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Voltage-dependent ion channels are crucial for generation and
propagation of electrical activity in biological systems. The primary
mechanism for voltage transduction in these proteins involves the
movement of a voltage-sensing domain (D), which opens a gate
located on the cytoplasmic side. A distinct conformational change
in the selectivity filter near the extracellular side has been
implicated in slow inactivation gating, which is important for
spike frequency adaptation in neural circuits. However, it remains
an open question whether gating transitions in the selectivity
filter region are also actuated by voltage sensors. Here, we ex-
amine conformational coupling between each of the four voltage
sensors and the outer pore of a eukaryotic voltage-dependent
sodium channel. The voltage sensors of these sodium channels are
not structurally symmetric and exhibit functional specialization. To
track the conformational rearrangements of individual voltage-
sensing domains, we recorded domain-specific gating pore cur-
rents. Our data show that, of the four voltage sensors, only the
domain IV voltage sensor is coupled to the conformation of the
selectivity filter region of the sodium channel. Trapping the outer
pore in a particular conformation with a high-affinity toxin or
disulphide crossbridge impedes the return of this voltage sensor
to its resting conformation. Our findings directly establish that,
in addition to the canonical electromechanical coupling between
voltage sensor and inner pore gates of a sodium channel, gating
transitions in the selectivity filter region are also coupled to the
movement of a voltage sensor. Furthermore, our results also imply
that the voltage sensor of domain IV is unique in this linkage and
in the ability to initiate slow inactivation in sodium channels.
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Voltage-gated sodium channels, like the other constituents of
the voltage-gated ion channel superfamily, undergo gating

transitions that result in channel opening and inactivation.
Structural studies mainly on potassium selective ion channels
have established that the opening of the channel primarily in-
volves splaying of the bundle crossing formed on the intracellular
side by the S6 helices (1–3). C-type inactivation gating, which
follows channel opening and is mechanistically distinct from fast
N-type inactivation, involves conformational rearrangements in
the selectivity filter region (4–8).
According to our current thinking, inactivation gating at the

selectivity filter region arises as a result of structural changes that
follow pore opening and are not due to the movement of voltage
sensors (9–11). Indeed, gating currents, which are a measure of
voltage-sensing charge movements, are recorded under con-
ditions with altered C-type inactivation (12) or with blockers that
interact intimately with groups at the ion binding site (13, 14).
For instance, the gating currents in exemplar Shaker potassium
channels are typically measured in the background of the W434F
mutation which results in a permanently C-type inactivated
channel (15, 16). Although it has been suggested that the slow
C-type inactivation may be coupled to voltage sensor movement,

the evidence to date has been indirect and somewhat con-
founding. Charge–voltage (Q–V) curves of Shaker potassium
channel were found to undergo time and voltage-dependent
shifts, which correlated with development of C-type inactivation
(17). Signals from fluorescent probes attached to the S3–S4 loop
of the Shaker potassium channel develop an additional compo-
nent, which also correlates with C-type inactivation (18). How-
ever, this may not reflect coupling between voltage sensor and
outer pore because these fluorescent probes are bulky and, in all
likelihood, directly sense the conformation of the outer pore.
Recent studies have suggested that the holding-potential–de-
pendent shift in the Q–V curve is an intrinsic property of a volt-
age sensor and may not necessarily reflect coupling to the outer
pore. Charge–voltage curves of an isolated voltage sensor lacking
a pore domain (D) were found to exhibit these charge shifts
(“mode shifts”) upon changing the holding potential (19).
Moreover, a noninactivating mutant of the human ether-a-go-go
related gene (HERG) channel (20) and noninactivating hyper-
polarization-activated cyclic nucleotide-gated (HCN) channels
(21) both show holding-potential–dependent shifts in Q–V
curves. Finally, this correlation between charge shift and C-type
inactivation has been reexamined by other groups who have
concluded that these two processes are not coupled in the Shaker
potassium channel (22).
The goal of this study is to test whether, in a voltage-gated

