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Cell cycle entry is commonly considered to positively regulate HIV-1
infection of CD4 T cells, raising the question as to how quiescent
lymphocytes, representing a large portion of the viral reservoir, are
infected in vivo. Factors such as the homeostatic cytokine IL-7 have
been shown to render quiescent T cells permissive toHIV-1 infection,
presumably by transiently stimulating their entry into the cell cycle.
However, we show here that at physiological oxygen (O2) levels (2–
5% O2 tension in lymphoid organs), IL-7 stimulation generates an
environment permissive to HIV-1 infection, despite a significantly
attenuated level of cell cycle entry. We identify the IL-7–induced in-
crease in Glut1 expression, resulting in augmented glucose uptake,
as a key factor in rendering these T lymphocytes susceptible to HIV-1
infection. HIV-1 infection of human T cells is abrogated either by
impairment of Glut1 signal transduction or by siRNA-mediatedGlut1
down-regulation. Consistent with this, we show that the suscepti-
bility of human thymocyte subsets to HIV-1 infection correlates with
Glut1 expression; single-round infection is markedly higher in the
Glut1-expressing double-positive thymocyte population than in
any of the Glut1-negative subsets. Thus, our studies reveal the
Glut1-mediated metabolic pathway as a critical regulator of HIV-1
infection in human CD4 T cells and thymocytes.
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The productive infection of both naive and memory CD4 T cells
byHIV-1, at least outside the context of lymphoid tissues (1, 2),

requires a transition into the G1b stage of the cell cycle (3). As
most circulating peripheral T lymphocytes are in the G0 resting
state, this would theoretically preclude their infection by HIV-1.
However, within lymphoid aggregates, HIV-1 infection can occur
in quiescent naive T cells (1, 2), although this phenomenon has
recently been shown to be associated with the expression of acti-
vation markers (4, 5). Under what conditions can HIV-1 infection
be achieved in quiescent T lymphocytes that remain phenotypically
naive? One possibility is that the in vivo infection of naive CD4+ T
cells occurs following exposure of these lymphocytes to cytokines
such as IL-7. Indeed, IL-7 stimulation is currently thought to be
critical for activating the latent HIV reservoir (6–8). Thus, the
infection status of quiescent T cells under physiological conditions,
either in the absence or presence of IL-7, remains to be addressed.
IL-7 is a 25-kDa glycoprotein produced in thymus, intestine,

skin, lymph nodes, and other sites (reviewed in ref. 9). It plays
a major role in the in vivo maintenance of polyclonal naive and
memory T cells, positively regulating the survival, differentiation,
and proliferation of thymocyte and peripheral T-lymphocyte
populations. The homeostatic maintenance of this polyclonal T-
cell pool is required for the persistence of immunologic memory as
well as for the maintenance of naive T cells with the potential to
respond to novel antigens. Under conditions of lymphopenia, IL-7
supports a transient homeostatic T-cell proliferation, promoting
the expansion of T cells with a diverse T-cell receptor (TCR)
repertoire. However, under physiological conditions, the vast ma-
jority of peripheral lymphocytes are quiescent, perhaps because

homeostatic levels of IL-7 are low relative to peripheral T-cell
numbers (reviewed in ref. 10). Indeed, serum IL-7 levels are in-
creased in patients with lymphopenia, secondary to either HIV-1
infection or chemotherapy (reviewed in ref. 10). Consistent with
these findings, administration of exogenous IL-7 in preclinical
murine and primate studies has been shown to promote T-cell
survival and proliferation with short-term expansion of de novo
generated recent thymic emigrants (reviewed in ref. 10).Moreover,
in recent clinical trials, the administration of recombinant IL-7 led
to a transient entry of T lymphocytes into the cycle, albeit with
a rapid return to quiescence (11–15).
To date, studies of IL-7 stimulation and IL-7 signaling inter-

