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Abstract
Soft x-ray tomography (SXT) is a powerful imaging technique that generates quantitative, 3D
images of the structural organization of whole cells in a near-native state. SXT is also a high-
throughput imaging technique. At the National Center for X-ray Tomography (NCXT), specimen
preparation and image collection for tomographic reconstruction of a whole cell require only
minutes. Aligning and reconstructing the data, however, take significantly longer. Here we
describe a new component of the high throughput computational pipeline used for processing data
at the NCXT. We have developed a new method for automatic alignment of projection images that
does not require fiducial markers or manual interaction with the software. This method has been
optimized for SXT data sets, which routinely involve full rotation of the specimen. This software
gives users of the NCXT SXT instrument a new capability - virtually real-time initial 3D results
during an imaging experiment, which can later be further refined. The new code, Automatic
Reconstruction 3D (AREC3D), is also fast, reliable and robust. The fundamental architecture of
the code is also adaptable to high performance GPU processing, which enables significant
improvements in speed and fidelity.
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Introduction
Soft X-ray tomography (SXT) is the only imaging technique that generates high-resolution,
3D views of cellular structures in large (up to 15 microns diameter), intact eukaryotic cells
in the near-native state. Because SXT is conducted in the ‘water window’, the region of the
spectrum where carbon and nitrogen absorb an order of magnitude more than water, it is
particularly sensitive to the distribution of organic molecules in a cell. Absorption of
photons at this wavelength adheres to Beer-Lambert’s law and is therefore linear with
thickness (Attwood, 1999). Consequently SXT images are uniquely quantitative, and each
organelle is seen based on its organic composition, which gives it a unique linear absorption
coefficient (LAC) measurement (Le Gros et al., 2005; Weiss et al., 2000). The difference in
the LAC values of cellular components yields high-contrast images without the need for any
chemical stains.

Cells imaged with SXT are typically between 1–15 microns in diameter, and each image
shows all internal organelles superimposed in a 2D projection image. Tomographic
reconstruction methods make it possible to retrieve that information and generate 3D views
that reveal the spatial distribution of the organelles. It is well known that the optimal 3D
reconstruction is achieved when images are taken at multiple intervals through 180 degrees.
With electron tomography, the combination of thin, planar specimens and the mechanical
constraints of the specimen holders for these samples limits the ability to acquire images at
all angles, and the quality of the reconstruction is compromised. Algorithms have been
devised to minimize the artifacts in the reconstruction, but it is still not possible to obtain
isotropic resolution. SXT can circumvent this problem by imaging cells in thin-walled (200
nm thin) capillary tubes. Images of cells in a capillary can be collected through an angular
range of 180, or even 360 degrees to more evenly distribute the x-ray dose. As a
consequence there is no wedge of missing information and, due to the incoherent bright field
imaging geometry (Streibl, 1985), fully isotropic resolution can be achieved in the
reconstructions. Full-rotation imaging has been used very successfully with SXT to generate
3D images of a wide variety of cell types with isotropic resolution (Carrascosa et al., 2009;
Le Gros et al., 2005; McDermott et al., 2009; Meyer-Ilse et al., 2001; Schneider et al., 2010;
Uchida et al., 2009; Uchida et al., 2011).

The first step in processing data for high-resolution tomography involves the alignment of
the projection images taken at different angles to a common axis of rotation. This is
especially important for high-resolution techniques like electron tomography and SXT
where the precision of the rotation axis and overall accuracy and stability of the specimen
stage are at, or just below, that required by the limiting resolution of the imaging technique.
Currently, the “gold standard” that gives the best possible alignment of soft x-ray
tomography data is alignment based on fiducial markers. Experimentally, gold nanoparticles
are added directly to the sample, or to the sample container. Each nanoparticle is a fiducial
marker that can be tracked through the series of projection images. By tracking multiple
markers, all of the images can be aligned to a common frame of reference with an error of
one pixel or less (Kremer et al., 1996). Alignment of fiducial markers can be done manually,
but this is a very time consuming and labor intensive process. Since SXT can image large
numbers of cells in a relatively short period of time (Uchida et al., 2009), there is an obvious
need to automate the alignment process.