sodium channel, the outer pore conformation is energetically
coupled to the movement of a voltage sensor. As in the tetra-
meric potassium channels, the voltage-gated sodium channels
also have two gates that control ion flux through the central pore.
Studies with accessory subunits (23, 24) and local anesthetics (25,
26) provide reassuring evidence that the primary pore gate is on
the cytoplasmic side of the channel. The cytoplasmic region of
the β4 subunit behaves as a classical open pore blocker (1). It
blocks the conductance of the open pore in a state-dependent
manner and prevents the deactivation of the sodium channel
gates (23). The recently solved landmark structure of a pro-
karyotic sodium channel, NaVab also shows rather strikingly that
the intracellular pore helices can gate the ion conducting path-
way (27). Several groups have proposed that the selectivity filter
region of the sodium channel is the site for a second gate, which
is involved in slow and ultraslow inactivation gating (28–36). In
many respects, slow inactivation gating in the sodium channels is
similar to C-type inactivation (4, 5, 28, 34, 35). Although residues
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in the intracellular S6 segments of the sodium channels have also
been implicated in slow inactivation (37, 38), recent evidence
with disulphide crosslinking of paired substituted cysteines
strongly suggests that the occlusion of outer pore is a critical
determinant for slow inactivation (31, 32). Here, we examine the
coupling between the individual voltage sensors of a sodium
channel and conformational rearrangements in the selectivity
filter region. Using disulphide crossbridge of pore residues and
high-affinity toxins, we establish that modulation of the selec-
tivity filter conformation specifically modifies the activation of
the domain IV (DIV) voltage sensor, thus implying that these
two processes are conformationally coupled.

Results and Discussion
Gating Pore Currents in Charge Neutralized Mutants. To monitor the
conformation of individual voltage sensors, we generated a series
of mutants in which the first two or three extracellular charges of
one voltage sensor at a time were mutated to a glutamine (Fig.
1A). Design of these charge neutralized (CN) Nav1.4 mutants,
e.g., domain I (DI-CN) was motivated in part by recent findings
that mutation of specific charged residues in the S4 segments
allows state-dependent ion flux through the voltage-sensing
domains (39–42). These currents directly report the movement
of voltage sensors and are referred to as gating pore currents
(also omega currents) to distinguish them from the canonical
ionic currents through the central pore.
Each of the CN mutants, when expressed in Xenopus oocytes,

generate currents upon depolarization resembling the wild-type
sodium currents (Fig. 1B) (43). Due to low expression as well as
persistent outward leak, we used the DII-CN mutant in which
only the first two charges are neutralized for the remainder of
this study. In addition to typical sodium currents, we observe

large hyperpolarization activated inward currents in all CN
mutants (Fig. 2). The kinetics and voltage dependence of these
currents are similar to the gating pore currents reported for
domain II (41).
This approach of monitoring individual voltage sensors over-

comes the limitations of using large spectroscopic probes to
monitor local conformational dynamics (44, 45). The fluorescent
probes attached to the voltage sensors are in close proximity to
the outer pore (the top of S5 and S6 segments) and, therefore,
one cannot unambiguously ascribe those signals to voltage sensor
movements (18).

Effect of Pore Blocking Toxins on Gating Pore Currents. To probe the
coupling between the selectivity filter and the voltage sensors,
we first examined the effect of tetrodotoxin (TTX), a high-af-
finity sodium channel blocker, because it has been reported to
inhibit sodium currents in a use-dependent manner (46, 47). In
CN mutants, the currents elicited by depolarizing voltage steps
were completely blocked by a saturating concentration of TTX
(up to 1.1 μM) (Fig. S1). As expected, TTX does not block
gating pore currents through the CN mutants (41, 42). None-
theless, to our surprise, the gating pore currents through DIV-
CN were significantly altered by TTX (Fig. 2). At −110 mV, the
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Fig. 1. Functionality of the charge-neutralized sodium channel mutants. (A)
The sequence of the altered S4 segments of all four mutants. The sites that
were mutated to glutamines are bold. (B) Current–voltage relationships for
each of the mutants with a representative family of traces. Note that some
of these current recordings were obtained in different ionic conditions (for
details see Methods). Each graph represents the mean ± SE of at least three
independent experiments. Also note that the ionic currents at more depo-
larized potentials are, in some cases, contaminated by gating currents.
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Fig. 2. Effect of TTX on gating pore currents through the individual voltage
sensors. (A) Schematic diagram depicting the conformational processes that
produce voltage-dependent gating pore currents. (Left) Channel where the
main pore is closed and the voltage sensors are in a resting conformation. In
this condition, the mutant voltage sensor is in a permissive position for
gating pore currents. Currents through the central pore are blocked by
a pore toxin. (Right) Channel with the voltage sensors in an activated con-
formation and the remaining charges in the mutant voltage sensor move
into a position that blocks the flux of gating pore current. A family of gating
pore currents before (Left; filled square) and after (Right; unfilled triangle)
addition of TTX from the DI-CN (B), DII-CN (C), DIII-CN (D), and DIV-CN (E)
mutants (Upper). Normalized current–voltage plots of the same (Lower). The
currents at each voltage were measured at the end of 20 ms, marked as
a dashed line. Each plot represents the mean ± SE of at least three in-
dependent experiments. *P value <0.05, statistical significance.
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magnitude of current was reduced by as much as 65%. More-
over, a further increase in toxin concentration (up to 10-fold)
did not increase inhibition of gating pore currents, suggesting
that this effect is saturated (Fig. S2). We can eliminate the
possibility that the hyperpolarization activated currents through
DIV-CN are due to ion flux through the central pore as op-
posed to being gating pore currents because the central pore
currents remain completely blocked by TTX (Fig. S1). There-
fore, we consider the possibility that TTX is somehow modi-
fying the currents fluxing through gating pore within the DIV
voltage sensor.
First, we examined the possibility that TTX binds directly to

