooled observation times.

scale This parameter determines the number of grid points to be plotted in the graphs. By default, the number of
grid points for parameter coefficient functions and their confidence bands are set to 100.

outfilename Output file name. The macro generates a csv file with path and name specified by this parameter. This csv
file contains the data for plotting the coefficient curves and their confidence bands in a spreadsheet software
package if needed. By default, the csv file is saved in the temporary SAS working directory with the name
plot_data.csv.
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Figure 1.
A Hypothetical example of the time-varying relationship between negative affect and urge to
smoke. The solid line in the upper plot represents the negative affect scores from a single
individual plotted over the time interval [0, 1]. Smoking urges for the same individual are
plotted in the middle graph. Vertical dashed lines partition the study period into three equally
spaced intervals: [0, .33), [.33, .67), [.67, 1.0]. Corresponding scatter plots of negative affect
and smoking urges from the three periods are plotted at the bottom. Fitted linear regression
lines demonstrate the directionality and the extent of the association between negative affect
and smoking urges.
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Figure 2.
Hypothetical intercept (β0(t), dashed line) and slope (β1(t), solid line) functions that change
values over the course of the time period [0, 1].
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Figure 3.
Plots of seven truncated power basis functions with knots at 0.2, 0.4 ,0.6, and 0.8. These seven
basis functions (of time) are:

.
Appropriate linear combinations of these functions are used to approximate coefficient
functions in fitting a TVEM.
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Figure 4.
Estimated coefficient functions for simulated data with 6 knots. Left column: sample size =50;
right column: sample size =100. Top row: intercept function; middle row: coefficient function
for X1; bottom Upper row: coefficient function for X2.
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Figure 5.
Intercept (left plot) and slope (right plot) function estimates for the empirical data. In each plot,
the solid line represents the estimated intercept or slope function, and the dotted lines represent
the 95% confidence interval of the estimated function.
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Table 1

Accuracy of Using Truncated Power Splines to Approximate Three Functions

Functions being approximated

K exp(2t − 1) 8t(1 − t) sin2(2πt)

0 0.0450 0.0000 1.0003

1 0.0121 0.0000 1.0057

2 0.0038 0.0000 0.4993

3 0.0018 0.0000 0.6125

4 0.0010 0.0000 0.1828

5 0.0006 0.0000 0.1438

6 0.0004 0.0000 0.0735

7 0.0002 0.0000 0.0413

8 0.0002 0.0000 0.0281

9 0.0001 0.0000 0.0204

10 0.0001 0.0000 0.0146

Note. K is the number of knots of the truncated power splines used to approximate the three functions. K = 0 implies that quadratic functions are used
to approximate these functions. Numbers under each function are the “minimal” maximum absolute difference between this function and any truncated
power splines with given number of knots (0–10).
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Table 2

Fit Statistics for the TVEM Fitted to Simulated Data

n = 50 n = 100

K AIC BIC AIC BIC

5 3500.3 3528.5 6928.5 6966.5

6 3491.8 3514.0 6919.2 6958.9

7 3498.2 3528.6 6917.4 6959.2

8 3498.2 3529.2 6920.2 6963.1

9 3498.2 3529.1 6919.1 6963.1

Note. K is the number of knots for the truncated power splines. Numbers in bold are the minimal AIC/BIC values in each column.
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Table 3

Fit Statistics for the TVEM Fitted to Self-Efficacy and Positive Affect Empirical Data

K BIC AIC

0 3996.3 3963.8

1 3994.6 3957.2

2 4000.9 3960.8

3 4002.6 3960.3

4 4002.1 3960.4

5 4002.2 3960.5

Note. K is the number of knots for the truncated power splines. Numbers in bold are the minimal AIC/BIC values in each column.
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