There are many approaches to automating the tracking of fiducial markers through a stack of
projection images, including IMOD (Kremer et al., 1996) XMIPP (Sorzano et al., 2004) and
others (Amat et al., 2008; Chen et al., 1996; Liu et al., 1995; Zheng et al., 2007); for review,
see Brandt (Brandt, 2006) and (Frank, 2006; Houben and Bar Sadan, 2011). Most of these
programs have been developed to process data for electron tomography, which examines
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specimens that must be less than 1 micron along the optical axis of the microscope. These
automated programs have not been as successful aligning images for x-ray tomography,
which examines large cylindrical specimens (frequently up to 15 microns thick) filled with
numerous high contrast structures. With SXT there is significantly less difference between
the contrast levels of the gold markers and cellular structures, which makes it difficult to
follow the markers through the full rotation.

The simplest automated alignment approach is the cross-correlation approach, in which
appropriate transforms between images are calculated pairwise for images in the projection
stack (Kremer et al., 1996). A second approach is feature-based alignment. In this method,
rather than relying on gold nanoparticles as fiducial markers, feature points (such as Harris
corners (Harris and Stephens, 1988)) are extracted from the images themselves, and these
are used as the fiducial markers that are tracked across the image stack (Castano-Diez et al.,
2010; Castano-Diez et al., 2008b; Sorzano et al., 2009; Winkler and Taylor, 2006). A third
approach is known as a 3D model-based method, in which an initial alignment is used to
generate a tomographic reconstruction, and the projections are iteratively aligned to this
volume and then used to generate a new refined volume (Amat et al., 2010). An excellent
example of this approach is described in (Yang et al., 2005). This approach can yield
excellent results, though it is computationally intensive, and the initial coarse alignment
must be relatively good in order to yield the global minimum. After exploring these three
approaches to SXT data alignment, we found that model-based alignment produced the best
results with SXT data. Much of the model-based software that has been developed for
electron tomography, however, is targeted at single-particle cryoelectron microcroscopy,
which involves a large number of projections (often many 1000s), each of which is
relatively small (below 100^2 pixels); thus, the available software has imposed limits on the
size of images in terms of required computer memory. With SXT, we use fewer projection
images (between 90 and 360), with each image being much larger (either 1024^2 or
2048^2). To obtain an optimal solution for aligning SXT data, we developed model-based
alignment software uniquely suited for x-ray images. The resulting software package,
Automatic Reconstruction 3D (AREC3D), is central to the data processing pipeline used at
the NCXT. The source code for AREC3D is available at
https://codeforge.lbl.gov/projects/arec3d. In this manuscript we describe the AREC3D
methodology and present examples of aligned SXT data sets.

Results
Data processing programs operate on the assumption that the axis of rotation lies vertically.
Since the long, thin custom-made glass capillary specimen holders used for SXT are not
perfectly cylindrical, this is not always the case. Consequently there can be a small angle
between the real axis of rotation (y) and the vertical axis of the CCD chip (Y), as
diagrammed in Figure 1. Additional imperfections in the rotation and translation stages
cause additional movements of the specimen, which are not in accord with the model
implicit in a standard tomographic reconstruction procedure. Figure 2 shows the first and
last images from an unaligned series of projection images collected through 180 degrees.
Strictly speaking the alignment correction can only be computed in a complete 3-
dimensional space. However, given the geometry of our specimen holders, angular changes
are relatively small, and good alignment and reconstruction results can be achieved by
limiting alignment parameters to translations and one rotation in the plane of the projection
images. With this approach we are taking into account differences between the angle of
rotation and the vertical direction in the plane of imaging; components outside of this plane
are ignored. As a result an independent tomographic reconstruction can be implemented in
slices along the rotation axis (Castano-Diez et al., 2006; Fernandez, 2008; Mastronarde,
2008). Figure 3 shows a comparison of digital orthoslices through a tomographic
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reconstruction of a yeast cell where the projections were aligned by translation cross-
correlation and manual fiducial alignment. It is clear that the cross-correlation alignment is
not sufficient in this case to give useful results. The main issue with this method by itself is
that it is not robust and it produces inconsistent results frequently failing to produce a
useable reconstructed SXT data set.

