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We investigate the folding mechanism of the WW domain Fip35
using a realistic atomistic force field by applying the Dominant
Reaction Pathways approach. We find evidence for the existence
of two folding pathways, which differ by the order of formation
of the two hairpins. This result is consistent with the analysis of
the experimental data on the folding kinetics of WW domains
and with the results obtained from large-scale molecular dynamics
simulations of this system. Free-energy calculations performed in
two coarse-grained models support the robustness of our results
and suggest that the qualitative structure of the dominant paths
are mostly shaped by the native interactions. Computing a folding
trajectory in atomistic detail only required about one hour on 48
Central Processing Units. The gain in computational efficiency
opens the door to a systematic investigation of the folding path-
ways of a large number of globular proteins.

atomistic simulations ∣ protein folding

Unveiling the mechanism by which proteins fold into their
native structure remains one of the fundamental open

problems at the interface of contemporary molecular biology,
biochemistry, and biophysics. A critical point concerns the char-
acterization of the ensemble of reactive trajectories connecting
the denatured and native states, in configuration space.

In this context, a fundamental question which has long been
debated (1) is whether the folding of typical globular proteins in-
volves a few dominant pathways; i.e., well defined and conserved
sequences of secondary and tertiary contact formation, or if it can
take place through a multitude of qualitatively different routes. A
related important question concerns the role of nonnative interac-
tions in determining the structure of the folding pathways (2, 3).

In principle, atomistic molecular dynamics (MD) simulations
provide a consistent framework to address these problems from a
theoretical perspective. However, due to their high computational
cost, MD simulations can presently only be used to investigate the
conformational dynamics of relatively small polypeptide chains,
and are only able to cover time intervals much smaller than the
folding times of typical globular proteins.

In view of these limitations, a considerable amount of theore-
tical and experimental activity has been devoted to investigate the
folding of protein subdomains, which consist of only a few tens of
amino acids, and fold on submillisecond time scales (4). In par-
ticular, a number of mutants of the 35 amino acid WW domain of
human protein pin1 have been engineered which fold in few tens
of microseconds (5). The mutant's small size and their ultrafast
kinetics make them ideal benchmark systems, for which numer-
ical simulations can be compared with a large body of experimen-
tal data (5–7).

In particular, a MD simulation was performed to investigate
the dynamics of a mutant named Fip35 (see Fig. 1), for a time
interval longer than 10 μs. Unfortunately, in that simulation
no folding transition was observed (8, 9).

The folding of this WW domain was later investigated by
Pande and coworkers, using a world wide distributed computing
scheme (10). According to this study the transition proceeds in a
very heterogeneous way; i.e., through a multitude of qualitatively
different and nearly equiprobable folding pathways.

Noé, et al. performed a Markov state model analysis of a large
number of short (≲200 ns) nonequilibrium MD trajectories (11)
performed on the WW domain of human Pin 1 protein. In their
paper the authors reported a complex network of transition path-
ways, which differ by the specific order in which the different local
meta-stable states were visited. On the other hand, in all pathways
the formation of hairpins takes place in a definite sequence (see
e.g., Fig. 2). In particular, from the statistical model it was in-
ferred that in about 30% of the folding transitions, the second
hairpin forms first, as in the right box.

A different conclusion has been reached by Shaw, et al., by
analyzing a ms-long MD trajectory with multiple unfolding/
refolding events, obtained using a special-purpose supercompu-
ter (12). In that simulation theWWdomain of Fip35 was found to
fold and unfold predominantly along a pathway in which hairpin 1
is fully structured, before hairpin 2 begins to fold, as shown in the
left box of Fig. 2. In a recent paper (13), Krivov reanalyzed the
same ms-long MD trajectory in order to identify an optimal set of
reaction coordinates. His conclusion was that the folding of this
WW domain is thermally activated rather than incipient downhill
and that the transition also occurs through a second pathway, in
which hairpin 2 forms before hairpin 1. The statistical weights of
the two pathways estimated from the number of folding events
are 80%� 20% and 20%� 10%.

While all these theoretical studies yield folding times in rather
good agreement with available experimental data on folding
kinetics, they provide different pictures of the folding mechanism
and raise a number of issues.

