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Abstract
Purpose—To examine gene expression differences between pre- and post-NST specimens of
breast cancers and identify biological changers that may lead to new therapeutic insights.

Methods—Gene expression data from pre-chemotherapy fine needle aspiration specimens were
compared to resected residual cancers in 21 patients after 4-6 months of NST. We removed
stroma-associated genes to minimize confounding effects. PAM50 was used to assign molecular
class. Paired t-test and gene set analysis were used to identify differentially expressed genes and
pathways.

Results—The ER and HER2 status based on mRNA expression remained stable in all but two
cases and there were no changes in proliferation metrics (Ki67 and PCNA expression). Molecular
class changed in 8 cases (33.3%) usually to normal-like class and which was associated with low
residual cancer cell cellularity. The expression of 200-600 probe sets changed between baseline
and post-NST samples. In basal-like cancers, pathways driven by increased expression of PI3K,
small G proteins and CAMK2 and energy metabolism were enriched while immune cell-derived
and the sonic hedgehog pathways were depleted in residual cancer. In non-basal-like breast
cancers, notch signaling and energy metabolism (e.g. fatty acid synthesis) were enriched and sonic
hedgehog signaling and immune-related pathways were depleted in residual cancer. There was no
increase in epithelial mesenchymal transition or cancer stem cell signatures.

Conclusions—Our data indicates that energy metabolism related processes are up-regulated and
immune related signals are depleted in residual cancers. Targeting these biological processes may
represent promising adjuvant treatment strategies for patients with residual cancer.
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Introduction
Neoadjuvant systemic therapy (NST) provides an opportunity to directly assess the
chemotherapy sensitivity of breast cancer and also benefits patients with tumor down
staging and lesser surgery.1 Residual cancer volume after NST carries important prognostic
information, and attaining a pathologic compete response (pCR: absence of invasive cancer
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in the breast and lymph nodes) heralds excellent long term survival.2-5 Conversely, patients
with residual cancer have variable prognosis. Some patients, particularly those with estrogen
receptor (ER)-positive cancer have good survival despite residual cancer, others, particularly
those with triple receptor negative cancer have poor prognosis if they have residual
disease.3-5 NST with anthracycline and/or taxane-containing regimens results in pCR rates
between 6% to 30% depending on tumor grade and receptor status.6-8 Because of the clear
association between residual cancer burden and survival, NST is an in-vivo screen for
efficacy of neoadjuvant chemotherapies. However, despite the well recognized poor
prognosis of ER- and HER2-negative patients with residual cancer after neoadjuvant
chemotherapy, no effective adjuvant therapy exists for this population.

One approach to increase treatment efficacy is to develop regimens that induce higher rates
of pCR; the combination of trastuzumab and chemotherapy represents a successful example
of this approach.9 Another strategy could be to develop biologically targeted post-NST,
adjuvant therapies that exploit the vulnerabilities of the residual cancer. Such approach will
first require detailed molecular characterization of residual cancer and definition of
targetable molecular pathways. The purpose of the current analysis was to compare matched
gene expression profiles of pretreatment cancer with residual cancer after NST. We assessed
changes in molecular class defined by the PAM50 classifier; changes in ER, Ki67 (PCNA),
and HER2 status based on mRNA expression and also identified individual genes and gene
sets that were differentially expressed between the matched specimens to define molecular
pathways that appear to be enriched in post-NST residual cancer.

Methods
Patients and Tumor tissues

Pre-chemotherapy fine needle aspirates (FNA) were collected in the context of a prospective
biomarker discovery program conducted at MD Anderson Cancer Center. Matching post-
chemotherapy frozen surgical specimens were retrieved from the institutional tumor bank,
patients with pCR were excluded from the search. We identified 25 cases with matching
specimens, 21 of these patients received NST. The remaining 4 cases with matching FNA
biopsy and surgical tissue without NST were used to estimate methodological variability in
repeat gene expression data from the same cancer. Patient characteristics for the 21 patients
who received NST are in Supplementary Table 1. The amount of residual cancer was
determined by routine pathology exam of lumpectomy or mastectomy specimens. In
addition, we also performed molecular class prediction on paired FNA and core needle
biopsies obtained during one biopsy session, without any intervening chemotherapy from 37
cancers to assess the sensitivity of the classification method to tissue sampling.10 This
research was approved by the institutional review board and all patients signed informed
consent to allow biomarker studies performed on their specimens.