Alignment Strategy
To discuss our alignment strategy, we first look at the geometric relationship between the
3D object to be reconstructed and its 2D projection images. During the image acquisition
process, the sample is placed in a roughly cylindrical capillary tube that is rotated around an
axis (y) through an angle, ωi. The axis of rotation may not be in the center of the cylindrical
tube. Furthermore, the axis of rotation may not be parallel to the Y-axis (the vertical axis of
the CCD camera, which is the vertical axis of the projection images), and the angle between
the true axis of rotation (y) and the Y-axis may change as the tube is rotated due to stage
imperfections. In addition to a tilt of the axis, stage drift may also produce horizontal and
vertical shifts. The lack of a priori knowledge about the location of the rotation axis and the
additional orientation changes due to the vibration of the stage makes the alignment and
reconstruction problem a nontrivial task. The alignment strategy we developed aims to
detect the inconsistency among different projection images and correct for the misalignment
introduced by the systematic experimental errors.

If we assume the noise in the image is moderate, and can be described by a Gaussian
distribution with zero mean, the alignment and reconstruction problem can be formulated as
a nonlinear least squares problem of the form

(1)

where f is the 3D object to be reconstructed, (ψj, φj) are two of the Euler angles that describe
the orientation of the 3D object that yields the jth projection image bj. The projection image
can be viewed simply as the a 2D image formed by applying a line integral operator P to the
3D object along a prescribed direction after the 3D object has been rotated by (ψj, φj), and
translated by sj (Yang et al., 2005). The azimuthal rotation angles are assumed to be known
exactly, and for the single tilt-axis geometry the remaining Euler angles represent an in-
plane rotation.

The optimization problem defined in (1) is generally difficult to solve due to the nonlinear
coupling between the unknown 3D object and the orientation parameters ψj and φj. One way
to solve the problem, which is widely used in the cryoEM community, is to perform what is
called a projection matching (Penczek et al., 1994). The projection matching algorithm can
be viewed as a generalized coordinate descent algorithm. It requires an initial guess of the
3D object f (or the Euler angles ψj and φj) f0 and consists of the following two steps:

When f0 is available, an exhaustive search of the optimal orientation parameters ψj and φj is
performed, i.e, we first solve
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Once an optimal set of ψj and φj are determined, we can solve a linear least square problem
by using a standard tomographic reconstruction algorithm, i.e., we solve

One of the key factors that affect the convergence of the projection matching algorithm is
the availability of a good initial guess f0. For cryoEM image reconstruction, obtaining a
good initial guess is generally a difficult task because the geometric relationship between the
3D object and 2D projection images is largely unknown a priori. However, for X-ray cell
imaging, we have a better knowledge of the relationship between the projection image and
the object even though we do not have the precise values of some of the orientation and
translational parameters. In particular, the azimuthal rotation angles are known exactly, and
in practice we have at least 91 images cover 180 degree viewing angles in 2-degree
increments. In addition, the presence of the capillary tube edges in the projection images
enables us to perform an initial alignment to fix the axis of rotation and obtain an initial
estimate of the direction of the rotation axis relative to the y-axis.

To identify the angle between the actual rotation axis and the Y-axis, we first identify the
tube edges associated with the 1st and the 91st images by using standard edge detection
techniques. Without loss of generality, we can assume the azimuthal rotation angles
associated with these two images are 0 degree and 180 degrees. From the slope of these
edges, we can calculate the angles between the tube edges and the Y-axis. If we denote the
angle between the tube edges of the first image and the Y-axis by β1, and that associated
with the 91st image by β2, and if we ignore additional rotation introduced by stage
imperfections, then the angle α between the rotation axis and the Y-axis should be α=(β1+
β2)/2 (see Figure 2).