Firstly, it is important to assess the degree of heterogeneity of
the folding mechanism and to clarify whether the most statisti-
cally significant folding pathways are those in which the hairpins
form in sequence. Important related questions are also whether
the folding mechanism is correlated with the structure of the
initial denatured conditions from which the reaction is initiated
and with the temperature of the heat bath. Finally, it is interesting
to address the problem of the relative role played by native and
nonnative interactions in determining the structure of folding
pathways. Indeed, while native interactions are arguably shaping
the dynamics in the vicinity of the native state, nonnative inter-
actions may in principle play an important role in the transition
region and at the rate limiting stages of the reaction.

In order to tackle these questions, in this work we use the
Dominant Reaction Pathways (DRP) approach (14–18), a frame-
work which allows to very efficiently compute the statistically
most significant pathways connecting given denatured configura-
tions to the native state at an atomistic level of detail, with rea-
listic force fields. To further support our results and to study the
role of native and nonnative interactions we map the free
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energy landscape by performing Monte Carlo simulations in two
coarse-grained models.

Our study confirms that Fip35 folds mostly through the two fold-
ing channels discussed above and shows that the relative weight of
the two channels changes with temperature. In addition, we find
that the folding pathways are correlated with the initial condition
from which the transition is initiated. The studies based on the
coarse-grained model suggest that the folding dynamics in the
transition region is not significantly influenced by nonnative inter-
actions.

Methods
Atomistic Force Field. Our atomistic simulations of the dominant folding tra-
jectories of the Fip35 WW domain were performed using the AMBER ff99SB
force field (19) in implicit solvent with Generalized Born formalism imple-
mented in GROMACS 4.5.2 (20). The Born radii were calculated according
to the Onufriev-Bashford-Case algorithm (21).

In a recent work based on the DRP method, the dominant pathway in the
conformational transition of tetra-alanine obtained using the same version
of the AMBER force field was found to agree well with the results of an ana-
logous calculation in which the molecular potential energy was determined
ab initio; i.e. directly from quantum electronic structure calculations (22).

Coarse-Grained Model. To study the equilibrium properties of the folding of
the Fip35WW domain we used the coarse-grained model recently developed

in refs. 23, 24. In that model, amino acids are represented by spherical beads
centered at the Cα positions. The nonbonded part of the potential energy
contains both native and nonnative interactions. The former are the same
used in the Go-type model of ref. 25, while the latter consist of a quasi-
chemical potential, which accounts for the statistical propensity of different
amino acids to be found in contact in native structures, and of a Debye-
screened electrostatic term. In this model, the average potential energy
due to native interactions in the folded phase is typically one order of mag-
nitude larger than that due to nonnative interactions. Above the folding
temperature, this ratio drops to about four.

This model was shown to provide an accurate description of protein-pro-
tein complexes with low and intermediate binding affinities (23). In the insert
of the upper box of Fig. 3 we plot the specific heat, evaluated from Monte
Carlo (MC) simulations at different temperatures, which indicates that this
model yields the correct folding temperature for this WW domain.

The Dominant Reaction Pathways Method. The high computational cost of
MD simulations of macromolecular systems has triggered efforts towards
developing alternative theoretical frameworks to investigate their long-time
dynamics and reaction kinetics [see e.g. (14, 26, 27, 28, 30, 31, 32) and
references therein].

In particular, the DRP approach (14–18, 33) concerns physical systems
which can be described by the overdamped Langevin equation. If xk denotes

Fig. 1. Native structure of Fip35, a WW domain of the fip mutant of protein
human pin1 (pdb code: pin1). The primary sequence of fip35 is: EEKLPPG-
WEKRMSADGRVYYFNHITNASQWERPSG.

Fig. 2. Schematic representation of the structure of the two folding
pathways obtained in our DRP simulations.

