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In contrast to gene-for-gene disease resistance, nonhost resistance governs defense responses to a broad range of

potential pathogen species. To identify specific genes involved in the signal transduction cascade associated with nonhost

disease resistance, we used a virus-induced gene-silencing screen in Nicotiana benthamiana, and identified the perox-

isomal enzyme glycolate oxidase (GOX) as an essential component of nonhost resistance. GOX-silenced N. benthamiana

and Arabidopsis thaliana GOX T-DNA insertion mutants are compromised for nonhost resistance. Moreover, Arabidopsis

gox mutants have lower H2O2 accumulation, reduced callose deposition, and reduced electrolyte leakage upon inoculation

with hypersensitive response–causing nonhost pathogens. Arabidopsis gox mutants were not affected in NADPH oxidase

activity, and silencing of a gene encoding NADPH oxidase (Respiratory burst oxidase homolog) in the gox mutants did not

further increase susceptibility to nonhost pathogens, suggesting that GOX functions independently from NADPH oxidase. In

the two gox mutants examined (haox2 and gox3), the expression of several defense-related genes upon nonhost pathogen

inoculation was decreased compared with wild-type plants. Here we show that GOX is an alternative source for the

production of H2O2 during both gene-for-gene and nonhost resistance responses.

INTRODUCTION

All plants are generally resistant to a wide range of potential

pathogens present in the environment, and the term nonhost

resistance has been coined to define the resistance shown by an

entire plant species to all isolates of a microbial species (Heath,

2000). A pathogen that cannot cause disease on a nonhost plant

is referred to as a nonhost pathogen. The wide spectrum of

nonhost resistance is in contrast with the more specific mech-

anism of gene-for-gene resistance, also known as effector-

triggered immunity (ETI), which is mediated by the activity of

pathogen effectors recognized by resistance (R) proteins (Jones

and Dangl, 2006). The consequence of ETI is the elicitation of a

localized programmed cell death (PCD) reaction known as the

hypersensitive response (HR), which ultimately limits the spread

of the pathogen (Hammond-Kosack and Jones, 1997). It has

been proposed that nonhost resistance operates under two

distinct mechanisms: type I and type II (Mysore and Ryu, 2004).

In type I, the plant does not show any symptoms after inoculation

with the nonhost pathogen, suggesting that pathogen growth is

halted as a consequence of preformed or inducible defenses; in

type II, a HR is triggered because the pathogen is able to disarm

the first layers of defense, but is later recognized by the plant

surveillance system (Mysore and Ryu, 2004).

Although nonhost resistance is not very well understood, it is

known that the mechanism of nonhost resistance involves a first

layer of defense that includes the plant cytoskeleton and con-

stitutively produced peptides, proteins, and secondary metab-

olites with antimicrobial properties (Mysore and Ryu, 2004; Ellis,

2006; Lipka et al., 2008). The second layer of defense includes

induction of plant defense-related genes upon perception of

pathogen-associated molecular patterns (PAMPs) to prevent the

spread of the pathogen and the initiation of disease. Among

these are genes responsible for synthesis of phytoalexins

(Thomma et al., 1999; Zhou et al., 1999; Loehrer et al., 2008),

genes in defense-signaling transduction cascades involving the

hormones salicylic acid (SA) (Mellersh and Heath, 2003; Loehrer

et al., 2008), ethylene (ET) (Knoester et al., 1998; Geraats et al.,

2003; Nasir et al., 2005), and jasmonic acid (JA) (Loehrer et al.,

2008), as well as the MAP kinases: wound-induced protein

kinase and SA-induced protein kinase (Sharma et al., 2003).

The HR associated with nonhost resistance is similar to the HR

induced during gene-for-gene resistance and involves accumu-

lation of reactive oxygen species (ROS), such as superoxide

(O2
2) and hydrogen peroxide (H2O2). Evidence for the role of

ROS in triggering and/or executing the HR has been demon-

strated by pharmacological studies showing that blocking ROS

accumulation inhibited cell death (Levine et al., 1994). Further-

more, accumulation of H2O2 in catalase-deficient plants (Van
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Breusegem and Dat, 2006) or in transgenic plants expressing

H2O2-generating enzymes activated cell death and increased

protection against bacterial and oomycete pathogens (Wu et al.,

1995). The effect of ROS in defense responses and the activation

of the HR have been mainly associated with NADPH oxidase,

which catalyzes the reduction of O2 intoO2
2. Further dismutation

of O2
2 by the enzyme superoxide dismutase generates the most

stable ROS, H2O2 (Lamb and Dixon, 1997). However, accumu-

lated evidence for the role of NADPH oxidase in disease resis-

tance is contradictory. Silencing of the genes encoding NADPH

oxidases (RBOHA and RBOHB) in Nicotiana benthamiana elim-

inated H2O2 production, enhanced sporangia and disease lesion

formation upon inoculation with Phytophthora infestans, and

delayed or reduced HR cell death caused by the elicitor INF1

(Yoshioka et al., 2003). In Arabidopsis thaliana, the NADPH

oxidase mutant respiratory burst oxidase homolog (rbohD)

showed dramatic reduction in H2O2 accumulation but without

significant effect on the HR (Torres et al., 2002). Furthermore,

inoculation of rbohD mutants with both virulent and avirulent

bacterial strains did not show a substantial difference in bacterial

growth in comparison with wild-type plants (Torres et al., 2002;

Chaouch et al., 2011). In contrast with the phenotypes observed

in N. benthamiana, abolishment of H2O2 production in rbohD

plants reduced, rather than increased, sporangiophore devel-

opment and fungal biomass upon inoculation with Peronospora

parasitica (Torres et al., 2002) andAlternaria brassicicola (Pogány

et al., 2009), respectively. The latter work also showed that

the rbohD mutant is not affected in stress-related responses

(Pogány et al., 2009) and indicates that RBOHD actually sup-

presses cell death (Torres et al., 2002; Pogány et al., 2009).

In addition to the apoplastic H2O2 generated by themembrane-

localized NADPH oxidase, H2O2 and other ROS are produced in

various organelles and through different enzymatic reactions in

plant cells (Van Breusegem and Dat, 2006). Among these are the

peroxisomes, which provide a rich source of H2O2 through the

glycolate oxidase (GOX) reaction (Foyer et al., 2009). GOX

catalyzes the conversion of glycolate into glyoxylate during

photorespiration with concomitant production of H2O2. The

role of GOX in disease resistance has been tangentially pro-

posed, but no mechanism was identified. For example, somatic

hybrids between Brassica napus and Arabidopsis were pro-

duced to incorporate resistance in B. napus against Leptos-

phaeria maculans. Comparison of protein profiles between

resistant and susceptible somatic hybrids revealed that GOX

was abundantly present in resistant plants (Bohman et al., 2002).