By rotating each image by α degrees, we effectively make the axis of rotation parallel to the
y-axis. However, the axis rotation does not necessarily pass the origin of the 3D coordinate
space, nor does it have to be in the center of the tube. Although the quality of the 3D
reconstruction does not depend on the exact location of the axis of rotation, computational
efficiency can be gained if we choose the axis of rotation to go through the center of the
tube. In this case, total size of the reconstruction volume is roughly the size of the
cylindrical tube with little extra void space outside of the tube.

To correct for translational movement of the rotation axis resulting from the vibration of the
stage, we perform a successive translational alignment between the ith and the i+1st images
for i = 1,2,…,90 using cross correlation. Such an alignment procedure eliminates most of the
translational movement that depends on the azimuthal rotation angle θ. To account for a
potentially global (angular independent) horizontal drift of each projection image by an
unknown constant number of pixels Δ, we flip the 91st image in the horizontal direction and
cross correlate the flipped image with the first image. Because the x-coordinate of each pixel
in the 1st and the 91st images can be represented by

and
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respectively, where (x0,y0) is the unknown (x,y) location of the rotation axis, the position of
cross correlation peak yields 2Δ, which allows us to deduce the constant drift and shift each
image by -Δ pixels to correct for such a drift. A similar correction can be made for a vertical
drift also.

After the initial alignment steps described above have been performed, we crop each
projection image to keep the projection of the sample and the capillary tube in the image.
We then choose the axis of rotation to be in center of the cropped image and perform an
initial 3D tomographic reconstruction. Because the axis of rotation is fixed, the 3D
reconstruction can be reduced to ny 2D reconstructions, were ny is the number of (x,z) slices
in the y-direction. A number of algorithms can be used to perform the reconstruction task.
We use the conjugate gradient (CG) algorithm because it produces a high quality
reconstruction, is efficient and relatively easy to parallelize on a distributed-memory cluster.
Typically, 15 or fewer CG iterations are sufficient to produce a 3D reconstruction with
desired resolution. Running too many CG iterations may amplify undesirable noise in the
data. The iteration number can be viewed as a regularization parameter for the CG based
iterative reconstruction algorithm (Hansen, 1998).

The additional azimuthal angular dependent in-plane rotations of the projection images
introduced by imperfections in the stage are corrected in a simplified projection matching
procedure that follows the initial alignment. In this simplified projection, we generate a set
of reference projections from a 3D model constructed in the previous iteration
computationally. Both translation and rotational cross-correlations are performed between
each reference projection image and the corresponding experimental image (after it is
properly cropped). The translational shifts and in-plane rotation angles are used to transform
each experimental image before the transformed images are cropped and used to produce a
new 3D reconstruction. This procedure is repeated until the changes in shifts and angles fall
below a chosen threshold. The flowchart in Figure 4 gives a summary of our alignment
procedure.

In implementing the code, we focused on MPI (message passing interface) parallelization
for distributed memory clusters that have a limited amount of local memory (Pacheco,
2011). Although our parallelization tends to significantly reduce the required time for the
reconstruction and alignment process, our main focus in the distributed-memory parallel
implementation is to address the memory-limitation problem. The alignment and
reconstruction procedure described above requires two different types of data distribution
schemes that are currently coordinated through disk I/O. For the initial alignment, it is
natural to distribute experimental images among different processing units. Each processing
unit contains a fixed number of images. Successive translational alignment is performed
simultaneously on local images assigned to individual processors. The aligned images are
written to the disk as a single image stack, which requires synchronization. When the image
stack containing the aligned images is read into the memory again for reconstruction, each
image is partitioned evenly along the y direction, and each processing unit receives m sub-
images that it can use to reconstruction a portion of the 3D object.

In the simplified projection matching procedure, reference sub-images are generated from a
partial 3D volume produced from the previous iteration, the reference sub-images are
merged when they are written to the disk as a single file. The merged reference images are
read back from the disk and redistributed among different processors on an image-by-image
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basis so that the cross-correlation between the reference projection and experimental images
can be performed in parallel.