mediates ex vivo have been performed almost exclusively in incu-
bators maintained at atmospheric O2 levels (20% O2). However,
tissue O2 levels in vivo are substantially lower: direct in vivo
measurements of O2 levels in murine lymphoid organs have
revealed partial pressures of 0.5–4.5% (16), somewhat higher O2
levels in peripheral blood, and 14% in alveoli (17, 18). Thus, al-
though lymphocytes encounter fluctuations in O2 levels in vivo, the
physiological range ofO2 levels to which they are exposed is at least
two to six times lower than the 20% O2 levels maintained in stan-
dard incubators. Culturing at atmospheric O2 levels has been
shown to result in altered cell proliferation rates and other skewed
T-cell responses (16, 19–23). Thus, because the goal of in vitro
studies is generally to reveal information of in vivo significance, our
studies here focus onfindingswith peripheral bloodT cells cultured
at physiological O2 levels. Here we assessed how naive andmemory
T cells respond to IL-7 at the O2 levels to which they are exposed
in vivo and determined their susceptibility to HIV-1 infection.

Results
Physiological O2 Levels Decrease IL-7–Induced Cell Cycle Entry Without
Modulating Proximal IL-7 Signaling. IL-7 has long been known to be
a survival factor for T lymphocytes both ex vivo and in vivo. Nev-
ertheless, the effects of IL-7 on T lymphocytes cultured under
physiological O2 concentrations have not been evaluated. IL-7
stimulation of freshly isolatedCD4T lymphocytes promoted a high
level of viability, irrespective of whether the cells were cultured at
20% (atmospheric) or 2.5% (physiological) O2 concentrations
(Fig. S1). Both forward scatter (FSC), a measure of cell size, and
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side scatter (SSC), a function of cell granularity, profiles of the cells
were increased by IL-7 stimulation, but the increase was signifi-
cantly higher under atmospheric compared with physiological O2
conditions. Specifically, in both naive and memory CD4 T cells,
FSC and SSC were increased by ∼20% and 50–60%, respectively,
following IL-7 stimulation at atmospheric O2, whereas these
parameters were only increased by 5%and 20%at physiological O2
(Fig. S1; P < 0.05 for both naive and memory T cells; n = 3).
Differences in these physical parameters were the first indication
that O2 concentration impacts on IL-7–mediated effects.
Indeed, IL-7–induced cell cycle entry, monitored as a function of

DNA/RNA levels, was significantly lower under conditions of 2.5%
O2 for both naive and memory CD4 T cells (P < 0.0001 and P <
0.01, respectively, at day 9; n= 4; Fig. 1A and Fig. S2). Indeed, the
percentages of IL-7–stimulated naive or memory CD4 T cells en-
tering into S/G2/M at day 9 were 10-fold lower under physiological
compared with atmospheric O2, and this phenomenon was ob-
served throughout the 12 d of IL-7 stimulation (Fig. S2). Fur-
thermore, this difference was not restricted to the DNA replication
phase of the cell cycle, as levels of Ki67, expression of which is
acquired as early as mid-G1, were also significantly lower following
IL-7 stimulation of naive and memory CD4 T cells at physiological
compared with atmospheric O2 concentrations (P < 0.05 for both
subsets at day 9; n = 3; Fig. S2).
Given the significant differences in IL-7–mediated cell cycle entry

under 20% and 2.5% concentrations, it was important to determine
whether IL-7 was able to efficiently induce proximal signaling path-
ways under the latter conditions. Interaction of IL-7 with its receptor
is known to result in receptor internalization and decreased re-
ceptor transcription, resulting in a decrease in surface IL-7Rα levels
(24–26). We indeed observed IL-7Rα down-regulation on naive as
well as memory CD4 T cells, irrespective of the O2 concentration at
which the lymphocytes were cultured (Fig. 1B). Moreover, IL-7
stimulation resulted in a similar phosphorylation of STAT5 at 20%
and 2.5% O2 concentrations [nonsignificant (NS), P > 0.05; n = 5].
STAT5 phosphorylation was detected under both conditions be-
tween days 1 and 6 following IL-7 stimulation (Fig. 1C), strongly
suggesting that proximal IL-7 signaling was not inhibited by the O2
concentration at which the T cells were cultured. However, upon
assessmentofa lateactivationmarker, theCD71 transferrin receptor,
significant inductionwasdetectedonly upon IL-7 stimulationof naive
and memory CD4 T cells at atmospheric O2 and only at late time
points (Fig. 1D and Fig. S3). Thus, IL-7 signaling is induced under
both atmospheric and physiological O2 conditions, but transmission
of this signal, asassessedbyCD71up-regulationandcell cycleentry, is
dependent on theO2 concentration to which the T cells are exposed.