RNA Extraction and Gene Expression Profiling
RNA was extracted from the FNA and surgical tumor samples using the RNAeasy Kit
(Qiagen, Valencia, CA). The amount and quality of RNA were assessed with DU-640 UV
Spectrophotometer (Beckman Coulter, Fullerton, CA), and they were considered adequate
for further analysis if the optical density260/280 ratio was ≥1.8 and the total RNA yield was
≥1μg. cRNA generation, second-strand cDNA synthesis and gene expression profiling with
Affymetrix HG-U133A gene chips (Santa Clara, CA) were performed as described
previously.10-12 The 25 matching pre- post-NST gene expression data is available under
GEO (Gene Expression Omnibus) accession number GSE 32072 and the 37 matching FNA
and core biopsy data is available under accession number GSE 32518.
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Data Analysis
All gene expression data was normalized with MAS5 algorithm, mean centered to 600 and
log2 transformed before further analysis. We removed from further analysis probe sets with
average expression values ≤ the lowest 25% to reduce noise from low expressed probe sets
and also excluded stroma related genes (n=1618 probe sets), (Supplementary Table 2) that
were defined in a previous publication.10 Stromal genes were removed from the analysis in
order to minimize false discovery due to the different tissue composition of the pretreatment
FNA and post-chemotherapy surgically resected tissues.13 Paired t-test was used to identify
differentially expressed genes between cohorts and false discovery rates (FDR) were
calculated by the Benjamini and Hochberg permutation method.14 Differentially expressed
genes were defined from the entire data set as well as from basal-like (n=9) and non-basal
like (n=12) cancers separately. The function of the differentially expressed genes were
mapped to biological pathways using the Ingenuity Pathway Analysis software (IPA,
http://www.ingenuity.com/). We also examined changes in the mRNA expression values of
ESR1 (“205225_at”) and ERBB2/HER2 (“212022_s_at”) receptors and the proliferation
markers Ki67 (,“216836_s_at”) and PCNA (201202_at). An ESR1 mRNA probe set
expression value of >10.18 were considered as ER-positive, and HER2 probe set expression
value >12.54 were considered HER2-positve based on a previously established
thresholds.10,15 Molecular class assignment was performed by using the PAM50 method,
briefly, we calculated Spearman’s rank correlation between each sample and each subtype
centroid and assigned the class of the most highly correlated centroid to each sample. 16 Six
(ANLN, CDCA1, CXXC5, GPR160, TMEM45B, UBE2T) of the 50 genes that are included in
the PAM50 predictor could not be mapped to the Affymetrix HGU133A chip, the remaining
44 genes were used for molecular class prediction. PAM50 class concordance rate was
calculated using the number of matched pairs that were assigned to the same subtypes
divided by the total number of matched pairs. We also used gene set analysis (GSA) to
assess changes in a priori defined gene set before and after chemotherapy.17 In this analysis
we included 235 canonical biological pathways from IPA and two additional gene sets
(Mego et al., n=254 genes, Creighton et al., n=230 genes) previously reported to be
associated with residual disease after NST in breast cancer (Supplementary Table 3).18,19

All analysis was performed using BRB Array Tools v 4.1.0
(http://linus.nci.nih.gov/BRB-ArrayTools.html) and R software v 2.7.2
(http://www.r-project.org).20 Significance was estimated with permutation test (n=1000).
The null hypothesis was that the average degree of differential expression of members of a
given gene set between the pre- and post-NST samples was the same as expected from a
random set of genes of similar size.