To characterize the performance of AREC3D, we measured wall clock time while running it
with different numbers of processors for a data set with 91 projections that was originally
1024 × 1024 pixels, then cropped to 500 × 800 pixels. For 1, 2, 4, 8, 16, 32, 64, and 128
processors, the time to complete one iteration was 1600, 800, 410, 225, 120, 72, 56, and 35.
As the number of processors increases, it becomes difficult to divide 91 images evenly
among processors. In addition, I/O overhead means that the scaling is not perfectly linear.

Although our current parallelization scheme incurs some I/O overhead, the overhead is
moderate. Even though the total amount of memory for the latest machines tends to increase,
memory per processing unit remains the same, and is projected to decrease in the future.
Therefore, we decided to perform I/O in this version of the code to make it more flexible.
We are also developing a shared-memory parallel version of the code that can be used on a
multi- and many-core mode with a large amount of shared memory using OpenMP. The
OpenMP version does not use any I/O other than reading the 2D images and writing out the
reconstructed 3D reconstruction. This version will be modified to run on a GPU using
CUDA. In addition, we plan to develop a hybrid MPI and OpenMP parallel version of the
code that can be used on multi- and many-core clusters (Agulleiro and Fernandez, 2011;
Castano-Diez et al., 2008a; Xu et al., 2010).

Testing and Validation
In this section we present results on the testing and validation of our method using two data
sets: an artificially generated phantom, and a representative SXT data set. The test phantom
was generated using a combination of Matlab scripts and functions from a freely available
image reconstruction toolbox (Fessler, 1995; Fessler, 2009). The 3D phantom is modeled as
a water-filled glass tube in which there is an ellipsoidal cell that contains one high-contrast
and one low-contrast internal organelle. Nanoparticles attached to the outside wall of the
tube were built into the model for use in manual alignment procedures. The soft x-ray
absorption characteristics of the objects in the phantom were chosen to match those obtained
from SXT measurements of real cells. The axis of the capillary was chosen to lie
imprecisely along the y-axis of the volume. Projections were generated from this noiseless
phantom at 2 degree increments over 180 degrees. We then added noise to the projections
based on actual noise characteristics measured using the NCXT soft x-ray microscope,
XM2. In addition, we added random in-plane rotations to the phantom projection data. This
set of projections was used as the input for both the automatic alignment software as well as
for a manual alignment based on the included fiducial markers.

To test real SXT data, we used a set of projection images with fiducial markers. These data
served as the input for both automatic alignment and manual alignment based on fiducial
markers. We evaluated the quality of the aligned data using visual inspection of the digital
orthoslices through the reconstructed volume. A quantitative comparison was obtained using
a Fourier Ring Correlation (FRC) calculation using the “noise-compensated leave one out”
(NLOO) method of Cardone, Grunewald, and Steven (Cardone et al., 2005). This method
works best for data comprised of a limited number of projection images, and in our
experience this measurement has been more robust and informative than other FRC
methods.

Figure 5 shows one-pixel-thick orthoslices through the reconstructions of both the phantom
and the real SXT data set. We aligned the data using both manually selected fiducial
markers and the AREC3D software. For the AREC3D alignment results we used 100
iterations of projection matching. Because of the cylindrical geometry of our specimens we
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have an excellent way to visually measure the quality of an aligned data set. When viewed
along the tube axis, a well-aligned data set should provide a reconstruction of the capillary
tube wall, which is circular; a poor alignment makes the tube non-circular, and in some
cases completely discontinuous (compare to the results shown in Figure 3). The manual and
AREC3D aligned data sets as shown in Figure 5 yield nearly identical results, and in both
cases yield a nearly circular tube. A comparison of features in identical reconstructed slices
obtained by each method through the volume is difficult because, as will be discussed
below, the biggest difference between the manual and automatic alignment is the in-plane
rotation correction of the images. This means that a reconstruction based on AREC3D is at a
slightly different orientation to that obtained from manual alignment. Visual inspection
indicates that the reconstruction quality, although very similar, is marginally better for the
manual alignment.