GOX was also shown to be induced in barley (Hordeum vulgare)

upon inoculation with the pathogenic fungus Bipolaris sorokini-

ana (Schäfer et al., 2004), and melon cultivars resistant to the

oomycete Pseudoperonospora cubensis had increased GOX

enzyme activities (Taler et al., 2004).

In this article,we report theuseof a virus-inducedgene-silencing

(VIGS)-based, fast-forward genetics approach (Baulcombe, 1999;

Lu et al., 2003b; del Pozo et al., 2004) to identify plant genes that

play a role in nonhost disease resistance. One of the genes

identified through the screen encodes the photorespiratory en-

zyme,GOX.Wedemonstrated that the generation of H2O2 byGOX

during nonhost resistance is independent of the oxidative burst

mediated by NADPH oxidase.

RESULTS

VIGS-Based Screening Identifies Several N. benthamiana

Genes Involved in Nonhost Disease Resistance

To identify genes that would enable us to dissect the complex

phenomenon of nonhost disease resistance, we used a To-

bacco rattle virus (TRV)-based VIGS system as a fast-forward

genetics tool (Liu et al., 2002a; Liu et al., 2002b; Anand et al.,

2007; Wangdi et al., 2010) to screen a normalized N. benthami-

ana Mixed Elicitor cDNA library (Anand et al., 2007). From the

cDNA library, 3840 pTRV2 derivative clones (one gene per

clone) were individually inoculated, in duplicate, along with

pTRV1, into N. benthamiana plants. As a control, we used

pTRV2 harboring the green fluorescent protein sequence (GFP)

(GFP does not have any sequence similarity to plant DNA and

therefore will not cause gene silencing). Three weeks after TRV

inoculation, we infiltrated the upper gene-silenced leaves,

using a needleless syringe, with a high inoculum (1 3 108

colony-forming units [cfu]/mL) of a type I nonhost pathogen,

Pseudomonas syringae pv glycinea, or a type II nonhost path-

ogen, P. syringae pv tomato strain T1. After three rounds of

screening, we identified 12 clones that, when silenced in N.

benthamiana, showed alteration in the plant response when

inoculated with nonhost bacterial pathogens. We selected four

of those clones for further characterization. Upon syringe

infiltration with P. syringae pv tomato strain T1 (a type II nonhost

pathogen), the control plants (TRV:GFP) showed a typical HR

characterized by necrosis limited around the inoculation site as

early as 1 d after inoculation (DAI), whereas in some silenced

lines, the HR started only after 2 or 3 DAI, or in some cases,

inoculated leaves developed disease symptoms (Figure 1A).

Upon inoculation with P. syringae pv glycinea (a type I nonhost

pathogen), the control plants (TRV:GFP) did not show any

visible symptoms, as expected; however, the silenced lines

showed disease-associated necrosis around the site of inoc-

ulation as early as 2 DAI, and the necrosis extended throughout

the leaf at 7 DAI (Figure 1B). At low levels of inoculum (1 3 104

cfu/mL), both type I and type II nonhost pathogens that were

used showed increased bacterial accumulation in silenced

plants starting at 3 DAI and reaching 10- to 100-fold more at

7 DAI in comparison with control plants (Figures 1C and 1D).

These results demonstrated the use of VIGS-mediated fast-

forward genetics to identify plant genes involved in nonhost

disease resistance.

Silencing ofGOX inN. benthamianaCompromises Nonhost

ResistanceandAlsoAffectsGene-for-GeneResistance and

PAMP-Mediated Immunity

We further characterized the cDNA clone TRV:16G11, which

when silenced showed a very significant increase in the growth of

nonhost bacteria compared with control plants. 16G11-silenced

plants were delayed in the onset of the HR, which started at 48 h

after inoculation and was not uniformly distributed around the

site of inoculation. VIGS caused 80% downregulation of 16G11

mRNA as demonstrated by quantitative RT-PCR (qRT-PCR) (see

Supplemental Figure 1 online).
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The insert in TRV:16G11 was sequenced, and the sequence

informationwas then analyzed topredict gene function. ABLASTX

search against the J. Craig Venter Institute database revealed

90% identity to anArabidopsisGOXgene, At3g14420. To facilitate

a more comprehensive analysis of the N. benthamiana GOX

homolog (NbGOX), we cloned the full-length NbGOX by Rapid

Amplification of cDNA Ends (RACE). The cloned gene was then

sequenced, and the translated amino acid sequence was then

aligned with orthologous plant protein sequences using ClustalW

(http://workbench.sdsc.edu). The alignment revealed a high de-

gree of sequence conservation among GOX of various plant

species (see Supplemental Figure 2 online). The full sequence of

NbGOX was deposited in GenBank. In addition, we also se-

quenced the inserts in three other clones (6F8, 19A10, and37G12).

We challenged the GOX-silenced N. benthamiana plants with

another unrelated nonhost pathogen, Xanthomonas campestris

pv vesicatoria. Contrary to control plants inoculated with TRV:

GFP, the growth of X. campestris pv vesicatoria inGOX-silenced

plants was significantly greater at 7 DAI and was;10-fold more

than the control plants (Figure 2). We then checked whether

GOX-silenced plants were hypersusceptible to a host path-

ogen, P. syringae pv tabaci. Interestingly, we observed that the

population of the host pathogen at 3 and 7 DAI was similar in

both control and GOX-silenced plants (Figure 2). In addition,

Figure 1. A Fast-Forward Genetics Screen Using VIGS Allowed the Identification of Genes Involved in Nonhost Disease Resistance.

Silenced N. benthamiana plants and control plants (TRV:GFP) were challenged with nonhost pathogens P. syringae pv tomato strain T1 (A) and P.

syringae pv glycinea (B) at 108 cfu/mL. HR or disease symptoms were evaluated at different times after inoculation. Bacterial growth in silenced lines

was monitored by inoculating silenced and control plants with P. syringae pv tomato strain T1 (C) and P. syringae pv glycinea (D) at 104 cfu/mL. Four

representative clones out of 12 are shown. Bars represent the mean and SD for four biological replicates in three independent experiments. Statistical

significance for a particular time point was determined using one-way ANOVA, and P values from F test are indicated above bars. LSD test was used to

test differences between treatments when statistical significance was found. Means with the same letter were not significantly different at P < 0.05. dpi,

days postinoculation.
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populations of nonhost and host bacteria were monitored in

GOX-silenced plants by inoculating GFPuv-labeled bacteria

(Wang et al., 2007) at a lower concentration (3 3 104 cfu/mL) to

prevent cell death associatedwith HR or disease. Under UV light,

the growth of the nonhost pathogen P. syringae pv tomato strain

T1 was visible as green fluorescent colonies in GOX-silenced

lines (TRV:GOX) but not in the control plants (TRV:GFP) (see

Supplemental Figure 3A online). GOX-silenced plants showed

the same intensity of green fluorescence as that of control plants

upon inoculation with the host pathogen P. syringae pv tabaci

(see Supplemental Figure 3B online).