Fig. 3. The free energy at T ¼ 300 K as a function of the rmsd to native of
the two hairpins, obtained from the Monte Carlo simulations in two coarse-
grained models, described inMethods . In the upper box the model accounts
for both native and nonnative interaction, in the lower box the model con-
tains only native interactions. In the insert of the upper box, we show the
corresponding plot of the specific heat. The two shaded regions in the lower
box identify the average location of the transition states obtained from DRP
simulations.
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the coordinate of the k-th atom, the Langevin equation in the so-called Ito
Calculus reads:

xkðiþ 1Þ ¼ xkðiÞ −
ΔtDk

kBT
∇U½XðiÞ� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DkΔt

p
ηkðiÞ: [1]

In this equation, XðiÞ≡ ðx1ðiÞ;…;xNðiÞÞ is the set of atomic coordinates at the
i-th time step, Δt is an elementary time interval,Dk is the diffusion coefficient
of the k-th atom, kB is the Boltzmann’s constant, T is the temperature of the
heat-bath, and UðXÞ is the potential energy. ηkðiÞ is a white Gaussian noise
with unitary variance, acting on the k-th atom.

The probability for a protein to fold in a given time interval t can be writ-
ten as

Pf ðtÞ ¼
Z

dXf hNðXf Þ
Z

dXihDðXiÞPðXf ;tjXiÞρ0ðXiÞ; [2]

where hNðDÞðXÞ is the characteristic function of the native (denatured) state
(defined in terms of some suitable order parameters), ρ0ðXiÞ is the initial dis-
tribution of micro-states in the denatured state, and PðXf ;tjXiÞ is the condi-
tional probability of reaching the (native) configuration Xf starting from the
(denatured) configuration Xi , in a time t. If the total time interval t is chosen
much smaller than the inverse folding rate, this probability is dominated by
single nonequilibrium folding events.

It can be shown that the probability of a given folding trajectory XðtÞ con-
necting denatured and native configurations is proportional to the negative
exponent of the Onsager-Machlup functional (31, 33), which in discretized
form reads

Prob½X� ∝ e
−
∑

Nt

i¼1 ∑
N

k¼1

1
4DkΔt

·ðxkðiþ1Þ−xkðiÞþΔtDk
kBT∇U½XðiÞ�Þ2

; [3]

whereNt is the number of time steps in the trajectory. On the other hand, the
paths which do not reach native state before time t do not contribute to the
transition probability in Eq. 2. The most probable —or so-called dominant—
reaction pathways are those which minimize the exponent in [3]. In principle,
these paths may be found by numerically relaxing the effective action func-
tional (14)

Seff ½X� ¼ Δt∑
Nt

i¼1

�
∑
N

k¼1

ðxkðiþ 1Þ − xkðiÞÞ2
4DkΔt2

þ V eff ½XðiÞ�
�
; [4]

where VeffðXÞ is the so-called effective potential, and reads

V effðXÞ ¼
1

4ðkBTÞ2 ∑k
Dkðj∇kUðXÞj2 − 2kBT∇2

kUðXÞÞ: [5]

In practice, for a protein folding transition, directly minimizing the effec-
tive action in Eq. 4 is unfeasible, because at least 104–105 time steps are
needed to describe a single folding event. On the other hand, for any fixed
pair of native and denatured configurations the dominant paths can be
equivalently found by minimizing an effective Hamilton-Jacobi (HJ) action
in the form (14, 33)

SHJ ¼ ∑
i¼1

Δli;iþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

D
ðEeff þ V eff ½XðiÞ�Þ;

r
[6]

where Δliþ1;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðXp ði þ 1Þ − XðiÞÞ2

q
represents the elementary displace-

ment in configuration space, and for sake of clarity, we have assumed that
all atoms have the same diffusion coefficient. The parameter Eeff determines
the time at which any given frame l of the path is visited (14):

Hence, by adopting the HJ formulation of Eq. 6, it is possible to replace
the time discretization with the discretization of the curvilinear abscissa l,
which measures the Euclidean distance covered in configuration space during
the reaction (33). This way, the problem of the decoupling of time scales is
bypassed. As a result, only about 102 frames are usually sufficient to provide
a convergent representation of a trajectory. On the other hand, the HJ
formalism requires to perform an optimization in the space of reactive path-
ways of a functional, which can take complex values, which is in general a
complicated task.