Susceptibility of IL-7–Stimulated CD4 T Cells to Single-Round HIV-1
Infection Is Maintained Under Physiological O2 Concentrations. HIV-
1 infection of CD4 T cells is known to be highly dependent on T cell
activation and cell cycle entry and, indeed, the permissivity of qui-
escent lymphocytes to HIV-1 infection is extremely inefficient
(reviewed in ref. 5). As we found that expression of activation
markers and cell cycle entryweremarkedly inhibited at 2.5%O2 (Fig.
1), we postulated that HIV-1 infection would be reduced at 2.5%O2
relative to 20% atmospheric O2 levels. To address this issue, we
performed single-round infections of IL-7–stimulatedT lymphocytes
with X4-HIV-1 virions harboring the eGFP transgene. Interestingly,
equivalent infection levels were observed at physiological and at-
mospheric O2 (NS, P > 0.05 for both naive and memory T cells; n=
3). However, memory CD4 T cells were always infected at signifi-
cantly higher levels than their naive counterpart (∼30% and 10% at
day 6, respectively, in the representative donor shown; Fig. 2A).
Given this result, it was critical to determine whether the

unexpectedly high levels of infection at 2.5% O2 were due to
changes in coreceptor expression. IL-7 has previously been
shown to augment CXCR4 levels (27), and we found this to be
the case in both naive and memory T cells. At physiological O2
concentrations, CXCR4 levels were modestly increased by
a further 16% in the memory subset (P = 0.03; n = 8). In naive

CD4 T cells, CXCR4 levels were comparable, irrespective of O2
concentration (NS, P > 0.05; n = 8; Fig. S4), making it unlikely
that the infection detected at physiological O2 levels resulted
from changes in coreceptor levels.
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Fig. 1. Physiological O2 levels diminish IL-7–induced cell cycle entry while
maintaining proximal IL-7Rα signaling. Naive and memory CD4 T cell pop-
ulations isolated from adult peripheral blood (APB) were stimulated with IL-7
(10 ng/mL) under 20% (Atmos-O2) or 2.5% (Phys-O2) O2 conditions. (A) Cell
cycle entrywasmonitored as a function of DNA and RNA levels, using 7-amino-
actinomycin-D (7AAD) and pyronin Y (PY), respectively. PY/7AAD cell cycle
staining is shown at day 9, and the percentages of cells in the G1b (lower right
quadrant) and S/G2/M stages (upper right quadrant) are indicated. Cells in the
lower left quadrant are in G0/G1a. (B) Expression of CD127, the IL-7Rα chain,
wasmonitored at day 3, and specific staining (openhistograms) comparedwith
control isotype (closed histograms) is shown. (C) STAT5 phosphorylation was
measured using an anti–phospho-STAT5 polyclonal antibody. Specific (open
histograms) relative to control isotype staining (closed histograms) is shown in
the presence or absence of IL-7. (D) CD71 transferrin receptor expression (open
histograms) and isotype controls (closed histograms) weremonitored at days 9
and 12 of IL-7 stimulation. Data are representative of three independent
experiments comprising three to six different donors.
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To exclude the possibility that the surprisingly high infection at
physiological O2 was due to enhanced gp120–CXCR4 interactions,
we assessed single-round infection using HIV-1–based virions
pseudotyped with the VSV-G envelope glycoprotein. The receptor

for this envelope glycoprotein appears to be ubiquitously expressed
on all mammalian cells. As shown in Fig. 2B, infection by VSV-G–
pseudotypedHIV-1 virions was not decreased at 2.5%O2 (NS, P>
0.05 for both naive and memory T cells; n = 8). Notably, though,
memory CD4 T cells remained significantly more susceptible to
infection than naive T cells, irrespective of the O2 concentration
(18–19% compared with 5–7% infection, respectively; Fig. 2B).
Thus, neither X4- nor VSV-G–mediated HIV-1 infection is de-
creased at physiological O2 concentrations despite a highly re-
duced level of activation and cell cycle entry (Fig. 2B).
Recent thymic emigrants (RTE) show increased proliferation to