Results
Changes in estrogen receptor and HER2 expression and proliferation measures

First, we assessed changes in individual molecules with therapeutic and prognostic
relevance. Pre- and post-treatment ER and HER2 levels were highly correlated, the
Spearman’s rank correlation coefficients were R=0.706 and 0.836, respectively. The ER
status before and after NST changed from ER-negative to ER-positive on one case and from
ER-positive to -negative in another case (Figure 1A). HER-2 status also changed in two
cases in a similar manner (Figure 1B). Interestingly, among the HER2-negative (n=18)
cancers ERBB2 mRNA levels were slightly but significantly higher in the post-NST
samples (P=0.011, unadjusted for multiple comparisons). However, this was not sufficient to
alter HER2 status in any but one case indicating relative stability and robustness of ER and
HER2 status. The pre- and post treatment expression levels of proliferation markers Ki67
and PCNA were moderately correlated, Spearman’s rank correlation coefficients were
R=0.301 and 0.395, respectively (Figures 1C and 1D). There were no significant differences
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in proliferation measures between pre- and post-NST samples across all cases or when ER-
positive and negative cases were examined separately (data not shown). The ER, HER2 and
Ki67 or PCNA expression levels did not change significantly in any of the 4 control
specimens that received no NST.

Changes in molecular class before and after chemotherapy
Next, we examined the stability of molecular class in the 21 pre- and post-NST specimens.
Table 1 shows the class assignment of each sample including the correlation values to each
reference class centroid (the larger the correlation coefficient, the greater similarity the
sample has to a given centroid and class is determined by the largest coefficient). There
were eight cases in which the molecular subtype by PAM50 changed between pre- and post-
chemotherapy samples corresponding to an overall concordance rate of 62%. Most of the
time (6 of 8 samples), the change was to normal-like cancer in the post-NST sample; this
was accompanied by an increase in the correlation coefficient for the normal-like centroid
and decrease in the correlation to the original class centroid. In 3 cases the molecular class
changed from basal-like to normal, in 2 cases from luminal A to Normal, and in one case
each from HER2-enriched to normal. The residual cancer cellularity in many of these cases
were low, 10%, 20%, 30% (in two cases it remained relatively high 50% and 60%) (Table
1). One case changed from HER2-enriched to luminal B, and another from normal to basal-
like. In four cases the changes in the correlation metrics were quite large indicating
substantial change in the gene expression pattern of the 44 genes that were used for
classification. In the remaining cases, relatively small scale changes in correlation values
altered the class assignment that suggests less than ideal robustness of the class assignment
method under these circumstances. When PAM50 was applied to the baseline FNA and the
surgical specimen of the four control cases there were no changes in the molecular subtype
of the pairs. To further assess the effect of tissue sampling on molecular class assignment,
we also applied the PAM50 predictor to 37 matching FNA and core biopsies that were
collected simultaneously before any chemotherapy.10 Molecular class changed for the same
tumor depending on sampling method in 6 cases corresponding to an overall concordance
rate of 83% (Supplementary Table 4). These observations indicate that alterations in tissue
cellularity due to chemotherapy or due to sampling method can introduce substantial
variability to molecular class prediction.

Enriched and depleted molecular pathways in residual cancers
To identify gene expression changes in residual cancer compared to pre-treatment samples
we performed paired sample t-test on 15,062 probe for all cases (n=21) and also separately
for the basal-like (n=9) and non-basal-like (n=12) cancers. When all cancers were analyzed
together, 532 probe sets were differentially expressed between pre- and post-treatment
samples at FDR ≤0.005 (corresponding to P-value ≤0.0003), 271 were over-expressed and
261 were under-expressed in residual cancer relative to pre-treatment samples
(Supplementary Table 5). When basal-like cancers were considered only, 77 probe sets were
over-expressed and 115 were under expressed. In non-basal-like cancers the corresponding
numbers were 149 and 135, respectively (Supplementary Table 5). To find out what
molecular pathways may be affected by these transcriptional changes, we mapped the over-
and under expressed genes into biological pathways by IPA. Table 2 lists the ten canonical
pathways that were up- or down-regulated in the residual cancers. Results are presented for
all cancers as well as for the basal-like and non-basal like subsets. When cancers were
analyzed without molecular stratification, the top 10 up-regulated pathways in residual
cancer included Estrogen Receptor Signaling and nuclear receptor signaling (e.g. PPAR
Signaling, PPARα/RXRα Activation, Nur77 Signaling in T Lymphocytes, and Aryl
Hydrocarbon Receptor Signaling) as well as the Notch and WNT signaling pathways.
Pathways involved in Hedgehog signaling, PI3K/AKT, ATM and cell cycle control were
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depleted in the residual cancers. It is likely that the different molecular subtypes of breast
cancer may use different survival pathways or rely on distinct mechanisms of drug
resistance and therefore we also performed the same pathway analysis basal-like and non-
basal-like breast cancers separately. Metabolic pathways (glutamate metabolism,
chondroitin sulphate biosynthesis, propanoate metabolism) were the most consistently up-
regulated in basal-like residual cancers, the other up-regulated pathways were united by the
key functional roles of increased PI3K, small G-protein and calcium/calmodulin-dependent
protein kinase II alpha (CAMK2) expression. Notch, hypoxia and TNF and ILK signaling
were up-regulated in non-basal-like cancers. Sonic hedgehog signaling was consistently
depleted in residual cancers in both molecular types and the depletion of various immune
related pathways was particularly prominent in basal-like cancers (Lipid Antigen
Presentation by CD1, Dendritic cell maturation, FC Receptor-mediated phagocytosis and
natural killer cell signaling).

