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Abstract

Purpose of Review—This review will examine the unique susceptibility of premature infants to
oxidative stress, the role of reactive oxygen species (ROS) in the pathogenesis of common
disorders of the preterm infant, and potential for therapeutic interventions using enzymatic and/or
non-enzymatic antioxidants.

Recent Findings—Oxidative stress is caused by an imbalance between the production of ROS
and the ability to detoxify them with the help of antioxidants. The premature infant is especially
susceptible to ROS-induced damage because of inadequate antioxidant stores at birth, as well as
impaired upregulation in response to oxidant stress. Thus, the premature infant is at increased risk
for the development of ROS-induced diseases of the newborn, such as bronchopulmonary
dysplasia, retinopathy of prematurity, necrotizing enterocolitis, and periventricular leukomalacia.

Summary—~Potential therapies for ROS-induced disease include both enzymatic and non-
enzymatic antioxidant preparations. More research is required to determine the beneficial effects
of supplemental antioxidant therapy.
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INTRODUCTION

Under normal conditions, a delicate balance exists between the production of ROS and the
antioxidant defenses that protect cells in vivo. The balance may be disturbed by increased
ROS production or an inability to quench production because of inadequate antioxidant
defenses. There is increasing evidence that links early exposure to oxidative stress with
potentially lifelong consequences (1). Increased generation of ROS can occur as a result of
many conditions affecting newborn infants, including hyperoxia, reperfusion, and/or
inflammation (Figure). The premature infant is especially susceptible to ROS-induced
damage for two major reasons. First, adequate concentrations of antioxidants may be absent
at birth. Increases in antioxidant capacity occur in the latter part of gestation in preparation
for the transition to extrauterine life. Second, the ability to increase synthesis of antioxidants
in response to hyperoxia or other oxidant challenges is relatively impaired. This can lead to
an increased risk for the development of ROS-induced diseases of the newborn, such as
bronchopulmonary dysplasia (BPD), retinopathy of prematurity (ROP), necrotizing
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enterocolitis (NEC), and periventricular leukomalacia (PVL) (2). This article will review
recent research involving ROS-mediated injury contributing to common neonatal disorders,
as well as possible future therapeutic interventions using antioxidants.

Normal Fetal and Neonatal Antioxidant Enzyme Maturation

Frank and Groseclose documented the development of antioxidant enzymes in the lungs of
rabbits during late gestation. Enzymes such as superoxide dismutase (SOD), catalase, and
glutathione peroxidase (GPx) are important in scavenging ROS and have been shown to
increase 150% during the last 15% of gestation (3). There are three forms of SOD that have
been identified: copper-zinc superoxide dismutase (Cu/ZnSOD), present primarily in the
cytoplasm, manganese superoxide dismutase (MnSOD) in the mitochondria, and
extracellular superoxide dismutase (EC-SOD) located in the extracellular spaces in adults,
but primarily intracellular in newborns.(4) The only known function of SOD is to convert
extremely reactive superoxide radicals to hydrogen peroxide and water. Catalase, GPx, and
glutathione reductase then convert hydrogen peroxide to water (Table).

Antioxidant enzyme expression generally increases in most fetal compartments throughout
the progression of pregnhancy. Qanungo and colleagues found that SOD, catalase, GPx, and
glutathione reductase activities increased with gestational age, as evidence of lipid
peroxidation decreased in human placental and fetal tissues (5). Development of the
antioxidant system during fetal life must also include redox signaling in the maintenance of
pregnancy through uterine-placental-fetal interactions (6). There is evidence of regulation of
antioxidant enzymes in the context of local nitric oxide (NO) generation via nitric oxide
synthases and downstream NO-dependent signaling in the placenta, critically important to
normal vascular development.

Preterm Birth and Oxidative Stress

Delivery constitutes a significant oxidative stress and the gestation of the newborn and
circumstances of delivery will affect the overall burden (7, 8). Premature delivery often
occurs before the normal upregulation of antioxidant systems and other ROS scavengers,
such as glutathione and ceruloplasmin. This is in addition to relatively deficient
uteroplacental transfer of nutrients important to antioxidant defenses and places the newborn
at particular risk of ROS-induced injury (9). MnSOD mRNA appears to be induced in the
fetal membranes following spontaneous labor and in the presence of chorioamnionitis (10).
The effects of inflammatory stimuli may or may not induce placental antioxidant expression,
depending on the stage of pregnancy. Antenatal corticosteroids used to accelerate lung
maturation in threatened preterm birth might also lead to increased activity of SOD, catalase,
and glutathione-S-transferase (11). This can help to counteract relative deficiencies in
antioxidants stemming from preterm birth.