The DRP approach displays several differences with the SDEL (Stochastic
Difference Equation in Length) method (30)—for an application to protein
folding see also ref. 36. In particular, while the DRP is based on minimizing
the effective HJ action in Eq. 6, in SDEL the folding trajectories are obtained

by extremizing the physical HJ action SSDEL ¼ ∫ dl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U½XðlÞ� − E

p
, where UðxÞ is

the potential energy and E is the total mechanical energy, which is assumed
to be conserved.

Exploration of the Path Space. The reliability of the DRP approach in investi-
gating the protein folding transition crucially depends on the efficiency of
the algorithm used to find optimum paths. In the analysis of conformational
(15, 22) or chemical (18) reactions of relatively small molecules, dominant
paths can be found by directly optimizing the HJ action in Eq. 6; e.g. using
simulated annealing or gradient-based methods. The DRP calculations for
protein folding obtained this way have been extensively tested using re-
duced models in which the relevant degrees of freedom are individual amino
acids and the energy landscape was relatively smooth (34, 35). Unfortunately,
when moving from a coarse-grained to an atomistic description, the relaxa-
tion algorithms adopted in our previous calculations were found to provide a
poor exploration of the space of folding paths in an all-atom calculation.

In order to overcome this problem, we have used a biased MD algorithm
to efficiently produce a large ensemble of paths, starting from a given
denatured configuration and reaching the native state (28, 29, 37, 38). In
particular, the so-called “ratchet-and-pawl” MD (rMD) algorithm (28, 29) ex-
ploits the spontaneous fluctuations of the system along a specific collective
coordinate (CC), towards its native configuration. This method is implemen-
ted by introducing a time-dependent bias potential VRðX;tÞ, whose purpose
is to make it very unlikely for the system to evolve back to previously visited
values of the CC. On the other hand, this bias exerts no work on the system
when it spontaneously proceeds towards the native state. We emphasize that
this approach is quite different from the one used in steered-MD (39), where
an external force is continuously applied to the system, in order to drive it
towards the desired state.

Following the work of ref. 28 we chose a CC zðtÞ, which defines the dis-
tance between the contact map in the instantaneous configuration XðtÞ from
the contact map in the native configuration Xnative. Note that a bias on z does
not force nor lock any specific contact, but only imposes a (quasi) monotonic
behavior of the total number of native contacts.

In particular, the biasing potential introduced in ref. 28 is defined as

VRðX;tÞ ¼
�

kR
2
ðz½XðtÞ� − zmðtÞÞ2; for z½XðtÞ� > zmðtÞ

0; for z½XðtÞ� ≤ zmðtÞ
: [7]

In these equations, zmðtÞ is theminimum value assumed by the collective vari-
able z along the rMD trajectory, up to time t.

The value of the collective variable z in the instantaneous configuration
XðtÞ is defined as:

z½XðtÞ�≡∑
N

i;j

½Cij½XðtÞ� − CijðXnativeÞ�2: [8]

The entries of the contact map Cij are chosen to interpolate smoothly be-
tween 0 and 1, depending on the relative distance of the residues i and j:

CijðXÞ ¼ f1 − ðrij∕r0Þ6g∕f1 − ðrij∕r0Þ10g; [9]

where r0 ¼ 7.5 Å is a fixed reference distance. The variable zmðtÞ is updated
only when the system visits a configuration with a smaller value of the CC;
i.e., any time z½Xðt þ δtÞ� < zmðtÞ. The behavior of the ratchet variable z½XðtÞ�
along two typical folding trajectories is shown in Fig. S1.

The value of the spring constant kR in the ratchet potential —see Eq. 7—
controls the amount of bias introduced by the ratchet algorithm. In the
SI Text we report on our study on the dependence of our DRP results on
the strength of this parameter (see Fig. S2).

The rMD algorithm allows to efficiently generate a large number of tra-
jectories starting from the same configuration and reaching the native state,
hence it can be used to explore the folding path space. [3] provides a rigorous
way to score such trial trajectories; i.e., to evaluate the probability for each of
them to be realized in an unbiased overdamped Langevin dynamics simula-
tion. In particular, the best estimate for the dominant folding pathway is the
one with the smallest Onsager-Machlup action. The path may then be used as
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a starting point for a further refinement based on a local relaxation of the HJ
action given by Eq. 6, performed by means of the optimization algorithms
described in our previous work (see e.g., refs. 22, 40).