To gain further insight into the molecular changes that occur in residual cancer specimens,
we also performed gene set analysis for 234 canonical biological pathways and two gene
signatures that were previously reported to be associated with residual disease after
chemotherapy in breast cancer.18,19 When all cases were analyzed together seven gene sets
were over-expressed and 12 were under-expressed at p-value ≤ 0.05, in post-NST samples
(Table 3). When basal-like cancers were examined separately, again numerous metabolic
pathways emerged as up-regulated in residual cancers and various immune pathways
dominated the down-regulated gene sets. In non-basal-like cancers, 11 gene sets were over-
expressed and five gene sets were under-expressed in post-NST (P≤0.05). The results were
broadly consistent with the pathways that were derived from differentially expressed genes.
Fatty acid biosynthesis was the only common up-regulated pathway in both basal- and non-
basal-like residual cancers and the sonic hedgehog signaling was the only common down-
regulated pathway (Table 3, Figure 2). None of the two previously reported residual cancer-
associated gene sets showed any significant enrichment before or after therapy in any
disease subset (Supplementary Table 6).

It has been suggested that the expression of genes involved with epithelial-mesenchymal
transition (EMT) may be altered in cancers that survived chemotherapy.19 To test this
hypothesis we compared the expression of 8 key EMT genes (CD44, PCNA, CDH1, SNAIL,
SLUG, TWIST, SOX9, and TGFβ) in pre- and post-NST samples. When all cancers (n=21)
were examined together (Table 4) only SLUG, SOX9 and TWIST were significantly over-
expressed (P=0.029, 0.001, and 0.004 respectively, unadjusted for multiple comparisons),
and SNAI1 was significantly under-expressed (P=0.001) in post-NST samples. When basal-
like and non-basal-like cancers were examined separately, CD44, SLUG SOX9, and TWIST
were significantly overexpressed (P=0.012, 0.050, 0.010, and 0.028 respectively), and
SNAI1 was significantly under-expressed (P=0.003) in residual post-NST non-basal-like
cancers. In basal-like cancers no gene was significantly altered (Table 4).

Discussion
Our aim was to determine gene expression differences between primary tumor and
corresponding residual cancer after NST. We performed gene expression profiling on
baseline FNAs and surgical resections from residual cancer after four to six months of
cytotoxic chemotherapy. Any such analysis strategy is fraught not only by the limited
number of tumors analyzed, but also with technical challenges that increase the probability
for false discovery. In our case, baseline biopsies were obtained with an FNA and residual
cancers represented surgically resected tissues. Tissue sampling methods can have a
profound effect on gene expression results from the same cancer.13 Also, chemotherapy
alters tumor cellularity in most cancers shifting tissue composition towards stromal and
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fibrotic components in post-NST samples.5 These effects plus the inevitable technical noise
in repeat gene expression profiling can mask real biological changes in mRNA expression
levels caused by NST in small studies. We tried to minimize tissue composition-related
confounders by removing 1618 probe sets that we previously found to be highly associated
with tissue sampling and stromal “contamination”.10 We also filtered the lowest expressed
25% of probe sets because these may be the most susceptible to technical noise in repeat
measurements.21