To determine whether silencing of GOX also delays HR asso-

ciatedwith ETI andPAMP-triggered immunity, we induced anHR

in fully expanded young leaves of GOX-silenced and control N.

benthamiana plants by coexpressing several R genes and their

cognate avirulence (Avr) genes using Agrobacterium (Figure 3).

Coexpression of theR genePto (Tang et al., 1996) and avirulence

gene AvrPto (Frederick et al., 1998) in control plants (TRV:GFP)

produced the typical confluent tissue collapse that characterizes

the HR, and consequently there was a considerable increase in

autofluorescence caused by the release of phenolic compounds

(Figure 3A; see Supplemental Figure 4A online) (Klement et al.,

1990). By contrast, the HR in GOX-silenced plants (TRV:GOX)

was considerably delayed, and the levels of autofluoresence

were reduced by ;50% in comparison with control plants

(Figure 3A; see Supplemental Figure 4A online). Other gene-

for-gene combinations, such as EIX-tvEIX (Ron and Avni, 2004)

and Cf9-Avr9 (Van der Hoorn et al., 2000), did not show any

alterations in timing or intensity of HR in GOX-silenced plants

when compared with control plants (Figures 3B and 3C; see

Supplemental Figures 4B and 4C online). When the P. infestans

gene-encoding elicitor protein INF1 (PAMP; Kamoun et al., 1998)

was transiently expressed using Agrobacterium, HR develop-

ment in GOX-silenced plants was slightly delayed, with a reduc-

tion in the levels of autofluorescence at 4 DAI when compared

with control plants (Figure 3D; see Supplemental Figure 4D

online). Taken together, these results suggest that GOX plays a

role in nonhost disease resistance triggered by both type I and

type II nonhost pathogens and also in the elicitation of the HR

observed during Pto-AvrPto–mediated and INF1-mediated de-

fense responses in N. benthamiana.

Individual Null Mutations in Arabidopsis GOX Genes

Compromise Nonhost Resistance

To genetically dissect the function of GOX in nonhost disease

resistance, we decided to examine the role of its corresponding

homologs in the tractable model plant, Arabidopsis. Computer-

assisted predictions based on peroxisome targeting signals of

the protein had previously identified five members of the GOX

gene family in the Arabidopsis genome: GOX1 (At3g14420),

GOX2 (At3g14415), GOX3 (At4g18360), HAOX1 (At3g14130),

andHAOX2 (At3g14150) (Reumann et al., 2004). T-DNA insertion

mutants for these geneswere obtained andwere confirmed to be

null mutants (see Supplemental Figure 5 online).

We conducted an initial screen to determine whether these

mutant lineswere susceptible to a nonhost pathogen by seedling

flood-inoculation (Ishiga et al., 2011) of 4-week-old seedlings

with the nonhost pathogen P. syringae pv syringae strain B728A.

At 5 DAI, wild-type plants showed no disease symptoms,

whereas all the goxmutants showed varying degrees of disease,

frommild chlorosis in the upper leaves with necrosis in the lower

leaves to total tissue collapse (Figure 4A). No symptoms were

observed in mock-inoculated gox mutants (see Supplemental

Figure 6 online). In addition, using this method of inoculation, the

nonhost pathogen multiplied ;10-fold higher in all the gox

mutants than in the wild-type Columbia ecotype (Col-0) (Figure

4B). All the gox mutants also showed high susceptibility to

another nonhost pathogen, P. syringae pv tabaci, upon syringe-

inoculation (Figure 4C) and supported more bacteria when

compared with wild-type Col-0 (Figure 4D). Inoculation of gox

mutant lineswith the host pathogenP. syringaepvmaculicola did

not show any difference in bacterial growth in comparison with

the wild type (see Supplemental Figure 7 online). These obser-

vations suggested that each of the individual gox mutants

compromised nonhost resistance, and presumably the different

Figure 2. Silencing of GOX in N. benthamiana Enhances Growth of

Nonhost Pathogens, but Has No Effect on the Growth of a Host Pathogen.

Control plants (TRV:GFP) and GOX-silenced plants (TRV:GOX) were

vacuum infiltrated with X. campestris pv vesicatoria (A) and P. syringae

pv tabaci (B) at 104 cfu/mL, and bacterial populations were quantified at 0,

3, and 7 DAI. Data represent the mean and SD for four biological replicates

in three independent experiments. Asterisk represents statistically signif-

icant value at P < 0.05 based on Student’s t test between TRV:GFP and

TRV:GOX. dpi, days postinoculation.
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members of the Arabidopsis GOX gene family do not have a

redundant function with respect to nonhost resistance.

Gene-for-Gene Resistance Is Also Compromised in

Arabidopsis goxMutants

To determine whether GOX also plays a role in gene-for-gene

resistance in Arabidopsis, we inoculated Col-0 and gox mutants

using a needleless syringe at a low concentration (1 3 104 cfu/

mL) with either the compatible strain P. syringae pv tomato strain

DC3000 or the incompatible strains P. syringae pv tomato strain

DC3000 (AvrB) and P. syringae pv tomato strain DC3000

(AvrRps4) carrying the avirulence genes AvrB and AvrRps4,

respectively, and therefore rendering P. syringae pv tomato

strain DC3000 avirulent in Arabidopsis (Innes et al., 1993; Hinsch

and Staskawicz, 1996). As expected, the compatible strain P.

syringae pv tomato strain DC3000 showed chlorosis and necro-

sis in wild-type Col-0 and in all gox mutant lines (Figure 5A).

Inoculation with the avirulent strains P. syringae pv tomato strain

DC3000 (AvrB) (Figure 5B) and P. syringae pv tomato strain

DC3000 (AvrRps4) (Figure 5C) did not cause disease symptoms

in the wild-type Col-0, whereas the gox mutant lines showed

various degrees of disease symptoms ranging from mild chloro-

sis to severe necrosis, implicating Arabidopsis GOX in gene-for-

gene resistance responses. P. syringae pv tomato strain DC3000

(AvrRps4) was chosen to further evaluate its growth in planta.

The data revealed that gox mutant lines allowed at least 10-fold

increase in bacterial titer at 3 DAI (Figure 5D). These results

confirmed the observations in N. benthamiana that GOX plays a

role in R gene–mediated resistance, suggesting a partial overlap

between R gene and nonhost resistance mechanisms.