To quantify the difference between the alignment correction obtained using manual fiducial
marker location and AREC3D, we have plotted the x and y position and in-plane rotation
alignment corrections as a function of projection angle for both manual and AREC3D
alignment of the SXT data set (Figure 6). The two methods give an equivalent alignment
correction for the phantom data (not shown) and for the real SXT data (with 100 iterations
used for the AREC3D alignment). Figure 6 also shows the difference between the x
translations for manual vs. AREC3D alignment, and we find that the difference follows a
sine curve; simply stated these two x alignments yield essentially identical volumes that are
slightly shifted from each other. We found that this agreement between manual and
AREC3D alignment holds for essentially all data sets tested. We believe this occurs because
we use a cylindrical specimen geometry with a lateral extent less than the field of view of
the microscope; and most data sets contain projection images with high-contrast edge
features, making the in-plane translational alignment of the data set in a direction normal to
this edge very straight forward.

The differences between manual and AREC3D alignment for y position and in-plane
rotation corrections are more significant. Although the difference curve follows a sine curve,
greater fluctuation is observed. This indicates that an accurate alignment in the y-direction is
more difficult to achieve in the absence of image features that have a strong contrast jump in
the y direction. The rotation parameter is much smoother in the manual alignment due to a
grouping parameter available in the IMOD software (Kremer et al., 1996). This parameter
forces a smooth transition of the rotation parameter between projections. We empirically
found that using this grouping parameter produces better reconstructions. A similar
smoothing function will be implemented in future versions of the AREC3D software. In
Figure 7 we demonstrate improvements in the reconstruction quality based on the number of
iterations used for projection matching. Distortions can be seen clearly in the cell walls at
the top of the two cells. These discontinuities vanish nearly completely with increased
iteration number. Subcellular organelles, such as the nucleus, nucleolus, vacuoles and lipid
bodies, can be clearly seen in both automatic and manual alignment.

Finally we compare reconstruction quality in manual alignment and AREC3D alignment
using a noise compensated leave one out method. In this method, reconstructions are
calculated based on a projection stack with one projection angle missing. An approximation
to the deleted projection is generated from the reconstructed volume and compared to the
original, omitted projection using standard FRC methods (Saxton and Baumeister, 1982).
This process is repeated every ten images and the results are averaged, as shown in Figure 8.
For the microscope settings used for data collection in this work (32 nm pixel size), and with
a FRC threshold of 0.5, the resolution obtained for the different reconstruction methods is 87
nm for the manually aligned data and 94 nm for the AREC3D aligned data. Despite some
differences in the y-shifts and in-plane rotations, the overall quality of the reconstruction
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obtained using AREC3D is satisfactory for data analysis (e.g. segmentation). For analyses
requiring the best resolution or optimized contrast the AREC3D derived alignment
parameters can be used as the initial input to a more thorough analysis procedure. For
instance, with human intervention “bad” projections caused by an uncontrolled seismic
noise could be removed from the data prior to alignment, leading to improvement over
automatic procedures.

Discussion
Development and implementation of the AREC3D software package are significant steps
forward for high throughput soft x-ray tomography. Tight integration of automatic
alignment and tomographic reconstruction has enabled investigators using SXT at the
NCXT to obtain almost real-time feedback on the data as it is being collected using only a
few iterations of projection matching in AREC3D. An increased number of iterations can be
used for later refinement. The prompt reconstructions obtained using AREC3D are
invaluable to investigators performing SXT experiments; by using binned images rather than
full-resolution images, reconstructions could be obtained even more quickly. The ability to
obtain high-resolution cellular tomograms while examining a large number of cells under
different conditions enables intelligent decision making during the experiment.