After controlling for these confounders, ER and HER2 status based on mRNA expression
remained stable in all but two cases (10%). There were also no significant changes in two
single gene proliferation metrics, the expression of Ki67 and PCNA. Conversely, molecular
class changed in eight cases (38%) mostly to normal-like subtype. This shift to normal-like
in post-NST specimens were observed in cancers with the lowest cancer cell cellularity in
residual disease and probably reflect a major shift in tumor composition. Since pretreatment
FNAs contain mostly neoplastic cells and are devoid of stroma, our analysis is biased to
detect increase in stromal components in the surgical specimens even after our best attempt
to control for this variable (none of the PAM50 classifier genes were included in our
stromal-associated and therefore filtered gene list).22 Nevertheless, these results indicate that
molecular classification is susceptible to tissue sampling effects and this should be
considered when interpreting results from any repeat measurement of a tumor.

Using a stringent FDR threshold of 0.005, we found 200 to 600 probe sets differentialy
expressed between baseline and post-NST samples. When corresponding genes were
mapped to biological pathways some interesting observations emerged. In basal-like
cancers, pathways driven by PI3K, small G proteins, CAMK2, and several energy
metabolism and biosynthetic pathways were enriched in post-NST samples, while immune
cell-derived pathways and the sonic hedgehog pathway were depleted. The same broad
picture emerged when gene set analysis was applied to the data. In non-basal-like breast
cancers, notch signaling and also energy metabolism through fatty acid synthesis were up-
regulated and sonic hedgehog signaling as well as several immune-related pathways were
depleted in residual cancers. However, due to the small sample size of this study, the
variable cytotoxic therapies that these patients received and the possible tissue sampling
related confounders, these observations remain hypothesis generating until confirmed in
repeated observations and in larger studies. We also note that in our analysis, we could not
observe an increase in EMT related features or cancer stem cell signatures in residual
cancers as suggested previously.18,19

Two strong themes emerged from this analysis with potential therapeutic implications, the
enrichment of energy and metabolism related processes in residual cancers that were most
prominent in basal-like cancers and the depletion of immune related signals. There is
increasing interest in deciphering the deregulation of energy metabolism in cancer and
attempts are being made to develop metabolism-targeted drugs.23 Our data suggests that in
response to cytotoxic therapy several metabolic pathways become up-regulated in residual
cancer tissue. We hypothesize that the increased metabolic activity may enable cells to
survive treatment and targeting these processes may enhance the efficacy of standard
chemotherapy regimens. It is also increasingly evident that the presence of immune cells in
the tumor microenvironment carries prognostic value, particularly among ER-negative and
highly proliferative ER-positive cancers, and is also associated with higher probability of
pCR to NST.10,24,25,26 Since residual cancer tissue becomes depleted of immune related
transcriptional signals, probably due to the systematic immunosuppressive nature of
chemotherapy, stimulating post-NST immune response may become a fruitful adjuvant
therapeutic strategy for patients with residual cancer and high risk of recurrence.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance

Neoadjuvant systemic therapy (NST) provides an opportunity to directly assess the
therapy response in breast cancer. Residual cancer volume after NST carries important
prognostic information. By examine gene expression differences between pre- and post-
NST specimens of breast cancers we could identify biological changers that may lead to
new therapeutic insights for a biologically resistant disease. By using gene expression
data from pre-chemotherapy fine needle aspiration specimens and compared them to
surgically resected residual cancers we found that expression of 200-600 probe sets
changed between baseline and post-chemotherapy samples and that energy metabolism
related processes are up-regulated and immune related signals are depleted in residual
cancers. Targeting these biological processes may represent promising adjuvant treatment
strategies for patients with residual cancer.
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Figure 1.
Gene expression levels of ESR1 (A), ERBB2 (B), MiK67(C) and PCNA (D) in pre- and
post- neoadjuvant chemotherapy samples (n=21). P-values were calculated from paired t-test
comparing pre- and post-treatment groups and are not adjusted for multiple comparisons.
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Figure 2.
Ingenuity Pathway Maps of the Fatty Acid Biosynthesis gene set that was enriched in both
the basal-like (A) and non-basal like residual cancers (B) and the Sonic Hedgehog Signaling
gene set that was depleted in basal-like (C) as well as non-basal-like (D) residual cancers.
Red = genes over-expressed in residual samples; green = genes under -expressed in residual
samples; grey = genes with no statistically significant differential expression (P<.01); white
= pathway member not available in data. Mixed colors represent variable association for the
same gene depending on probe set (6.3.4.14=biotin carboxylase 6.4.1.2= acetyl-CoA
carboxylase).
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Table 2