All the Members of the Arabidopsis GOX Gene Family Are

Required for the Elicitation of Defense Responses upon

Inoculation with a Nonhost Pathogen

Callose deposition and HR are typical plant defense responses

upon pathogen inoculation. We tested whether these responses

were affected in the goxmutants upon inoculation with a nonhost

pathogen. For callose deposition, wild-type Col-0 and gox mu-

tants were infected with P. syringae pv tabaci at 106 cfu/mL and

stained with aniline blue 48 h after inoculation. All the goxmutants

showed a significant decrease in the numbers of callose deposits,

with gox3 showing a 92% reduction followed by gox1 and gox2

with 88% reductions, whereas haox2 and haox1were reduced by

70 and 60%, respectively (Figure 6A). Furthermore, the HR,

quantified by the release of electrolytes, was reduced by 40 to

60% in goxmutants when compared with wild-type Col-0 (Figure

6B). These data clearly show that when inoculated with a nonhost

pathogen, wild-type Col-0 is able to mount a defense response

characterized by the HR and deposition of callose, whereas the

intensity or timing of these responses in goxmutants are reduced

or delayed as previously observed in N. benthamiana.

GOX Activity and Production of H2O2 Is Affected in

goxMutants

We confirmed that all the gox mutants indeed had significantly

(;80%) less GOX activity, without pathogen inoculation, when

compared with wild-type Col-0 (Figure 7A). Furthermore, the

reaction catalyzed by GOX leads to production of H2O2, a key

signaling molecule that triggers the process of localized cell

death (HR) upon challenging with elicitors and avirulent patho-

gens (Levine et al., 1994). Because H2O2 is also available from

different sources in plant cells (Neill et al., 2002), we hypothe-

sized that GOX from peroxisomes might be the main source for

H2O2 production during nonhost disease resistance responses.

We monitored the accumulation of H2O2 upon syringe inocu-

lation with the nonhost pathogen P. syringae pv tabaci at 106 cfu/

mL, a concentration high enough to cause HR. At 24 h after

inoculation, 3,39-diaminobenzidine tetrahydrochloride (DAB)

staining revealed a decreased accumulation of H2O2 in all the

gox mutants when compared with the wild-type Col-0 (Figure

7B). No H2O2 accumulation was observed in Col-0 that was

mock-inoculated, indicating that after 24 h, the H2O2 produced

by wounding is no longer present (Figure 7B).

We conducted a time-course experiment to monitor the ac-

cumulation of H2O2 associated with GOX. Because H2O2 is

unstable and direct quantification of H2O2 is cumbersome

(Queval et al., 2008), we quantified H2O2 accumulation indirectly

as the color intensity associated with DAB staining as done

Figure 3. Silencing of GOX in N. benthamiana Partially Compromises

Gene-for-Gene Resistance and PAMP-Mediated Immunity.

GOX-silenced plants (TRV:GOX) and control plants (TRV:GFP) were

coinfiltrated with A. tumefaciens strains carrying the R-Avr gene combi-

nations Pto-AvrPto (A), EIX- tvEIX (B), Cf9-Avr9 (C), and with an Agro-

bacterium strain carrying the construct that expresses PAMP elicitor Inf1

(D). Symptoms of HR were evaluated at 4 DAI. For quantification of

fluorescence intensity, 10 leaf disks (0.5 cm2) were observed under

epifluorescence microscopy, and pictures were taken from 50 randomly

chosen microscopic fields. Images were converted to gray scale, and

mean gray value for the entire image was calculated using ImageJ (http://

rsb.info.nih.gov/ij/). Numbers under the pictures represent means and SD

of fluorescence intensity quantification (in arbitrary units). Asterisks

indicate statistically significant difference between TRV:GFP and TRV:

GOX using Student’s t test at P < 0.01.
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previously (Torres et al., 2005) (Figure 7C). Col-0 and all the gox

mutants showed almost equivalent levels of H2O2 accumulation

at 30 min, 2 h, and 6 h after inoculation. However, at 24 h after

inoculation, therewas a significantly higherH2O2 accumulation in

wild-type Col-0 when compared with gox mutants, indicating

that the timing of H2O2 generated by GOX follows the second

phase of the oxidative burst associated with NADPH oxidase

activity (Lamb and Dixon, 1997).

GOX Function in Nonhost Resistance Is Independent of

NADPH Oxidase Activity

We used three independent approaches to confirm that the

Arabidopsis gox phenotypes are not caused by a defect in

NADPH oxidase: i) we used VIGS to silence the NADPH oxidase-

encoding gene RBOHD in wild-type Col-0 and in goxmutants to

evaluate disease development and bacterial growth; ii) we mea-

sured basal levels of NADPH oxidase enzymatic activity in wild-

typeCol-0 and all the goxmutants; and iii) wemeasured the basal

levels of gene expression of the NADPH oxidase-encoding gene

RBOHD in wild-type Col-0 and all the gox mutants.

TRV-based VIGSwas used to silence RBOHD as described (Lu

et al., 2003). Transcripts ofRBOHDwerequantifiedbyqRT-PCR in

the silenced and control plants. Although we designed constructs

to specifically target RBOHD, we also observed silencing of

RBOHF to some extent (because of high similarity) that was

variable among different lines when inoculated with TRV:RBOHD.

After TRV:RBOHD inoculation, we obtained ;25 to 60% down-

regulation of RBOHD in wild-type Col-0 and all gox mutants as

quantified by qRT-PCR (see Supplemental Figure 8A online).

Previous results have shown that the rbohD mutant is com-

promised in the accumulation of H2O2 after 6 h of inoculationwith

an incompatible (HR-causing) pathogen, P. syringae pv tomato

strain DC3000 (AvrRpm1) (Torres et al., 2002).We testedwhether

the levels of downregulation of RBOHD caused by VIGS in wild-

type Col-0 were enough to affect the accumulation of H2O2 after

6 h of inoculation with P. syringae pv tomato strain DC3000

(AvrRpm1). Silenced and control lines were inoculated with P.

Figure 4. Arabidopsis gox Mutants Show Increased Susceptibility to Nonhost Pathogens P. syringae pv syringae Strain B728A and P. syringae pv

tabaci.

(A) Four-week old seedlings of wild-type Col-0 and T-DNA insertion mutants gox1, gox2, gox3, haox1, and haox2 were flood-inoculated with the

nonhost pathogen P. syringae pv syringae strain B728A at 3 3 107 cfu/mL, and symptoms were evaluated at 5 DAI.

(B) Growth of P. syringae pv syringae strain B728A from flood inoculation was quantified in wild-type Col-0 and all the gox mutants at 0 and 3 DAI.

(C) Four-week old Col-0 and gox mutant plants were grown in soil and syringe-inoculated with P. syringae pv tabaci at 53 106 cfu/mL, and symptoms

were evaluated after 3 d.