IL-7 compared with long-term resident peripheral T cells (28–30).
It was therefore of interest to determine whether IL-7 stimulation
of RTE under physiological O2 concentrations would also result in
a diminished cell cycle entry and how this would impact on the
permissivity of these cells to HIV-1 infection. RTE, characterized
by a naive immature phenotype, represents the vast majority of T
cells present in neonates and umbilical cord blood (UCB). IL-7
stimulation of UCB CD4 T cells at 2.5% O2 resulted in a signifi-
cantly attenuated level of cell cycle entry (P < 0.05; n= 3), with an
effect similar to that which we observed inmature peripheral blood
CD4 T cells (Fig. S5). Moreover, like mature CD4 T cells, the
infection of IL-7–stimulated UCB CD4 T cells was not attenuated
at 2.5% O2 (NS, P > 0.05; n = 5; Fig. S5), providing further evi-
dence that decreased cell cycle entry did not modulate infection of
IL-7–stimulated CD4 T cells at physiological O2 concentrations.

Stimulation of CD4 T Cells at Physiological O2 Concentrations Results
in Enhanced Surface Glut1 Expression and Glucose Uptake. It has long
been postulated that the inability of quiescent T cells to be effi-
ciently infected by HIV-1 is likely due, at least in part, to their very
low metabolic state. Whereas this characteristic was once thought
to be the default mode of T lymphocytes, it is now known thatmany
factors actively control this quiescence (reviewed in ref. 5). One
intriguing possibility to explain the permissivity of IL-7–stimulated
T cells to HIV infection at low O2 concentrations, even in the
absence of cell cycle entry, is an enhanced metabolic activity and,
specifically, an augmented uptake and utilization of glucose. This
hypothesis is based, at least in part, on previous data showing that
expression of the ubiquitous glucose transporter Glut1 is up-reg-
ulated in response to low O2 in several cell types (31). Although
Glut1 has not been detected at significant levels at the surface of
quiescent T cells (32–34), it is induced by TCR stimulation (35, 36),
as well as by the IL-7 cytokine (34, 37, 38).
Surface Glut1 expression was significantly augmented following

IL-7 stimulation at 2.5% O2 conditions compared with 20% O2
(Fig. 3A; P < 0.05; n = 8). Furthermore, this increase in surface
Glut1 expression was accompanied by a 300% increase in glucose
uptake at physiologicalO2 concentrations, asmeasured by the ability
to uptake nonhydrolyzable 2-deoxy-D-[1-3H]glucose (Fig. 3B).

HIV-1 Infection Is Abrogated in the Absence of Surface Glut1.Glut1 is
a downstream substrate of the AKT/PI3K pathway, as assessed in
both lymphocyte and nonlymphocyte lineage cells (reviewed in
refs. 39 and 40). Moreover, expression of an activated transgenic
Akt in murine T cells was found to result in an augmented gly-
colysis (32). To determine the role of this pathway in IL-7–induced
surface Glut1 induction and subsequent HIV-1 infection, we used
a PI3K inhibitor, LY294002. Incubation of IL-7–stimulated T cells
with the LY294002 inhibitor resulted in an almost complete sup-
pression of surface Glut1 as well as glucose uptake, both under
20% and 2.5% O2 conditions (Fig. 3 A and B). This LY294002-
mediated Glut1 inhibition was sufficient to completely abrogate
single-round HIV-1 infection under either O2 condition (Fig. 3C).
To verify that this effect was mediated by the Glut1 trans-