The second refinement step is computationally very expensive, requiring
several thousands of CPU hours for each dominant trajectory. However, by
performing a number of test simulations, we have found that this step pro-
duces only very small rearrangements of the chain, mostly filtering out small
thermal fluctuations (see e.g., Fig. S3). Hence, as long as one is concerned
mostly with the global qualitative aspects of the folding mechanism, the ex-
pensive refinement session of the DRP calculation may be dropped. This
choice allows us to reduce the total computational time required to perform
the analysis by several orders of magnitude.

Once a dominant path has been found, it is relatively straightforward to
identify the configuration which belongs to the transition state ensemble.
This identification can be performed by finding the frame XTS in the trajec-
tory such that the probability to reach the native state is equal to that of
going back to the denatured configuration (15):

Prob½XTS → Unfolded�
Prob½XTS → Native� ≃ e−SOMðXTS→XDÞ

e−SOMðXTS→XN Þ ¼ 1 [10]

In this equation XN and XD are the first native and denatured configurations
visited along the dominant path, starting from XTS. In order to locate these
configurations, we need to only take into account the “reactive” part of the
path, that is the one which leaves the denatured state and, without recross-
ing, goes straight to the native. To satisfy this requirement, we considered
the total rmsd vs. frame index curve. The typical trend of this curve for most
of the dominant trajectories is shown in the lower box of Fig. 4: it consists in
an initial plateau, followed by a rather steep fall, and then by another flat
region, where the system oscillates in the native state. The reactive part of
the path was identified with the region of steep fall in this curve. In parti-

cular, the beginning of the transition was set to the frame at which the
derivative of the total rmsd curve changes sign, from positive to negative.

Further details about the implementation and the computational proce-
dures are given in the SI Text. In particular, the information about the set of
parameters used in the simulation and the number of considered trajectories
is summarized in Table S1

Results and Discussion
In the upper box of Fig. 4 we show our set of atomistic dominant
folding trajectories, projected onto the plane defined by the rmsd
to the native structure of the Cα atoms in residues 8–23 (hairpin
1) and 17–30 (hairpin 2). Computing these trajectories required
less than 2 d of calculation on 48 CPU’s.

Two distinct folding pathways which differ by the order of for-
mation of the hairpins can be clearly identified: in about half of
the computed dominant folding pathways hairpin 1 consistently
folds before hairpin 2. In this channel, we find the transition state
is located at the “turn” of the paths; i.e., is formed by configura-
tions in which the hairpin 1 is folded while hairpin 2 is largely
unstructured (see pathway 1 in Fig. 2). The latter is the mechan-
ism predominantly found in the simulation of ref. 12, performed
using the same force field, albeit in explicit solvent.

In about half of the computed dominant paths, we observe that
the two hairpins form in the reversed order. In this channel, the
transition state is formed by the configurations in which hairpin 2
is folded, while hairpin 1 is unstructured (see pathway 2 in Fig. 2).

Fig. 5 shows that not all the rMD trial trajectories computed
starting from a given initial condition follow one of the two fold-
ing pathways discussed above. Indeed, many of them involve a
simultaneous formation of native contacts in both hairpins. A
clear prediction of the DRP formalism is that folding events in
which the hairpins form simultaneously are much less frequent
than those in which the two secondary structures forms in se-
quence.

Another result emerging from our DRP calculation is the ex-
istence of a correlation between the structure of the initial con-
ditions from which the transition is initiated and the pathway
taken to fold: if at the beginning of the transition the first hairpin
has a rmsd smaller than the second hairpin, then the first pathway
is most likely chosen. In the opposite case; i.e., when the second
hairpin has a smaller rmsd to native than the first, then the second
pathway is generally preferred.