(D)Growth of P. syringae pv tabaci after syringe inoculation in wild-type Col-0 and all goxmutants was quantified at 0 and 3 DAI using a starting inoculum of

104 cfu/mL. Bars represent themean and SD for four biological replicates in three independent experiments. Statistical significance for a particular time point

was determined using one-way ANOVA, and P values from F test are indicated above bars. LSD test was used to test differences between treatments when

statistical significance was found. Means with the same letter were not significantly different at P < 0.05. dpi, days postinoculation.
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syringae pv tomato strain DC3000 (AvrRpm1) at 23 107 cfu/mL,

and after 6 h of inoculation, inoculated leaves were harvested for

DAB staining as described earlier. We observed that RBOHD-

silenced Col-0 plants had a statistically significant minor reduc-

tion in H2O2 accumulation (see Supplemental Figure 8B online).

However, silencing of RBOHD in wild-type Col-0 did not signif-

icantly affect the accumulation of H2O2 associated with GOX

after 24 h of inoculation with a nonhost pathogen, P. syringae pv

tabaci (see Supplemental Figure 8C online).

Two weeks after inoculation with TRV:GFP or TRV:RBOHD,

Arabidopsis (Col-0) plants were challenged with a nonhost

pathogen, P. syringae pv tabaci, to observe symptom develop-

ment and to quantify bacterial growth in planta. Wild-type Col-0

plants inoculated with TRV:RBOHD showed mild disease symp-

toms. Silencing of RBOHD in the gox mutants did not have any

significant additive effect regarding disease symptoms in gox

mutants (Figure 8A). However, given the high variability and the

nonquantitative nature of the symptoms, we decided to examine

the multiplication of the nonhost pathogen P. syringae pv tabaci

in planta. Silencing of RBOHD did not have any effect on

bacterial growth in wild-type Col-0, gox2, haox1, and haox2

mutant plants when compared with nonsilenced control (TRV:

GFP) (Figure 8B). The observed very slight increase in bacterial

growth after silencing of RBOHD in gox1 and gox3 backgrounds

warrants further investigation.

To rule out that GOX mutation affected the activity of NADPH

oxidase, we isolated membrane fractions from wild-type Col-0

and all the goxmutants to measure NADPH oxidase activity; the

Figure 5. Gene-for-Gene Resistance Is Compromised in Arabidopsis gox Mutants.

(A) to (C)Wild-type Col-0 and goxmutants were inoculatedwith the virulent pathogen P. syringae pv tomato strain DC3000 at 106 cfu/mL (A) and the avirulent

pathogens P. syringae pv tomato strain DC3000 (AvrB) (B) and P. syringae pv tomato strain DC3000 (AvrRps4) (C). Photographs were taken after 5 d.

(D)Growth of P. syringae pv tomato strain DC3000 (AvrRps4) was monitored at 0 and 3 DAI using a starting inoculum of 104 cfu/mL. Data represents the

mean and SD for four biological replicates in three independent experiments. Statistical significance for each time point was determined using one-way

ANOVA, and P values from F test are indicated above bars. LSD test was used to determine differences between genotypes. Means with the same letter

were not significantly different at P < 0.05. dpi, days postinoculation.
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enzymatic assay was based on the reduction of sodium,39-[1-
[phenylamino-carbonyl]-3,4-tetrazolium]-bis(4-methoxy-6-nitro)

benzenesulfonic acid hydrate (XTT) upon the generation of O2
2

by NADPH oxidase. gox1 didn’t show any difference in NADPH

oxidase activity when compared with Col-0, but gox3, haox1,

and haox2mutants showed a slight increase (;1.3-fold to;1.5-

fold), although none of them were compromised in NADPH

oxidase activity in comparison with wild-type Col-0 (see Sup-

plemental Figure 9A online). It is unlikely that a slight increase in

NADPH oxidase activity would be the cause for compromised

disease resistance in gox mutants. In addition, when we mea-

sured the basal levels of gene expression of RBOHD in wild-type

Col-0 and all the goxmutant backgrounds, we found that only in

gox3 was there a small (;1.6-fold) but significant increase in

Figure 6. Callose Deposition and HR Are Compromised in gox Mutants.

(A) Leaves inoculated with P. syringae pv tabaci at 106 cfu/mL were

detached and stained with aniline blue 48 h after inoculation and

observed under confocal microscopy. Numbers below the pictures

represent the means and SD of callose deposits counted on images

taken from 10 microscopic fields. Asterisks represent statistically signif-

icant differences between wild-type Col-0 and each one of the mutants

based on Student’s t test at P < 0.05.

(B) Leaves were inoculated as described for (A) and used to monitor

electrolyte leakage. Conductivity of mock-inoculated plants (yellow bars)

and pathogen-inoculated plants (green bars) was measured 24 h after

inoculation. Data represent the mean and SD for four biological replicates

in three independent experiments. Asterisks represent statistically sig-

nificant differences between wild-type Col-0 and each one of the

mutants based on Student’s t test at P <0.05.

Bar = 50 mM.

Figure 7. GOX Activity and Pathogen-Dependent H2O2 Production Are

Affected in gox Mutants of Arabidopsis.

(A) Basal levels of GOX enzymatic activity in wild-type Col-0 and gox

mutants. Protein extracts were added to a reaction mixture containing

sodium glycolate, o-dianisidine cation, and horseradish peroxidase, and

enzymatic activity was derived from a colorimetric reaction read at 440

nm. Bars represent the average and SD of measurements taken from four

replicates. Asterisks represent a statistically significant difference be-

tween Col-0 and each one of the gox mutants based on Student’s t test

(P < 0.05).

(B) Wild-type Col-0 and gox mutants were mock-inoculated with water

(M) or with P. syringae pv tabaci (P) at 106 cfu/mL. Mock-inoculation was

done on the entire leaf, but pathogen inoculation was done on one side of

the leaf only (circled). After 24 h of inoculation, detached leaves were

vacuum infiltrated with DAB (1 mg/mL) and incubated for 6 h as

described. Leaves were cleared in 100% ethanol and preserved in

25% glycerol. Photographs were taken immediately afterward.

(C) H2O2 accumulation was quantified over a time-course experiment by

collecting leaf samples for wild-type Col-0 and each of the goxmutants at

30 min, 2 h, 6 h, and 24 h after inoculation. Color intensity/area was

measured as arbitrary units (AU) on photographs taken from all leaves after

DAB staining. Mean and SD were calculated from measurements done on

20 leaves per time point for each of the genotypes. Asterisk represents

statistically significant difference between Col-0 and each of the gox

mutants after 24 h of inoculation based on Student’s t test (P < 0.05).
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expression (see Supplemental Figure 9B online). We therefore

concluded that the compromised disease resistance in gox

mutants is caused by the reduced H2O2 or GOX activity and is

independent of the activity of NADPH oxidase.

Genes Encoding GOX Exhibit Differential Patterns of Gene

Expression in Response to a Challenge with

Nonhost Pathogen

As mentioned earlier, Arabidopsis contains five members of the

GOX gene family; GOX1 and GOX2 are contiguous on one arm of

chromosome 3, and their nucleotide and amino acid sequences

are highly similar (see Supplemental Figure 10 online);HAOX1 and

HAOX2 are separated from each other by one gene in the other

arm of the same chromosome 3, and their sequences are also

highly similar (see Supplemental Figure 10 online). By contrast,

GOX3 is not duplicated, and is located on chromosome 4 (www.