the voltage sensor in the DIV-CN mutant. We introduced a pore
mutation at a site known to be critical for TTX binding (Y401S)
in the background of the DIV-CN mutant. The Y401S mutation,
located next to the selectivity determining DEKA (D400, E755,
K1237, A1529) locus (48–52), yields a channel that is nearly
insensitive to block by TTX (53, 54). In this background (Y401S
DIV-CN), TTX had no effect on gating pore currents through
the DIV voltage sensor (Fig. S3). Therefore, TTX likely influ-
ences the gating pore currents through the DIV voltage sensor by
binding to the outer pore of the sodium channel.
Next, we considered the possibility that TTX interacts directly

with the charged voltage sensor while being docked to its binding
site in the outer pore. The highly charged pore blocking peptide,
μ-conotoxin (μ-CTX), has been previously suggested to shift the
voltage dependence of activation by a small degree by modifying
the surface charge (55). Our prediction will be that μ-CTX,
which has a nominal net charge of +6 at neutral pH, will have
a much larger effect on gating pore currents if these interactions
are determined solely by electrostatics (56). We observed that
the saturating concentrations of μ-CTX cause a much smaller
reduction (16% at most) in the DIV-CN gating pore currents
(Fig. 3 and Fig. S1). These findings and others (57) support the
notion that TTX perturbs the DIV voltage sensor through
a mechanism that is unlikely to involve direct electrostatic
interaction.
A plot of residual gating pore currents versus voltage reveals

that μ-CTX inhibition of the gating pore currents is voltage in-
dependent, whereas TTX block is pronounced at depolarized
potentials (Fig. S4). The voltage dependence of the block is not
due to differences in voltage-dependent binding because these
measurements were obtained at saturating concentrations of
TTX (central pore currents remain fully blocked). Therefore,
this voltage dependence reflects the effect of TTX on the gating
transition of the voltage sensor and shows that TTX binding
favors the activated state of the DIV voltage sensor.

TTX Modulates Off-Gating Currents. Whereas gating pore current
data suggest that TTX specifically modulates the gating pore
currents and by extension the voltage sensor movement, we
sought to validate this observation independently. Alternate
approaches to monitor conformational rearrangement of the
voltage sensors involve measuring gating currents or fluores-
cence signals from site-specific probes. Gating currents are the
most direct measure of voltage sensor movements but recording
them in absence of pore blockers remains technically demanding.
To eliminate contamination due to ionic currents, we mea-

sured the off-gating currents in the wild-type channels after
a depolarizing pulse sufficient to induce fast inactivation. Per-
meant ions in the external solution were substituted by N-methyl
D-glucamine (NMG) to eliminate any ionic current contamina-
tion of tail currents. Robust nonlinear charge movements were
recorded from the wild-type channel without pore blockers (Fig.
S5) and, as expected, the charge–voltage curves obtained from
these measurements were saturated at extreme potentials. A
comparison of the off-gating currents before and after addition
of saturating concentrations of TTX shows that the total off-

gating charge is reduced by 24% (Fig. 4). Note that a substantial
shift in the Q–V curve to a more hyperpolarized potential in the
presence of TTX would result in subtraction of some of the
nonlinear charge component and will be manifested as a reduced
gating charge. As opposed to TTX, μ-CTX caused no reduction
in the total gating charge, consistent with its effect on gating pore
currents through the DIV voltage sensor (Fig. 4).
The above differences in perturbation of voltage sensor

movements by the two toxins may reflect differences in their
binding site or their state dependence. Remarkably, both TTX
and μ-CTX can be simultaneously accommodated in the pore
and, furthermore, TTX can be trapped in its binding site by
μ-CTX (58, 59). The mutagenesis data also suggest that the
critical residues implicated in TTX binding is in the narrow ion
access pathway in the selectivity filter region (53, 54, 60). Be-
cause TTX causes a reduction in the total charge of the off-
gating currents and influences the behavior of the DIV voltage
sensor to a much greater extent than μ-CTX, we suggest that
μ-CTX may be a more appropriate tool for collecting sodium
channel gating currents. In summary, these gating current
experiments establish that the TTX binding in the selectivity
filter region of the sodium channel influences the movements of
one or more voltage sensors of the sodium channel.