Oxidative Stress and Adverse Pregnancy Outcomes

Oxidative stress has been suggested as a causative agent in pregnancy-related disorders,
such as recurrent pregnancy loss, pre-eclampsia, preterm premature rupture of membranes
(pPROM), intrauterine growth restriction (IUGR), and fetal death (12). In utero stressors
contribute to ROS production and resulting tissue damage. Markers of oxidative stress, such
as non-protein bound iron, have been measured in cord blood as an indicator of intrauterine
ROS production. These markers have been associated with the development of several
postnatal disease processes, suggesting that in utero oxidative stress is a significant risk
factor, especially in premature neonates (13). Identifying high risk neonates at birth may
allow for early treatment with antioxidants and possible prevention of further oxidant
damage. It is also reasonable to speculate that maternal deficiencies in antioxidant related
micronutrients could contribute to reproductive disorders. Antioxidant deficiencies could
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induce an imbalance between ROS and diet-dependent antioxidants and supplementation
may decrease this effect (14). However, randomized controlled trials using prenatal
supplementation with vitamins C and E have failed to show a reduction in the risk of
gestational hypertension or pre-eclampsia, and may in fact increase the risk of premature
rupture of membranes (15-17). These findings might be due to the timing of
supplementation after placentation has already occurred, inadequate dosing, or the fact that
other antioxidants may have better function. Further research is needed to identify methods
of decreasing oxidative stress in utero and reducing ROS induced diseases in the mother and
her newborn infant.

Interventions with Antioxidants

Supplementation with enzymatic and/or non-enzymatic antioxidants might have beneficial
effects in decreasing injury from excess production of ROS, particularly in disorders such as
bronchopulmonary dysplasia, retinopathy of prematurity, periventricular leukomalacia, and
necrotizing enterocolitis.

Bronchopulmonary Dysplasia—Although the pathogenesis of BPD is complex, studies
do support a role for ROS-mediated damage. Vitamins A, C, and E are important factors in
normal physiology as well as antioxidant defense (18). These vitamins are known to inhibit
ROS-induced lipid peroxidation and scavenge ROS. In infants with BPD, plasma p-carotene
and vitamin A concentrations are lower, likely reducing antioxidant protection. This may
account for higher plasma 3-nitrotyrosine and protein carbonyls in those preterm infants at
highest risk for developing BPD (19). Given that preterm infants are relatively deficient in
antioxidant defenses, exogenous antioxidants such as vitamins A, E and recombinant human
SOD (rhSOD) have been administered in attempts to prevent BPD (20). Although a
Cochrane meta-analysis suggests that supplementation with vitamin A reduces BPD,
neurodevelopmental and pulmonary outcomes at 18—-22 months corrected gestational age
(CGA) were not significantly different (21). Randomized controlled trials of vitamin E
supplementation have also failed to show a reduction in the incidence of BPD (22). Trace
elements, such as copper, zinc, iron, and selenium are also essential for normal antioxidant
enzyme function and supplementation with these nutrients could optimize total antioxidant
capacity (23). However, studies examining trace elements as active cofactors in extremely
low birth weight infants showed that lower trace element concentrations did not
substantially influence antioxidant enzyme concentration or the development of BPD. In
addition, typical diseases of prematurity, including BPD were not associated with decreased
antioxidant enzyme activities. (24)

Retinopathy of Prematurity—The developing retina in premature infants is particularly
susceptible to damage mediated by ROS, as evidenced in many animal studies. Oxygen
fluctuations can induce cells to express NADPH oxidase, which leads to increased ROS and
apoptosis of endothelial cells, contributing to the avascular retina. N-acetylcysteine (NAC)
has been shown to decrease lipid hydroperoxide (LHP) in a rat model, but was not found to
significantly reduce avascularity or clock hours of neovascularization (25). Repeated oxygen
fluctuations also increased retinal vascular endothelial growth factor (VEGF) and ROS.
Neutralizing VEGF bioactivity reduced neovascularization and tortuosity, and inhibiting
ROS with the NADPH oxidase inhibitor apocynin reduced the avascular retina by
interfering with apoptosis (26). Resveratrol is a phytoalexin produced by a variety of plants
in response to stress. Kim and associates investigated resveratrol as a nitric oxide-
mechanism modulator as well as caffeic acid for retinal neovascularization anti-angiogenic
activity and found some protective effects against the development of ROP (27). Further
research demonstrates that early blocking of peroxynitrite-mediated tyrosine nitration and
peroxynitrite formation by the use of epicatechin (a green tea extract) as well as NAC could
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also be considered a new therapeutic target for ischemic proliferative diseases of the retina
(28).