Arabidopsis.org). To elucidate the functions of the different copies

of GOX, we used three different criteria to mine the publicly

available expression data (GENEVESTIGATOR; http://www.

genevestigator.ethz.ch) (Zimmermann et al., 2004): 1) levels of

expression in leaves; 2) gene expression associated with path-

ogens and elicitors; and 3) gene expression associated with PCD

for its relationship to the HR. These criteria revealed distinct

patterns of gene expression among the GOX genes. GOX1 and

GOX2 were shown to be highly expressed in leaves but re-

pressed after treatment with nonhost, virulent, or avirulent path-

ogens as well as elicitors and are highly induced by PCD

(Zimmermann et al., 2004). GOX3 was shown to be expressed

at lower levels in leaves but significantly induced after inoculation

with nonhost pathogens (Blumeria graminis, Botrytis cinerea, P.

infestans), virulent pathogens (P. syringae, Erysiphae cichora-

cearum), or avirulent pathogens (P. syringae AvrRpm1), and

repressed by elicitors, such as harpin (HrpZ), flagellin (flg22),

Figure 8. Effect of Silencing RBOHD on Disease Symptom Development in Wild-Type Col-0 and gox Mutants.

(A) Two-week-old Arabidopsis plants were infiltrated with TRV:RBOHD. TRV:GFP-infiltrated plant used as control. Two weeks after silencing, plants

were inoculated with the nonhost pathogen P. syringae pv tabaci at 105 cfu/mL, and disease symptoms were photographed at 5 DAI.

(B) Silenced plants were inoculated with P. syringae pv tabaci at a concentration of 104 cfu/mL, and bacterial growth was examined at 0 DAI (green bars)

and 3 DAI (purple). Bars represent the mean and SD of bacterial growth from three independent experiments in control plants (GFP) compared with

RBOHD-silenced plants (D). Asterisks represent statistically significant values between control plants (GFP) and RBOHD-silenced plants (D) for

equivalent time points within a genotype at P < 0.05 based on Student’s t test. dpi, days postinoculation.
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lipopolysaccharide, and PCD (Zimmermann et al., 2004).HAOX1

and HAOX2 were also expressed at low levels in leaves and

induced after inoculation with the avirulent pathogen P. syringae

(AvrRps4) and by the elicitors HrpZ, flg22, lipopolysaccharide,

and after PCD (Zimmermann et al., 2004). We used qRT-PCR to

monitor the expression of GOX genes in wild-type Col-0 plants

over a time-course (0 to 24 h) experiment after inoculation with

the nonhost pathogen, P. syringae pv tabaci (Table 1).GOX1 and

GOX2 were downregulated after inoculation, whereas GOX3,

HAOX1, and HAOX2 showed significant increases in gene ex-

pression ranging from approximately sevenfold to ninefold in-

duction after 24 h. Therefore, GOX3, HAOX1, and HAOX2 were

induced by nonhost pathogens, and we speculate that these

genes play amajor role in regulating nonhost defense responses.

However, because we observed striking phenotypes with all the

gox mutants, we suspect that all the genes are important to

different degrees during nonhost disease resistance.

Genes Encoding GOX Act Together to Confer Nonhost

Disease Resistance

To determine whether GOX genes function additively, we devel-

oped the following double mutant lines: gox1 haox1, gox1 gox3,

gox3 haox1, and selected double homozygous mutants for

further analysis. Because GOX1 and GOX2 are adjacent on the

same chromosome,we could notmake doublemutants for these

genes. The same applies to HAOX1 and HAOX2. Wild-type

Col-0, single mutants, and double mutants were inoculated with

the nonhost pathogen P. syringae pv tabaci at 104 cfu/mL, and

bacterial multiplication was monitored at 0 and 3 DAI. The gox1

haox1 double mutant showed a ;10-fold increase in bacterial

numbers at 3 DAI in comparison with the single mutant parents

gox1 and haox1 (Figure 9A), withmoderate increase in symptoms

(Figure 9B). Interestingly, both gox1 gox3 (Figure 9C) and haox1

gox3 (Figure 9E) supported ;100-fold more bacteria at 3 DAI,

and the symptoms were dramatically and consistently greater in

comparison with their single-mutant parents (Figures 9D and 9F).

Thus, it seems that GOX1, GOX3, and HAOX1 quantitatively

contribute to confer nonhost resistance. Furthermore, these data

confirm the lack of redundancy among GOX gene copies.

HAOX2 and GOX3 Play a Role in Activating Defense Signal

Transduction Cascades

Earlier, we speculated that there might be a significant role for

GOX3 and HAOX2 in nonhost resistance, because of their high

levels of expression during inoculation with a nonhost pathogen

(Table 1). Therefore, we wanted to investigate whether gox3 and

haox2 mutants were affected in the expression of defense-

related genes from known signal transduction cascades. Using

qRT-PCR, the expression of defense-related genes in wild-type

Col-0, haox2, and gox3 mutants upon inoculation with the

nonhost pathogen P. syringae pv tabaci were compared (Table

2).We choseNHO1 because it has been shown to be required for

nonhost disease resistance (Lu et al., 2001). Additional genes

representing other plant defense–mediated signal transduction

cascades—COI1 (JA pathway [Xie et al., 1998]), EIN3 (ET path-

way [Roman et al., 1995; Chao et al., 1997]), EDS1 (Glazebrook

et al., 1996), RAR1 (Muskett et al., 2002), PAD4 (Zhou et al.,

1998), and SAG101 (SA pathway [Feys et al., 2005])—and genes

associated with downstream responses, such as NPR1 (Dong,

2004) and PR-1 (Glazebrook et al., 1997), were chosen for

transcript profiling. We also included both splice variants of

WRKY4, a gene that has a role in defense responses against

pathogens (Vandenabeele et al., 2003; Lai et al., 2008).

In wild-type Col-0, out of 11 defense-related genes tested,

COI1, RAR1, and EIN3 were not induced. WRKY4A was re-

pressed, whereas the remaining geneswere induced after 24 h of

inoculation with the nonhost pathogen P. syringae pv tabaci

(Table 2). By contrast, all the genes that were induced in wild-

type Col-0 were either not induced or induced at lesser levels or

in some cases suppressed in gox3 and haox2mutants (Table 2).

Interestingly, COI1, RAR1, EIN3, which were not induced in the

wild type, were instead significantly suppressed in haox2 mu-

tants. WRKY4A was suppressed in Col-0 and both mutants

without any significant differences among them, whereas

WRKY4B was only significantly downregulated in the haox2

mutant. These results indicate that both mutants affect defense

responses associated with different pathways, but the haox2

mutant seemed to be more severely compromised in inducing

such responses.