In order to further support these results and gain insight into
the folding mechanism, we have performed simulations in an
entirely different approach; i.e., by computing equilibrium prop-
erties using the coarse-grained models described in Methods. In
Fig. 3 we show the free energy landscape at the 300 K, as a func-
tion of the rmsd to native of the two hairpins for the two models,
which differ by the presence of nonnative interactions. In both
cases, we observe the existence of two valleys in the free energy
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Fig. 4. Upper box: the set of dominant folding paths for Fip35, obtained
from atomistic DRP simulations, projected on the plane defined by the rmsd
of the two hairpins to the corresponding native structures. The dark spots
represent a few typical configurations in the two transition states, evaluated
by the requesting a probability 1∕2 to reach the native state. Lower box:
evolution of the rmsd to native of the full protein and of the hairpins
along a dominant trajectory. The shaded area is the reactive region and
the dashed line identifies the transition state configuration obtained accord-
ing to Eq. 10.
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landscape, which correspond to the two folding pathways dis-
cussed above. Remarkably, the same structure for this free energy
map was obtained by Ferrara, et al. for the 20-residue peptide
beta3s—which shares the same native topology of WW domains
(42)—by means of equilibrium atomistic simulations based on the
CHARMM force field, in implicit solvent. The fact that models
with and without nonnative interactions give very similar free
energy landscapes suggests that the structure of the two folding
pathways of these protein domains is mostly shaped by native
interactions.

In general, all experimental data on folding kinetics of WW
domains indicate that the formation of the first hairpin is the
main rate limiting step (5–7). In particular, the ϕ-values mea-
sured by Jäger, et al. display a clear peak in the region associated
with hairpin 1, but significant ϕ—values were reported also for
residues in the sequence region relative to hairpin 2 (7). This fact
indicates that the folding of the latter structure has some rate
limiting effect. In addition, it was found that the ϕ-values in
the region of the second hairpin grow with temperature, while
those in the region of the first hairpin decrease. This observation
implies that, at higher and higher temperatures, the second hair-
pin plays an increasing role in the folding mechanism.

An analysis based on ϕ-values alone does not permit to fully
characterize the folding mechanism. In particular, such an ana-
lysis cannot distinguish between a single-channel folding me-
chanism in which native contacts in the two hairpins form simul-
taneously and a multiple-channel folding mechanism in which
the reaction rate in each channel is limited by the folding of
one of the hairpins. In ref. 41 Weikl has shown that the full body
of existing ϕ-value data (taken from refs. 6, 7) can be consistently
and quantitatively explained by a simple kinetic model in which
the folding of WW domains occurs through alternative channels,
which correspond to the two pathways found in our DRP simula-
tions. From a global fit of the experimental data, the author con-
cluded that the relative probability of the first folding pathway
for FBP (another WW domain much similar to Fip35) and Pin
1 WW domain are 77%� 5% and 67� 5%, respectively.

Let us now discuss the relative statistical weight of the two fold-
ing pathways. To this goal we need to estimate and compare the
reaction rates in the two channels. The formalism for evaluating
reaction rates in the DRP approach was developed in detail in
ref. 17, where it was shown that this method reproduces Kramers
theory in the low-temperature regime. Applying that formalism,
the ratio of the folding rates in the two channels reads

k1
k2

≃ κ10
κ20

e−βðGTS1
−GTS2

Þ; [11]

where the label 1 (2) identifies the channel in which hairpin 1 (2)
folds first. In Eq. 11, the exponent contains the difference of the
free-energies of the two transition states, defined from the domi-
nant trajectories according to the commitment analysis described
in Methods and in ref. 15. In particular, one has

e−βGðTSiÞ ≡
Z

dXe−βUðXÞδ½ðX − Xi
TSÞ · n̂TSi� ði ¼ 1;2Þ; [12]

where Xi
TS is a point of the transition state which is visited by a

typical dominant path in the i—th reaction channel and n̂TSi is a
versor tangent to the dominant path at Xi

TS. Using Eq. 10 to iden-
tify the transition states, we have found that the two partition
functions defined in Eq. 12 are dominated by configurations in
which one of the hairpins is fully formed while the other is still
completely unstructured (see Fig. 4). The average location of the
computed transition states in the plane defined by the rmsd to
native of the two hairpins is highlighted in the lower box of Fig. 3.