In many cases, the volumes obtained after convergence of the algorithm are sufficient for
further processing; in some cases, they are of sufficient quality to allow selection of a few
data sets that can be reconstructed using fiducial markers to get improved resolution. SXT
image processing will continue to leverage off state-of-the-art developments in electron
tomography, but the unique ability to examine large numbers of cells, and the enormously
relaxed demands on specimen geometry, makes it necessary to develop new software
optimized for SXT.

AREC3D is a small but significant component of an automated data analysis pipeline for
high-throughput SXT. As the number of biological soft x-ray microscopy facilities increases
(Pereiro et al., 2009), there will be many additional creative contributions to the portfolio of
software tailored to SXT. New software is required for virtually every aspect of the SXT
data processing pipeline, from the difficult problem of automatic segmentation to data
knowledge bases (DOE, 2010) for archiving and mining the unique data obtained with SXT
and with correlated high N.A cryolight fluorescence microscopy (McDermott et al., 2009).
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Figure 1.
Simplified diagram illustrating an example of a rotational error that occurs during collection
of images for a tomographic data set. The experimental rotational axis (y) is offset from the
assumed reconstruction axis (Y) by angle α, ωi is the angle of the ith projection image. The
X and Y axes are parallel to the CCD pixel rows and columns, respectively. Additional
misalignments can occur due to other rotation and translation stage errors.
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Figure 2.
Projection images of a capillary filled with S. cerevisiae yeast cells. The images were taken
at 0 and 180 degrees. The angular deviation of the experimental rotation axis (y) can be
estimated by measuring the angle between the tube edges and Y axis, with β1 the angle for
the 0-degree projection and β2 the 180-degree projection. The tube wall is coated with gold
markers used as fiducial markers for manual alignment. Scale bar = 1 um.
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Figure 3.
Digital orthoslices through tomographic reconstructions of a yeast cell where projections
were aligned by cross-correlation (left) and manual fiducial alignment (right). Orthoslices
shown were from different positions along the tube axis. Distortions are clearly visible in the
images aligned by cross-correlation shown on the left. Scale bar 1 micrometer. Ice crystals
seen on the surface of the tube are from contamination during specimen transfer to the x-ray
microscope; they do not interfere with imaging due to the highly penetrating nature of x-rays
at the imaging energy.
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Figure 4.
An overview of the methodology we use for automatic alignment of projections prior to soft
x-ray tomographic reconstruction. First, each image in the projection stack is aligned to the
projection images from adjacent angles by cross correlation. This allows the construction of
a coarsely aligned projection image stack by applying transforms to the original images.
Second, the position of the center of rotation with respect to the images is determined and a
global in-plane rotation is determined. Third, an initial tomographic reconstruction is
generated. Fourth, at each angle at which a projection image was collected in the original
data set, a re-projection is generated from the reconstructed 3D model volume. Fifth, these
re-projections are compared with the original projection images, and the transform needed to
align each original projection to the re-projection from the model at that angle is refined.
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Finally, steps three through five are repeated iteratively; with each iteration, the
reconstructed volume improves as the alignment errors decrease.
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Figure 5.
Orthoslices through the reconstructions of both the phantom (A) and the soft x-ray
tomography data (B), using both automatic alignment (top) and manual alignment method
(bottom). Slices were taken at different positions along the tube axis. Scale bar = 1 um.
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Figure 6.
Graph of the x and y shifts and in-plane rotations as a function of projection angle for soft x-
ray tomography data (left) and the difference between each alignment parameter as
determined by manual fiducial alignment or AREC3D automatic alignment (right)

Parkinson et al. Page 18

J Struct Biol. Author manuscript; available in PMC 2013 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
Othoslices along the rotation axis through the reconstruction using different numbers of
iterations of projection matching. Number of iterations, top: 2, 5, 10, 25 (left to right);
bottom 50, 75, 100 (left to right) and manual alignment (bottom, far right). Scale bar = 1 um.
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Figure 8.
Comparison of Fourier ring correlation (FRC) curves calculated with the leave-on-out
method (data has 32 nm pixel size). The dotted line indicates the 0.5 threshold. Manual
alignment shows slightly better results than AREC3D automatic alignment with 100
iterations.
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