DISCUSSION

We used VIGS in a fast-forward genetics screen (Baulcombe,

1999; Lu et al., 2003b; del Pozo et al., 2004) inN. benthamiana to

identify plant genes that play a role in nonhost disease resistance

(Figure 1). Silencing of GOX delayed the onset of the HR (Figure

1A; see Supplemental Figure 1 online), allowed the growth of the

nonhost pathogens P. syringae pv tomato strain T1 (Figure 1C;

see Supplemental Figure 3 online), P. syringae pv glycinea

(Figure 1D) and X. campestris pv vesicatoria (Figure 2), and also

Table 1. Expression of GOX Genes in Wild-Type Col-0 upon Inoculation with a Nonhost Pathogen

Gene

Relative Gene Expressiona

(0 h after inoculation)

Relative Gene Expression

(1 h after inoculation)

Relative Gene Expression

(4 h after inoculation)

Relative Gene Expression

(24 h after inoculation)

GOX1 0.67 6 0.07 0.92 6 0.08 0.69 6 0.06 0.28 6 0.01

GOX2 0.60 6 0.09 0.51 6 0.1 0.43 6 0.04 0.44 6 0.02

GOX3 0.77 6 0.12 0.86 6 0.09 0.95 6 0.12 5.58 6 1.23

HAOX1 0.80 6 0.06 0.83 6 0.13 0.81 6 0.09 7.43 6 0.85

HAOX2 0.51 6 0.08 1.36 6 0.22 1.85 6 0.12 8.99 6 0.41

aGene-specific expression values were normalized using the expression of Elongation factor 1a (EF1a) and Ubiquitin 5 (UBQ5).
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affected the gene-for-gene resistance triggered by Pto-AvrPto

and the elicitation of HR mediated by INF1 (Figure 3; see

Supplemental Figure 4 online). All these data suggest that GOX

represents a convergence point for signaling pathways originating

frombiological interactionswith nonhost pathogens, incompatible

pathogens, and elicitors. We do not understand, however, the

basis of the specificity of response regarding Pto-AvrPto interac-

tion and not the other interactions tested. Perhaps, as in Arab-

idopsis, there are different N. benthamiana genes encodingGOX

that remain to be identified that account for that specificity, or

maybe the other gene-for-gene interactions transduce the signal

independently of GOX.

Similar to N. benthamiana, we observed that Arabidopsis

mutants in GOX genes are compromised in nonhost disease

resistance toward P. syringae pv tabaci and P. syringae pv

syringae strain B728A (Figure 4) and in gene-for-gene resistance

against the P. syringae pv tomato strain DC3000 strains harbor-

ing the avirulence genes AvrB and AvrRps4 (Figure 5). Upon

inoculation with the nonhost pathogen P. syringae pv tabaci, all

the gox mutants had dramatic reductions in callose deposition

and cell death (quantified by electrolyte leakage; Figure 6) as well

as in the levels of H2O2 (Figure 7B). These responses in the gox

mutants are different from those observed in the NADPHoxidase

mutant (rbohD) inoculated with the avirulent pathogen P. syrin-

gae pv tomato strain DC3000 (AvrRpm1). At concentrations high

enough to elicit the HR, the rbohD mutant showed decreased

H2O2 levels but only an 8% reduction in electrolyte leakage when

compared with the wild-type Col-0 (Torres et al., 2002).

Figure 9. Arabidopsis gox Double Mutants Have Additive Effects.

Four-week-old wild-type (Col-0), single mutants gox1, haox1, and gox3, and three different double homozygous mutants (gox1 haox1, gox1 gox3, and

haox1 gox3) were syringe-inoculated with the nonhost pathogen P. syringae pv tabaci at 104 cfu/mL to quantify bacterial growth at 0 and 3 DAI (A), (C),

and (E). Bars represent the mean and SD of three independent experiments. Statistical significance for each time point was determined using one-way

ANOVA, and P values from F test are indicated above bars. LSD test was used to determine differences between genotypes. Means with the same letter

within a time point were not significantly different at P < 0.05. P. syringae pv tabaciwas also inoculated at 106 cfu/mL to observe symptom development,

and the photographs were taken at 5 DAI (B), (D), and (F). dpi, days postinoculation.
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Interestingly, the decrease in H2O2 accumulation caused by

reduction of GOX appeared at 24 h after inoculation, after the

oxidative burst attributed to NADPH oxidase (Figure 7C). Using

different assays, we demonstrated that gox-dependent pheno-

types are largely independent of NADPH oxidase function.

Silencing of RBOHD (see Supplemental Figure 8 online) in-

creased symptom development in wild-type Col-0 without sig-

nificant difference in the bacterial growth in planta (Figures 8A

and 8B). This indicates that the symptoms observed are not

associated with the pathogen per se but with general suscep-

tibility to environmental factors and is in agreement with the role

of NADPH oxidase in wounding responses (Miller et al., 2009).

Increased symptomdevelopment was also observed in gox3 and

haox2, but only in the gox3 background was there a significant

increase in bacterial titers (Figures 8A and 8B). We found that the

extent of downregulation of RBOHD was enough to partially

compromise H2O2 accumulation associated with the incompat-

ible pathogen P. syringae pv tomato strain DC3000 (AvrRpm1) as

reported before for the rbohD mutant (Torres, et al., 2002) (see

Supplemental Figure 8Bonline). Furthermore, in contrastwith the

nonspecific response (wounding) of NADPH oxidase, the re-

sponses mediated by GOX are specific to certain plant–microbe

interactions mediated by nonhost pathogens and avirulent path-

ogens, but not to host pathogens, and their effects are man-

ifested 24 h after inoculation.

We showed that although all the GOX gene family members in

Arabidopsis are essential for nonhost disease resistance, only

GOX3, HAOX1, and HAOX2 are induced after inoculation with a

nonhost pathogen (Table 1). This finding might indicate that

these genes are part of a hierarchy wherein HAOX2 and perhaps

HAOX1 have a main role during plant–pathogen interactions and

activate diverse downstream signaling cascades, whereas

GOX3 plays a secondary role activating specific defense-related

genes. When the Arabidopsis plant is challenged with pathogens

or elicitors, GOX3, HAOX1, and HAOX2 are induced (Table 1).