porter itself, we used siRNAs directed against the Glut1 3′ UTR
to specifically down-modulate endogenous Glut1 expression
(41). Transfection of a mix of three different Glut1 siRNAs led
to an approximate 70% decrease in Glut1 mRNA, to levels
similar to those detected in nonstimulated CD4 T cells (Fig. S6).
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andVSV-G–pseudotypedHIV-1 virions does not correlatewith cell cycle kinetics
under physiological O2 concentrations. (A) Naive and memory CD4 T cell pop-
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lation, and the percentages of infected EGFP+ cells are indicated (Upper). The
Lower panel shows a quantification of the percentages of EGFP+ cells from
infections performed at the indicated time points. (B) Nine days post–IL-7
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are indicated (Upper). The corresponding level of cell cycle entry, assessedat the
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Moreover, this decrease in Glut1 mRNA resulted in a 70–80%
attenuation in glucose uptake under both physiological and at-
mospheric O2 conditions (Fig. 4A). The decrease in Glut1 and
glucose uptake resulted in an average 70% inhibition of HIV-1
infection under both atmospheric and physiological O2 con-
ditions (Fig. 4B). Thus, the susceptibility of CD4 T cells to HIV-1
infection, at both physiological and atmospheric O2 conditions, is
regulated via the activity of the Glut1 glucose transporter.

Glut1-Expressing Human Double Positive (DP) Thymocytes Present
a Significantly Enhanced Susceptibility to HIV-1 Infection. Thymocyte
destruction by X4-tropic HIV-1 initially occurs in the DP pop-
ulation (42), and preferentially in those DP cells expressing
higher levels of CD4 (CD4hiDP) and CXCR4 (43). Intriguingly,
we previously found that Glut1 is expressed on ∼10% of all
human thymocytes, and this marker characterizes a subset of DP
cells with high CD4 expression (44). As shown in Fig. 5A,
CD4hiDP thymocytes express significantly higher levels of Glut1
and CXCR4 than CD4loDP thymocytes or single-positive (SP)
SP8 or SP4 thymocytes. On the basis of the data obtained in CD4

T cells, it was possible that the high metabolic activity of CD4hiDP
thymocytes conditioned their susceptibility to HIV-1 infection.
We hypothesized that high surface Glut1 expression may result in
an augmented susceptibility of these cells to HIV-1 infection,
notwithstanding their high CD4 and CXCR4 receptor levels.
To test this hypothesis, we needed to infect thymocytes in

a manner that bypassed the CD4/CXCR4 entry requirement. As
such, we infected thymocytes with HIV-1 virions pseudotyped
with the pantropic VSV-G envelope and, to avoid bias resulting
from thymocyte mortality, freshly isolated total thymocytes were
infected for only 12 h. At that time, thymocyte populations were
sorted and immediately lysed for DNA extraction. Nested PCR
was performed to analyze viral reverse-transcription products
(GFP) and integrated provirus (Alu-LTR products). Notably, the
HIV-1 core virions infected Glut1+DP thymocytes with signifi-
cantly higher efficacy than other thymocyte populations. En-
hanced infection was largely generated at a stage in the viral life
cycle that occurred before or during reverse transcription, with
a 6.5-fold higher level of GFP DNA in CD4hiDP compared with
CD4loDP thymocytes. Levels of nuclear entry and integration
were correspondingly higher, with seven- to ninefold increases in
integrated Alu-LTR products in this subset compared with either
Glut1-CD4loDP or SP subsets (Fig. 5B). The preferential in-
fection of the CD4hiDP population could potentially promote
the transmission of HIV-1 to more mature thymocyte progeny,
resulting in a reservoir of infected T lymphocytes in vivo (43).
This finding has important implications for the subsequent
maintenance of the virus in a quiescent T-cell pool.