Cross-Bridging in the Selectivity Filter Affects the DIV Voltage Sensor.
One possible explanation for such cross-talk is that the central
pore toxins introduce a nonnative interaction that perturbs the
conformation of the DIV voltage sensor. Alternatively, this long-
range interaction may reflect an inherent allosteric coupling
between the outer pore and this particular voltage sensor (61).
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Fig. 3. Effect of μ-CTX on gating pore currents through the individual
voltage sensors. A family of hyperpolarization activated currents before
(Left; filled square) and after (Right; unfilled triangle) addition of μ-CTX
from the DI-CN (A), DII-CN (B), DIII-CN (C), and DIV-CN (D) mutants (Upper).
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dependent experiments. *P value <0.05, statistical significance.

2650 | www.pnas.org/cgi/doi/10.1073/pnas.1115575109 Capes et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115575109/-/DCSupplemental/pnas.201115575SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115575109/-/DCSupplemental/pnas.201115575SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115575109/-/DCSupplemental/pnas.201115575SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115575109/-/DCSupplemental/pnas.201115575SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115575109/-/DCSupplemental/pnas.201115575SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115575109/-/DCSupplemental/pnas.201115575SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115575109/-/DCSupplemental/pnas.201115575SI.pdf?targetid=nameddest=SF5
www.pnas.org/cgi/doi/10.1073/pnas.1115575109


To discriminate between these two possible scenarios, we used the
disulphide trapping method (62). Paired cysteine substitutions in
the selectivity filter region of the sodium channel form a disul-
phide cross-bridge and high-affinity Cd2+ binding sites in a state-
dependent manner (30–32, 63, 64). We hypothesize that disul-
phide cross-linking within the pore region may prevent relative
structural rearrangements and reveal intrinsic conformational
coupling between the pore and the voltage sensors.
We generated a double cysteine mutant (D400C/E755C) in

the background of DI, DII, DIII, and DIV-CN. These two res-
idues constitute part of the DEKA locus in the selectivity filter
region of the sodium channel and spontaneously form a disul-
phide cross-bridge, resulting in block of sodium currents (63).
Ion conduction recovers when this cross-bridge is broken under
reducing conditions. In our case, we observe small sodium cur-
rents in oocytes expressing our mutants and these currents were
abolished upon addition of 4 mM H2O2 (Fig. S6). Under re-
ducing conditions (1 mm dithiothreitol, DTT), we recorded ro-
bust sodium currents upon depolarization, which indicated that
the cysteine cross-bridge was broken. Comparison of gating pore
currents through the D400C/E755C DI, DII, and DIII mutants in
reducing and oxidizing conditions showed little change (Fig. 5 A–
C, respectively), whereas the gating pore currents of D400C/
E755C DIV-CN increased substantially in DTT (70% at −140
mV) (Fig. 5D). The effects of the disulfide bridge on the gating
pore currents of DIV are not due to a direct effect of H2O2 or
DTT because the reagents have no effect on channels lacking the
D400C/E755C mutations (Fig. 5).
Conformational transitions in the selectivity filter region of the

sodium channel have been implicated in slow and “ultraslow”
inactivation (28–34). Our experiments directly demonstrate that
the domain IV voltage sensor in the skeletal muscle sodium
channel is coupled to conformational transitions in the selectivity
filter region of the sodium channel. Although we cannot com-
pletely rule out the possibility that the other voltage sensors are
also coupled to gating transitions in the outer pore, it is re-
markable that perturbation studies have previously implicated
S4-DIV as being involved in slow inactivation (61). We find that

prolonged depolarizations that promote slow inactivation in so-
dium channels inhibit gating pore currents through the domain
IV voltage sensor (Fig. S7). This correlation suggests that the
movement of the DIV voltage sensor may be linked to entry into
the slow inactivated state. However, we should note that the
reduction in the DIV gating pore currents after long depolari-
zations could be due to an intrinsic voltage sensor mode shift as
was observed in isolated voltage sensors (19).
Mutations in domain IV also specifically affect the binding of

