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Summary
A system for identifying equine Major Histocompatibility Complex (MHC) haplotypes was
developed based on five polymorphic microsatellites located within the MHC region on ECA 20.
Molecular signatures for 50 microsatellite haplotypes were recognized from typing 353 horses. Of
these, 23 microsatellite haplotypes were associated with 12 established Equine Leukocyte Antigen
(ELA) haplotypes in Thoroughbreds and Standardbreds. Five ELA serotypes were associated with
multiple microsatellite subhaplotypes, expanding the estimates of diversity in the equine MHC.
The strong correlations between serological and microsatellite typing demonstrated a linkage to
known MHC class I protein polymorphisms and validated this assay as a useful supplement to
ELA serotyping, and in some applications, a feasible alternative method for MHC genotyping in
horse families and in population studies.
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Diversification of Major Histocompatibility Complex (MHC) class I and class II genes in
the vertebrate genome is a key feature of their role in antigen presentation in the adaptive
immune system (Hughes and Nei 1992). However, assigning MHC haplotypes to individuals
remains challenging even in the age of whole genome sequencing. International workshops
convened in the 1980s identified 19 serological specificities as products of the Equine
Leukocyte Antigen (ELA) system (Lazary et al. 1988). The serological assay is limited by
the amount and variety of antibody reagents available, and the complex alloantisera are
directed primarily against MHC class I antigens. To address these limitations, alleles at five
polymorphic microsatellite loci within the equine MHC (Fig. S1) were used to identify
distinct haplotypes based upon the well-known linkage disequilibrium within the MHC (see
Appendix S1 for Materials and Methods). In addition, we evaluated these molecular
haplotypes as proxies for serologically defined markers by testing their level of
correspondence to the serological haplotypes of the ELA system (Lazary et al. 1988) within
and between horse breeds (Table 1).
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Microsatellite haplotypes were defined in three ways: 1) horses homozygous for
microsatellite allele constellations that allowed unambiguous identification of MHC
microsatellite haplotypes with supporting serological data; 2) horses belonging to families
that allowed definition of microsatellite haplotypes by familial transmission; 3) association
of haplotypes with known serotypes that allowed definition of haplotypes in cis
configuration. Haplotypes were defined when they could be identified in at least two
individuals that were not related within two generations, or when observed segregating in
families. When possible, microsatellite haplotype nomenclature was derived from
nomenclature of the ELA complex. When a serotype was associated with multiple
microsatellite haplotypes, indicating a genetic complexity not reflected by serotyping, the
ELA type was followed by a lower-case letter to denote the subtype. Finally, haplotypes not
associated with serotypes were given the prefix “COR” (for Cornell) followed by a number
as a working title.

A total of 50 microsatellite haplotypes were identified from typing 353 horses using the five
intra-MHC microsatellite loci (Table 1; Fig. S1). Variable numbers of alleles were detected
for each microsatellite locus (range 8–13, Table S1), but most were not uniquely associated
with any single haplotype (Table 1). MHC haplotype definitions were most accurate when
based on alleles at all five loci (Fig. S2). Of the 50 haplotypes, 23 were linked to 12 known
ELA serotypes based on previous serotyping results (Table 1; Table S2). The remaining 27
haplotypes, designated as “COR” haplotypes, were discovered in horses that carried
unidentified haplotypes (negative for known ELA serotypes) or that had not been serotyped.

The equine MHC haplotypes described here represent a large increase in the number of
recognized haplotypes segregating within families and detected among unrelated
individuals. In addition to defining new levels of diversity in the equine MHC, this study
also confirms the distribution of associated broad ELA serotypes in Thoroughbreds and
Standardbreds, where a small number of ELA types are carried by the majority of horses in
these breeds (Antczak et al., 1986). Overall, the named microsatellite haplotypes defined
90% and 97% of the haplotypes in Thoroughbreds and Standardbreds, respectively, and 63%
in Arabian horses (Table S3).

Five ELA serotypes were associated with multiple microsatellite haplotypes. The origin and
extent of the diversity within subtypes remain unclear. A strong association was observed
between ELA serotypes and alleles at microsatellite locus UMN-JH34-2, located in a cluster
of expressed MHC class I genes (Tallmadge et al. 2005) (Fig. S2, SOM). Microsatellite
variation within serologically defined ELA haplotypes was restricted largely to the MHC
class II region. For some subtypes, there was little or no sharing of MHC class II
microsatellite alleles (Table 1). In the ELA-A3 haplotype carried by the donor horses of the
equine Bacterial Artificial Chromosome library (Gustafson et al. 2003) and the genome
sequence (Wade et al. 2009), there is little evidence of sequence variation in MHC class I or
II genes among the subhaplotypes (Tallmadge et al. 2005, 2010; Miller and Antczak,
personal communication). The subhaplotypes could reflect microsatellite evolution in
ancient haplotypes that is independent of alterations in MHC class II structural genes or the
recombination between the MHC class I and class II regions that is manifest in new
haplotypes. Haplotypes that were serology positive and microsatellite negative could be as
yet unrecognized subhaplotypes that were not captured by a single microsatellite haplotype.
In contrast, MHC haplotypes that were serology negative and microsatellite positive may
have been defined as a result of inaccurate serotyping (Table S2).

The reported high linkage disequilibrium within the equine genome between breeds
presumably reflects the recent breed divergence and sharing of founders (Wade et al. 2009).
While some ELA haplotypes are shared among breeds, Antczak et al. (1986) previously
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described differences between breeds in the frequency of detection of various ELA
haplotypes, including the apparent absence of some haplotypes in certain breeds. Similar
restriction was seen in the microsatellite haplotypes defined here (Table 1; Table S3). The
high correlation of serotypes with microsatellite haplotypes within certain breeds indicates
that intra-MHC microsatellite typing with the described five member panel can be used for
MHC genotyping within breeds for population and family studies, particularly in
Thoroughbreds and Standardbreds.

The microsatellite typing reported here allows rapid and accurate identification of equine
MHC haplotypes in most instances, requires no specialized alloantibody reagents, and as
such offers advantages over ELA serotyping. This study used ELA serotyping, known MHC
homozygous horses, and MHC gene sequencing (Tallmadge et al. 2010) to link key
microsatellite constellations to common MHC haplotypes and to expand the estimates of
diversity in the equine MHC. Microsatellite typing is thus a powerful complement to
classical ELA serotyping and sequencing for identifying MHC haplotypes of the horse.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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