Discussion
Here we show that IL-7–mediated activation and cell cycle entry
are strikingly altered by the O2 concentration to which CD4 T cells
are exposed. Notably, though, IL-7 stimulation renders CD4 T
lymphocytes susceptible to HIV-1 infection, irrespective of the O2
concentration. We find that it is Glut1-mediated glucose uptake,
rather than cell cycle entry per se, that regulates HIV-1 infection in
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transfected with Glut1-specific siRNAs (siGlut1) and then stimulated under
20% (Atmos-O2) or 2.5% (Phys-O2) conditions for 24 h. Glucose uptake was
monitored by incubating cells with 2-deoxy-D-[1-3H]glucose (2 μCi) for 10 min
at room temperature. Results are expressed as mean cpm ± SD for triplicate
samples. (B) CD4 T cells stimulated following transfection with control
(siCTRL) or Glut1-specific siRNAs were infected with VSV-G–pseudotyped
HIV-EGFP virions. Infection was monitored at 48 h and the percentages of
EGFP+ cells are indicated. Data are representative of results obtained in four
independent experiments comprising four different donors.
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these cells, establishing a unique paradigm for HIV-1 infection.
Permissivity to HIV-1 infection was directly dependent on Glut1
activity, as Glut1-specific siRNAs inhibited infection of both X4-
and VSV-G–pseudotyped viruses. Furthermore, within the human
thymus, where Glut1 is differentially expressed, HIV-1 infection
was markedly higher in the Glut1-expressing DP subset compared
with Glut1-negative thymocytes. Therefore, we identify the Glut1-
mediated metabolic pathway as a critical regulator of HIV-1 in-
fection in human CD4 T cells and thymocytes.
Regulation of Glut1, the major glucose transporter in T lym-

phocytes, is quite complex, as it is controlled at the level of tran-
scription, translation, and transport to the cell surface. Indeed, in
most cell types, it is glucose uptake across the plasmamembrane that
is the rate-limiting step in the production of ATP. In response to low
O2 levels, the enhanced expression and function of Glut1 is medi-
ated, at least in part, by the hypoxia-inducible factor 1 transcription
factor (31). Augmented Glut1 levels have been shown to play an
important role in the survival and “fitness” of tumor cells adapted to
hypoxic conditions (reviewed in ref. 45) but, to our knowledge, this is
a unique report showing that Glut1 levels on T cells can be modu-
lated by the O2 conditions to which they are exposed.
Surface Glut1 levels on CD4 T cells were augmented at 2.5%

O2 levels following IL-7 stimulations (Fig. 3). The high re-
percussion on glucose uptake, with a dramatic 300% increase in

transport, is likely due not only to increased Glut expression but
also to conformational changes in Glut1 itself. It has been shown
that cytoplasmic ATP inhibits Glut1-mediated glucose uptake by
favoring an interaction between the Glut1 C terminus and Glut1
cytoplasmic loop 6–7 (46). Therefore, under conditions where
ATP levels are lower at physiological O2 concentrations com-
pared with atmospheric O2, the Glut1 conformation would be, at
least, partially released from this inhibitory effect.
It is well-known that efficient HIV-1 infection is highly de-

pendent on T-cell activation and cell cycle entry, with quiescent
lymphocytes showing very inefficient HIV-1 infection (reviewed in
ref. 5). This paradoxical observation, in the context of a lentivirus
otherwise shown to infect nondividing cells, has been puzzling. The
factor(s) controlling infection in resting T cells has not yet been
completely elucidated, but recent studies indicate important roles
for cellular c-Jun N-terminal kinase (47) and chemokine-induced
changes in the actin cytoskeleton (48). The role of the PI3K path-
way in HIV infection of primary T cells is somewhat controversial,
as early studies, performed in transformed cell lines and activated T
cells, reported that PI3K negatively impacts HIV-1 transcription
(48), whereas later work found that PI3K signaling is required for
HIV integration in chemokine-treated quiescent CD4+T cells (49).
The results reported here are in agreement with the more recent
study, as blocking PI3K signaling in IL-7–stimulated resting T cells
abrogated HIV-1 infection. Furthermore, our data suggest that
inhibition ofHIV-1 infection by PI3K inhibitors ismediated, at least
in part, via the suppression of Glut1 expression and function.
Our finding that IL-7–mediated glucose uptake is associated