Periventricular Leukomalacia (PVL)—~Preterm infants are vulnerable to reperfusion-
type injury and accompanying oxidative stress due to decreased regulation of cerebral
perfusion. PVL is thought to develop after microglial activation leads to an accumulation of
markers of oxidation in oligodendrocytes, such as nitrotyrosine and protein carbonyls (29).
ROS have also been implicated in causing neuronal cell death. In vitro exposure to
hyperoxia induces apoptosis in oligodendroglial cells in a developmentally dependent
pattern. This is prevented by inhibition of lipoxygenase, with decreased expression of
myelin basic protein in vivo in hyperoxia-exposed rat pups (30). Maternal
lipopolysaccharide (LPS) exposure has been shown to stimulate the secretion of pro-
inflammatory markers in maternal serum and amniotic fluid of pregnant mice, mimicking
maternal infection. LPS-induced peroxisomal dysfunction depletes oligodendrocytes and
exacerbates cerebral white matter injury in premature infants. NAC pretreatment attenuates
this LPS-induced cerebral white matter injury by replenishment of reduced-GSH, ROS
scavenging, and maintenance of peroxisomal proliferation/function via a peroxisome
proliferators activated receptor-a (PPAR-a) dependent mechanism (31). LPS activates
microglia cells which induces cell death and greatly impairs oligodendrocyte development,
which may underlie selective white matter damage and hypomyelination in PVVL (32).
Melatonin has been studied as a neuroprotective agent in PVL in mouse models. In a recent
report, agomelatine and melatonin did not prevent the initial appearance of white matter
lesions, but they did promote secondary lesion repair. The effects of melatonin were only
observed when given within the first two hours following the insult. However, agomelatine
was still neuroprotective when administered eight hours after the insult. Although further
research is needed, this may represent a promising new therapy for prevention of PVL (33).

Necrotizing Enterocolitis—While the etiology of NEC is multifactorial, inflammation
and ROS production appear to play a key role. An increased incidence of NEC has recently
been noted in infants who are born to mothers with chorioamnionitis (34). These findings
suggest that prenatal infection/inflammation may predispose the intestine of the preterm
infant to the development of NEC. In a neonatal rat model of NEC, LPS administration led
to increased susceptibility to intestinal injury. This increase in intestinal injury appears to be
mediated in part by inducible nitric oxide synthase (iNOS) and can be attenuated with the
selective iNOS inhibitor aminoguanidine. During the early stages of NEC, NOS uncoupling
becomes progressively worse, favoring production of ROS, vasoconstriction, intestinal
ischemia, and NEC (35). It is possible that targeting iNOS or iNOS-derived NO may be of
therapeutic benefit in preventing NEC. Enteral glutamine alone or in conjunction with
arginine has been shown reduce oxidative stress in juvenile rat models. This occurs not only
in hypoxia — reoxygenation, but also in healthy newborn rats. Therefore, enteral glutamine
and arginine may be useful for preventing NEC in premature neonates, although further
experimental and clinical studies are needed (36).

Potential Antioxidant Therapies in Premature Neonates: Antioxidants are critical in
protecting against ROS-induced injury and several preclinical studies support antioxidant
supplementation. Non-enzymatic proteins (transferrin, ferritin, ceruloplasmin), enzymes
(superoxide dismutases, catalase, glutathione peroxidase), oxidizable molecules
(glutathione, vitamins E, A, C, carotenoids, flavonoids), and trace elements (copper, zinc,
selenium) all play a role in maintaining a delicate balance between ROS production and
oxidant damage to tissues and organs (18).
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Enzymatic: Enzymatic antioxidants are gestationally regulated, with premature newborns
having decreased expression relative to full term neonates. Multiple models using
transformed human alveolar epithelial cells have suggested that overexpression of
antioxidants prevents ROS-induced injury. Increased expression of either MnSOD or
CuZnSOD reverses the growth inhibitory effects of hyerpoxia in lung epithelial cells. (37).
Overexpression of SOD not only reduced ROS production, but also mitigated the activation
of the INK/AP1 pathway which has been implicated in ROS-induced mitochondrial injury
and apoptotic cell death (38). Melatonin is a pineal hormone that exhibits an indirect
antioxidant effect by supporting SOD and glutathione peroxidase activity as well as direct
effects through lipid peroxidation and scavenging oxygen-induced ROS (39). In a neonatal
rat model, melatonin reduced ROS production and increased antioxidant levels in hyperoxia-
induced lung damage, indicating a potential protective effect in BPD (40). Increasing SOD
and catalase (CAT) activities have consistently been associated with protection against
oxygen toxicity. Naturally derived commercial surfactants contain both SOD and CAT
activity in significant concentrations. By adding additional SOD and CAT to surfactant
preparations, the antioxidant effects are also potentiated (41). Pharmacologic antioxidant
supplementation was indirectly tested in preterm infants who received supplemental cysteine
in an attempt to stimulate glutathione synthesis. Despite significant increases in cysteine,
glutathione concentrations did not increase and ROS-induced injury was not prevented (42).
Davis and colleagues administered intratracheal rhSOD to premature infants. Although there
were no differences in the incidence of death or BPD, there was a significant decrease in the
number of patients who required asthma medications, had wheezing episodes, Emergency
Room visits, or re-hospitalizations at 1 year CGA compared to controls (43). The failure to
detect a significant difference in BPD was likely influenced by the absence of accepted
guidelines for the clinical use of oxygen, rather than a failure of rhSOD to work, as
evidenced by the improved outcomes at 1 year corrected age.