anticonvulsants to neuronal sodium channels (65). These drugs
bind to the pore in an activity-dependent manner when applied to
the external side but not to the internal side (66). Moreover, TTX,
which binds close to putative selectivity filter of the sodium
channel, is also known to block in a use-dependent manner (67,
68). These intriguing findings are consistent with the notion
established herein that the domain IV voltage sensor and outer
pore of the sodium channel are conformationally coupled. The
present findings are in contrast to the prevalent view that move-
ment of the voltage sensors is exclusively coupled to opening of
cytoplasmic pore gates. Furthermore, our results provide an ex-
ample in which this anomalous electromechanical coupling exists
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fore (black trace) and after (red trace) TTX. (Inset) Off-gating current traces
on an enlarged scale. (B) Wild-type off-gating currents before (black trace)
and after (red trace) μ-CTX. (Inset) Off-gating current traces are shown en-
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concurrently with canonical voltage sensor pore coupling. These
mechanistic differences in coupling may underpin functional
specialization of sodium channel domains (43, 69–72) and may be
a universal feature of other nonsymmetric voltage-dependent
ion channels.

Methods
Molecular Biology and Expression. Mutations were made using the Quik-
Change mutagenesis kit (Stratagene). cRNA was made using the mMessage
mMachine T7 kit (Ambion) after digesting the plasmids containing the so-
dium channel gene with NotI enzyme. For heterologous expression, 50 nL of
cRNA containing a mixture of α- and β1-subunit in 1:1 stoichiometry was
injected into stage IV or V Xenopus laevis oocytes. After injection, the
oocytes were kept at 18 °C in 1 × standard oocyte solution with Ca2+ and
gentamicin for 2–5 d before recording.

Electrophysiology. Recordings were made using the cut-open oocyte voltage
clamp configuration with CA-1B amplifier (Dagan) as described previously
(73). Gating and ionic currents were sampled at 250 kHz with a Digidata
1400 interface (MDS Analytical Technologies) and low-pass filtered at 20
kHz. The oocytes were clamped at a holding potential of −80 mV for at least
5 min before recording. Current–voltage curves for DI, DIV-CN, and DIV-CN
Y401S were obtained in 105 mM Na+-Mes (methanesulfonic acid) external
solution, whereas those for DII-CN and DIII-CN mutants were obtained in an
external solution containing either 52.5 mM Na+-Mes or 105 mM K+-Mes,
respectively. Following a 50-ms prepulse to −120 mV, the currents were
elicited by test pulses ranging from −80 to +70 mV for a duration of 60 ms.
Gating pore currents were recorded in 105 mM Na+-Mes for both DI and DIV-
CN, whereas the gating pore currents for DII-CN and DIII-CN were recorded
in 105 mM K+-Mes external solution with 10 mM Hepes and 2 mM Ca(OH)2 at
pH 7.4. Unless stated otherwise, these recordings used NMG-Mes internal

solution with 105 mM NMG, 10 mM Hepes, and 2 mM EGTA at pH 7.4.
Gating pore currents were elicited by test pulses from −160 to −70 mV for 60
ms following a 50-ms prepulse to −120 mV. The currents were normalized
with respect to the maximum current measured before toxin, typically at
−160 mV. Channels were blocked using 0.6–1.1 μM of TTX or 6–25.7 μM of
μ-CTX in the external solutions. Gating pore currents were recorded without
a P/4 subtraction protocol, which means that the activation kinetics were
likely to be contaminated by capacity transients. Offline leak subtraction
was used to eliminate the linear leak component in experiments where it
was significant (74).

To record the off-gating currents, we applied a prepulse to +50 mV for 30
ms to inactivate the channels. This was followed by a test pulse to potentials
ranging from −130 mV to +50 mV for 20-ms durations. These experiments
were performed in NMG-Mes internal and external (105 mM NMG-Mes with
10 mM Hepes, and 2 mM Ca(OH)2) solutions. To obtain gating currents in
presence of toxin, 0.6–1.1 μM TTX or 6–25.7 μM μ-CTX was added to the
external solution. At these concentrations, ionic currents were fully blocked.
The charge–voltage curves for the off-gating currents were fit to a single
Boltzmann equation: Q/Qmax(V) = 1/(1 + exp (-ze(V − V1/2)/KT)) to estimate
the V1/2 (voltage for half-maximal activation) and z (valence) values. Linear
capacity transients were eliminated by P/−4 subtraction at a holding po-
tential of −130 mV.

For cross-linking experiments, the oocytes expressing mutants were
treated with 2 mM H2O2 to maximize the disulfide formation. To measure
currents under reducing conditions, 1 mM of freshly made DTT was added to
the external solution containing 105 mM Na+-Mes.
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