Top 10 biological pathways from differentially expressed genes

Over-expression in post-NST Under-expression in post-NST

Canonical pathways P-value Canonical pathways P-value

All cases (n=21)

1 PPAR Signaling 0.0029 ATM Signaling 0.0001

2 PPARα/RXRα Activation 0.0032 Hypoxia Signaling in the Cardiovascular System 0.0005

3 Integrin Signaling 0.0033 Cell Cycle: G2/M DNA Damage Checkpoint Regulation 0.0005

4 Nur77 Signaling in T Lymphocytes 0.0079 IL-1 Signaling 0.0005

5 O-Glycan Biosynthesis 0.0091 Sonic Hedgehog Signaling 0.0009

6 Circadian Rhythm Signaling 0.0120 D-glutamine and D-glutamate Metabolism 0.0014

7 Estrogen Receptor Signaling 0.0141 PI3K/AKT Signaling 0.0019

8 Wnt/β-catenin Signaling 0.0155 IGF-1 Signaling 0.0037

9 Aryl Hydrocarbon Receptor Signaling 0.0174 Polyamine Regulation in Colon Cancer 0.0044

10 Notch Signaling 0.0195 Regulation of eIF4 and p70S6K Signaling 0.0055

Basal like cases (n=9)

1 CREB Signaling in Neurons 0.0032 Role of NFAT in Regulation of the Immune Response 0.0007

2 TR/RXR Activation 0.0035 Mismatch Repair in Eukaryotes 0.0046

3 Thrombin Signaling 0.0044 Lipid Antigen Presentation by CD1 0.0065

4 Glutamate Metabolism 0.0069 Systemic Lupus Erythematosus Signaling 0.0095

5 Huntington’s Disease Signaling 0.0072 Sonic Hedgehog Signaling 0.0148

6 Chondroitin Sulfate Biosynthesis 0.0117 Dendritic Cell Maturation 0.0166

7 CXCR4 Signaling 0.0170 Role of CHK Proteins in Cell Cycle Checkpoint Control 0.0191

8 Propanoate Metabolism 0.0170 Aminoacyl-tRNA Biosynthesis 0.0209

9 Glioma Invasiveness Signaling 0.0178 Fcγ Receptor-mediated Phagocytosis in Macrophages and
Monocytes

0.0214

10 GM-CSF Signaling 0.0209 Natural Killer Cell Signaling 0.0275

Non-Basal like cases (n=12)

1 Notch Signaling 1.26E-05 IL-1 Signaling 0.0001

2 Thrombopoietin Signaling 0.0105 Androgen Signaling 0.0002

3 ILK Signaling 0.0162 BMP signaling pathway 0.0002

4 Hypoxia Signaling in the Cardiovascular System 0.0166 RAR Activation 0.0002

5 Agrin Interactions at Neuromuscular Junction 0.0182 Amyloid Processing 0.0005

6 Caveolar-mediated Endocytosis Signaling 0.0219 Molecular Mechanisms of Cancer 0.0008

7 BMP signaling pathway 0.0219 Corticotropin Releasing Hormone Signaling 0.0011

8 O-Glycan Biosynthesis 0.0224 Cardiac Hypertrophy Signaling 0.0011

9 TNFR2 Signaling 0.0224 Sonic Hedgehog Signaling 0.0012

10 Aryl Hydrocarbon Receptor Signaling 0.0245 Melatonin Signaling 0.0014
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Table 3

Gene set analysis of 236 gene sets between post- and pre-NST specimens (P-value ≤ .05)*

Gene sets Number of genes P-value Elevated components

All samples (n=21)