Non-enzymatic antioxidants: Resistance to oxidative stress also relies on non-enzymatic
pathways. Non-enzymatic antioxidants are depleted in response to ROS-mediated stress.
The effects of vitamin A are likely mediated through its action on retinol-binding protein
and the retinoic acid receptor. NAC is a precursor of the antioxidant glutathione and a large
multicenter trial showed no reduction in survival or incidence of BPD at 36 weeks CGA or
improved pulmonary function at term (44). Ceruloplasm, transferrin, and ferroxidase all aid
in the metabolism of iron, which can act as a potent oxidizing agent. Diminished function or
bioavailability of these proteins may predispose the preterm infant to increased production
of ROS (45).

New Antioxidants Under Investigation

There are multiple potential therapeutic antioxidants currently under investigation that could
benefit premature infants. One protein under investigation, Pon3, was shown in laboratory
studies to have antioxidant properties and to be up-regulated in rat, sheep, and human cord
blood late in gestation. More research is needed, but Pon3 could serve as a potential
therapeutic target in premature infants.(46) Clinical trials involving antioxidants currently
registered with the NIH at www.clinicaltrials.gov include supplementation of preterm
infants with lactoferrin and cysteine, examination of concentrations of beta-carotene, lutein,
and lycopene in preterm infants fed formulas with mixed carotenoids and the effects on the
developing eye, early administration of human erythropoietin in very preterm infants, NAC
administration to women with intra-amniotic infection and/or inflammation, early enteral
administration of vitamin E to extremely premature infants, and multiple trials involving
inhaled nitric oxide. The results from these trials may change the way we treat many
common neonatal conditions.
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CONCLUSIONS

A delicate oxidant/antioxidant balance exists in the fetus and newborn. This balance can tip
towards oxidant injury in the setting of preterm birth. Antioxidant enzymes are primarily
upregulated in the latter part of gestation and preterm birth is associated with an increased
generation of ROS. The use of supplemental antioxidants represents a logical strategy to
prevent or ameliorate injury from excess production of ROS, but studies in animal models
and in preterm infants have yielded mixed results. Caution must be taken since ROS are
critical second messengers in various cell signaling pathways that control normal cellular
functions, but strategies that maintain normal antioxidant balance may be beneficial to the
preterm newborn.
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A. FREE RADICAL GENERATION
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Figure. Disruptions in Oxidant/Antioxidant Balance Can Cause Significant Cell Injury
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Production of reactive oxygen species can lead to significant cellular damage in the absence

of antioxidants.

A-Free radical production occurs after cellular insult resulting from inflammation, radiation,

oxygen toxicity, chemicals, or reperfusion injury.

B-Reactive oxygen species cause membrane lipid peroxidation that leads to cell injury

through DNA and protein fragmentation.

C-Free radicals in the presence of antioxidants are neutralized and protect the cell from

injury.
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TABLE
Reactive Oxygen Species
Radical Symbol@  Antioxidant
Superoxide anion 0, Superoxide dismutase, uric acid, vitamin E
Singlet oxygen 10, B-carotene, uric acid, vitamin E

Hydrogen peroxide
Hydroxyl radical
Peroxide radical

Hydroperoxy! radical

H,0, Catalase, glutathione peroxidase, glutathione
OH* Vitamins C and E
LOO* Vitamins C and E

LOOH Glutathione transferase, glutathione peroxidase

3L, lipid
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