The coefficients κ10 and κ
2
0 in the prefactor of Eq. 11 are defined

in terms of quantities which can be calculated from the dominant

paths—see ref. 17 for details. These terms estimate the average
flux of reactive trajectories across the isocommittor dividing sur-
face, including the contributions from small thermal fluctuations
around the dominant paths. Unfortunately, evaluating κ10 and κ20
necessarily requires to perform the computationally expensive
local optimization of the HJ action. However, if the reaction is
thermally activated, the ratio of rates k1∕k2 is mostly controlled
by the exponential contribution. Hence, we can consider the
Arrhenius approximation k1

k2
≃ e−βðGTS1

−GTS2
Þ. We emphasize that

in this approach the DRP information about the nonequilibrium
reactive dynamics is used to define the two transition states. On
the other hand, the numerical value of the free energy difference
may be obtained from equilibrium techniques; e.g., by sampling
the integrals in Eq. 12 by means of computationally very expen-
sive umbrella sampling or meta-dynamics (43) atomistic calcu-
lations.

In this first exploratory application of the DRP formalism to a
realistic protein folding reaction we choose to perform a much
rougher estimate which relies on two main approximations. First,
we identify the difference ðGTS1 −GTS2Þ with the difference of
the free energy in the two shaded regions of the energy landscape
shown in Fig. 3. The centers of these regions represent the aver-
age location of the configurations in the two transition states TS1
and TS2 obtained from DRP simulations, projected onto the
plane selected by the rmsd to native of the two hairpins. The sizes
of the shaded area represents the errors on the average location
of the transition states on this plane, estimated from the standard
deviation. The second assumption of our model is that such a free
energy difference is driven by the balance between energy gain
and entropy loss associated to the formation of native contacts
in the two hairpins. This native-centric standpoint is supported
in part by the fact that free energy landscapes computed in dif-
ferent models with and without nonnative interactions are found
to be very similar, as it is clear from comparing the boxes in Fig. 3.
Hence, to estimate GTS1 −GTS2 we used the Go-type model de-
scribed in Methods. It is important to emphasize that we are not
computing the rate directly from a transition state theory formu-
lated in the coarse-grained model, but we are using it only to
estimate a free energy difference.

This way, we obtained an estimate k1∕k2 ≃ 2.3 which corre-
sponds to a relative weight of the first folding channel of 70%
and 30%. We stress that, such a simple calculation should be
considered only a rough estimate. The results indicate that the
two channels have more or less comparable weight and that
the first channel is the most probable, in qualitative agreement
with experimental results and with the simulations of Shaw, et al..

This simple scheme enables us to address the question of the
dependence of the relative weights of the two channels on the
temperature. Repeating the calculation at a higher temperature
of 380 K—assuming that the structure of the transition states is
not significantly modified—we find k1∕k2 ≃ 1.6, which corre-
sponds to a branching ratio of channel 1 of about 60%. Hence,
the rate limiting role of the second channel grows with tempera-
ture, in qualitative agreement with experimental kinetic data.

This fact can be understood as follows. The folding of one of
the hairpins generates an entropy loss proportional to the number
n of native contacts formed. The transition state in the first fold-
ing channel involves forming a longer hairpin, hence reaching
it produces a larger entropy loss (but also larger gain of native
energy). The role of the entropy loss relative to the energy gain
in forming the hairpins grows with temperature, hence disfavor-
ing the first folding channel relative to the second.

Conclusions
The folding mechanism of the WW domain which emerges from
our atomistic and coarse-grained simulations is not heteroge-
neous. Instead, the folding proceeds through two dominant chan-
nels, defined by a hierarchical order of hairpin formation. Our
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estimate for the relative rate of the two channels is compatible
with both Weikl’s analysis of kinetic data and with Krivov’s ana-
lysis of long equilibriumMD simulations. Our results also suggest
that the folding pathway is correlated with the structure of the
denatured configuration from which the peptide initiates the re-
action.

The most important result of this work is to show that, using
the DRP approach, it is possible to characterize at least the main
qualitative aspects of the folding mechanism at an extremely
modest computational cost, in the range of few hundreds of CPU
hours. Such a level of computational efficiency opens the door to
the investigation of the folding pathways of a large number of

single-domain proteins, with sizes significantly larger than that
of the small domain studied in the present work.
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