1 Notch Signaling 44 0.008 Post

2 Circadian Rhythm Signaling 37 0.021 Post

3 Fatty Acid Biosynthesis 17 0.032 Post

4 PPAR__RXR_ Activation 261 0.036 Post

5 CXCR4 Signaling 220 0.038 Post

6 Neurotrophin_TRK Signaling 101 0.040 Post

7 O-Glycan Biosynthesis 26 0.048 Post

1 Sonic Hedgehog Signaling 36 0.002 Pre

2 p38 MAPK Signaling 135 0.009 Pre

3 Parkinson’s Signaling 19 0.019 Pre

4 Lysine Biosynthesis 8 0.020 Pre

5 Nicotinate and Nicotinamide Metabolism 120 0.025 Pre

6 Role of PKR in Interferon Induction and Antiviral Response 69 0.025 Pre

7 Methionine Metabolism 31 0.033 Pre

8 IL-10 Signaling 87 0.039 Pre

9 Natural Killer Cell Signaling 144 0.046 Pre

10 Role of RIG1-like Receptors in Antiviral Innate Immunity 54 0.049 Pre

11 B Cell Receptor Signaling 228 0.050 Pre

12 IL-15 Signaling 85 0.050 Pre

Basal samples (n=9)

1 CXCR4 Signaling 220 0.005 Post

2 Thrombin Signaling 268 0.010 Post

3 Cardiac Hypertrophy Signaling 302 0.014 Post

4 Fatty Acid Biosynthesis 17 0.024 Post

5 Ascorbate and Aldarate Metabolism 20 0.027 Post

6 Propanoate Metabolism 82 0.031 Post

7 Neurotrophin_TRK Signaling 101 0.039 Post

8 TR_RXR Activation 119 0.039 Post

9 IGF-1 Signaling 138 0.045 Post

10 Alanine Metabolism 55 0.046 Post

1 Lysine Biosynthesis 8 0.001 Pre

2 Natural Killer Cell Signaling 144 0.001 Pre

3 Fc Epsilon RI Signaling 134 0.002 Pre

4 TREM1 Signaling 71 0.002 Pre

5 B Cell Receptor Signaling 228 0.005 Pre

6 Role of NFAT in Regulation of the Immune Response 272 0.006 Pre
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Gene sets Number of genes P-value Elevated components

7 Fc Receptor-mediated Phagocytosis in Macrophages and Monocytes 153 0.007 Pre

8 IL-10 Signaling 87 0.012 Pre

9 Dendritic Cell Maturation 188 0.018 Pre

10 p38 MAPK Signaling 135 0.018 Pre

11 CTLA4 Signaling in Cytotoxic T Lymphocytes 135 0.027 Pre

12 Sonic Hedgehog Signaling 36 0.027 Pre

13 IL-15 Signaling 85 0.028 Pre

14 Role of PKR in Interferon Induction and Antiviral Response 69 0.030 Pre

15 IL-8 Signaling 217 0.033 Pre

16 Fc_RIIB Signaling in B Lymphocytes 54 0.037 Pre

17 CD28 Signaling in T Helper Cells 199 0.041 Pre

18 T Helper Cell Differentiation 57 0.044 Pre

19 Cytotoxic T Lymphocyte-mediated Apoptosis of Target Cells 51 0.048 Pre

20 NF-_B Signaling 183 0.048 Pre

Non Basal samples (n=12)

1 Circadian Rhythm Signaling 37 0.005 Post

2 Notch Signaling 44 0.006 Post

3 O-Glycan Biosynthesis 26 0.011 Post

4 Chondroitin Sulfate Biosynthesis 38 0.017 Post

5 Caveolar-mediated Endocytosis 119 0.027 Post

6 Thrombopoietin Signaling 84 0.029 Post

7 Integrin Signaling 280 0.034 Post

8 Actin Cytoskeleton Signaling 267 0.035 Post

9 Fatty Acid Biosynthesis 17 0.041 Post

10 PPAR Signaling 124 0.043 Post

11 Semaphorin Signaling in Neurons 73 0.044 Post

12 Sonic Hedgehog Signaling 36 0.003 Pre

13 Role of RIG1-like Receptors in Antiviral Innate Immunity 54 0.020 Pre

14 Phototransduction Pathway 49 0.026 Pre

15 BMP signaling pathway 116 0.031 Pre

16 Airway Inflammation in Asthma 3 0.044 Pre

*
P-value was calculated by Efron-Tibshirani’s GSA test (under 1000 times permuations); Overlapping gene sets between Basal and Non-basal are

highlighted.
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