with a sustained permissivity toHIV-1 infection at physiological O2
levels brings unique perspectives to previous reports showing that
G0-phase T cells can be infected by HIV-1 when present in lym-
phoid aggregate cultures (1, 2, 50). Specifically, in these latter
conditions, aimed atmore faithfully reproducing the in vivo system,
T cells within the aggregates would be exposed to significantly
lower levels of O2 than those delivered to suspension T cells cul-
tured under atmospheric conditions. Although we reveal the
Glut1-mediated pathway as critically impacting onHIV-1 infection
under both atmospheric and physiological O2 concentrations, it is
likely that O2 modulates IL-7–mediated HIV-1 infection via other
pathways as well. Intriguingly, the transactivational properties of
the HIV-1 Tat protein promote HIV-1 infection at physiological
but not atmospheric O2 conditions (51). Thus, it will be of interest
to reassess some of the earlier ex vivo HIV studies to determine
whether the data were modulated by the O2 tensions at which the
experiments were performed.
The ensemble of the data presented here strongly suggests a role

for IL-7 in reversing HIV-1 latency in the low O2 environments
found in spleen, lymph nodes, and thymus, thereby eliminating
latent reservoirs (reviewed in ref. 8). It will be important to assess
whether IL-7 administration modulates glucose uptake and me-
tabolism in T lymphocytes of HIV-1–infected patients and to de-
termine whether the outcome of IL-7 cytokine therapy differs in
the high O2 environment of the peripheral circulation compared
with the relatively low O2 state of lymphoid organs.

Materials and Methods
Cell Isolation and Culture. T cells were isolated from adult peripheral blood,
umbilical cord blood, and thymi as described in SI Materials and Methods.
Cells were cultured in RPMI media supplemented with human recombinant
IL-7 (10 ng/mL; kindly provided by Cytheris) as described in SI Materials and
Methods and, when indicated, LY294002 was added.

Flow Cytometry. To detect expression of surfacemarkers, cells were incubated
with the appropriate fluorochrome-conjugated mAbs (BD Biosciences), or
with 7-amino-actinomycin-D and pyronin Y as described in SI Materials and
Methods. Surface Glut1 expression was monitored by binding to a recombi-
nant human T-lymphotrophic virus-2 envelope receptor-binding domain
(HRBD) fused to the EGFP coding sequence (HRBDEGFP) as described (41, 52).
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Fig. 5. Glut1 expression is associated with increased permissivity of the
CD4hiCXCR4hi DP human thymocyte subset to VSV-G–pseudotyped HIV-1 in-
fection. (A) Glut1 and CXCR4 staining in the CD4hiDP, CD4loDP, SP4, and SP8
human thymocyte subsets are shown as histogram overlays. The gates used to
define and FACS sort these subsets are shown, and the percentages of cells in
each quadrant are indicated. (B) Freshly isolated human thymocytes were
infected for 12 h with a single-round VSV-G–pseudotyped HIV-1. Thymocyte
populations were subsequently sorted by FACS and quantitative PCR analysis
was performed to detect EGFP DNA (Upper), indicative of completed reverse
transcription, as well as a two-step nested PCR for Alu-LTR DNA to detect
integrated provirus (Lower). Signals were normalized to β-actin DNA. Results
for each subset are expressed as means ± SD of triplicate samples.
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Glucose Uptake Assays. Uptake was performed for 10 min at room temper-
ature upon addition of 2-deoxy-D-[1-3H]glucose (Amersham Biosciences) as
described in SI Materials and Methods.

siRNA Transfections for Glut1 Inhibition and Analyses of Glut1 Transcripts.
Purified T cells were transfected with the indicated synthetic siRNAs, com-
plementary to the Glut1 3′ UTR (41), as described in SI Materials and
Methods. Quantitative PCR for Glut1 and 18S was performed as described in
SI Materials and Methods.

Virus Production and Infections. Self-inactivating single-round HIV-1 virions
were generated by transient transfection of 293T cells as published (53) and
described in SI Materials and Methods. For single-round infections, lym-
phocytes were infected with HIVenv712-pseudotyped vector or VSV-G–
pseudotyped HIV-1 vector as indicated in SI Materials and Methods.
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