GOX3 seems to partially and quantitatively affect NHO1 and SA-

related defense responses (Table 2) and HAOX2 seems to affect

all defense pathways tested, including SA, JA, and ET. We

propose that the H2O2 generated by HAOX2 activates the SA

pathway, mediated by PAD4, NPR1, and PR-1. PAD4 and

SAG101 act together to amplify the SA defenses that eventually

lead to PCD (Feys et al., 2005), and PAD4 has been shown to

have pleiotropic effects on the regulation of NPR1 and PR-1

during defense responses (Zhou et al., 1998). Furthermore, these

genes are known to be regulated by ROS (Rustérucci et al.,

2001), and their importance in nonhost resistance to trigger the

HR has been reported (Lipka et al., 2005). Additional support for

the involvement of SA in the cascade initiated by GOX has been

provided by recent work with an Arabidopsis cat2 mutant that is

unable tometabolize theH2O2 produced byGOX (Chaouch et al.,

2010). Consequently, the cat2mutant accumulates high levels of

H2O2 under photorespiratory conditions (long days), which trig-

ger lesion formation reminiscent of the HR and show increased

resistance to P. syringae pv tomato strain DC3000 in comparison

withwild-typeCol-0 (Chaouch et al., 2010). Interestingly, the cat2

mutant also showed significant accumulation of SA and in-

creased expression ofNHO1, a gene specifically associatedwith

nonhost disease resistance (Lu et al., 2001; Kang et al., 2003)

againstPseudomonas and presumably responsible for activating

genes specific for nonhost resistance either directly or through

PR-1. Our data showing that NHO1 is significantly downregu-

lated in haox2 are in agreement with this finding. HAOX2 muta-

tion also affected the expression of the transcription factor EIN3

(Table 2), which is involved in the ET signal transduction cascade

(Chao et al., 1997). ET and SA coordinately induce several

defense-related genes (Schenk et al., 2000), and ET can poten-

tiate the SA-mediated induction of PR-1 (Lawton et al., 1994),

suggesting that indeed ET and SA can act together to activate

defense responses, such as PR-1 induction.

The nonhost pathogen used in this study,P. syringaepv tabaci,

is a biotrophic pathogen that usually suppresses or fails to elicit

the JA signal transduction pathway (Zimmerli et al., 2004). As

expected, COI1 and EIN3 were not induced in wild-type Col-0

after 24 h of inoculation (Table 2).COI1was downregulated in the

Table 2. Expression of Various Defense-Related Genes in gox3 and haox2 Mutants after 24 h of Inoculation with the Nonhost Pathogen P. syringae

pv tabaci

Gene

Col-0 24 h

Gene Expression Relative

to Col-0 at 0 h

(Pathogen/Mock Ratio)

gox3 24 h

Gene Expression Relative to

Col-0 at 0 h

(Pathogen/Mock Ratio)

haox2 24 h

Gene Expression Relative

to Col-0 at 0 h

(Pathogen/Mock Ratio)

F Test

P Value

NHO1 1.81 6 0.2a 1.34 6 0.08b 0.71 6 0.05c <0.0001

COI1 1.05 6 0.09a 0.71 6 0.06b 0.17 6 0.13c <0.0001

EDS1 1.62 6 0.41 0.84 6 0.06 1.27 6 0.18 0.15

PAD4 13.2 6 2.0a 2.07 6 0.7b 1.13 6 0.33b <0.0001

RAR1 1.15 6 0.06a 1.09 6 0.11a 0.17 6 0.03b <0.0001

NPR1 2.8 6 1.1a 1.24 6 0.13b 0.08 6 0.01c 0.0002

SAG101 2 6 0.33a 1.12 6 0.07b 1.4 6 0.1a,b 0.0249

WRKY4A 0.49 6 0.05 0.39 6 0.01 0.41 6 0.09 0.7248

WRKY4B 2.17 6 0.41a 1.73 6 0.33a,b 0.77 6 0.06b 0.03

EIN3 1.17 6 0.06a 0.98 6 0.23a 0.34 6 0.08b 0.0026

PR1 260.2 6 49.5a 69.06 6 26.45b 5.65 6 0.87c <0.0001

UBQ5 1.49 6 0.21 1.56 6 0.11 1.54 6 0.3 0.9689

Statistical significance was determined using one-way ANOVA followed by Duncan test to establish differences between genotypes. Means with the

same letter are not significantly different. Col-0 at 0 h was arbitrarily set to 1.

Role of GOX in Plant Defense 347



haox2 mutant (Table 2), suggesting that HAOX2 is involved in its

induction perhaps when SA and JA act synergistically (Nomura

et al., 2006). We also showed that only one of the splice forms of

the transcription factor WRKY4 (WRKY4B) is induced upon

pathogen inoculation in wild-type Col-0 but is downregulated

in the Athaox2 mutant (Table 2), indicating that HAOX2 contrib-

utes to WRKY4B induction. This finding is in contrast with the

proposed negative role for WRKY4A in defense responses

against P. syringae pv tomato strain DC3000 (Lai et al., 2008).

It would be interesting to test whether WRKY4, as a transcription

factor, is specifically and directly responsive to the H2O2 gener-

ated by HAOX2 and to identify its target genes associated with

plant immunity.

Although GOX1 and GOX2 were shown to be downregulated

by pathogen (Table 1), their role of nonhost resistance is unde-

niable as evidenced by the phenotypes of single mutants (Figure

4) and their quantitative effect in double mutants (Figure 9). More

investigation is needed to understand how they are involved in

the process. GOX1 and GOX2 are proposed to be involved in

basic metabolism (photorespiration; Foyer et al., 2009), and

hence it is likely that their mechanism of action involves remod-

eling of metabolism, as observed for RBOHF (Chaouch et al.,

2011). Thus, their role in nonhost disease resistance may not be

directly related to the production of H2O2 but to the interplay

between soluble sugars and ROS (Couée et al., 2006). Alterna-

tively, it is possible that these genes operate at different times

during the interaction, and their downregulation upon pathogen

infection might be a mechanism to energetically favor defense

responses. A similar observation was made when microarray

analysis was used to study Arabidopsis gene expression upon

treatment with host and nonhost powdery mildews (Zimmerli

et al., 2004). In addition, because GOX1 and GOX2 were shown

to be highly induced by PCD (Zimmermann et al., 2004), it is likely

that these genesmight also be involved in the control of theHR to

restore homeostasis and return to normal metabolic conditions,

as has been proposed for RBOHD (Torres et al., 2005; Pogány

et al., 2009) and RBOHF (Chaouch et al., 2011). The suppression

of cell death by RBOHD and RBOHF (Chaouch et al., 2011) and

the negative regulation of general stress-related genes and PR-

1 associated with RBOHD after fungal infection (Pogány et al.,

2009) or elicitor treatment (Galletti et al., 2008) is in sharp contrast

with the positive regulation of defense responses leading to HR

associated with HAOX2 and GOX3. Intriguingly, both RBOHF

and HAOX2 are essential for SA accumulation, supporting the

widely accepted view of crosstalk among ROS produced from

different sources (Torres et al., 2006).

In conclusion, we have shown that the peroxisomal enzyme

GOX plays a paramount role in nonhost resistance and some

cases of gene-for-gene–mediated resistance in two different

plant species. The mechanism of resistance is associated with

the production of H2O2, which occurs during photorespiration

through the conversion of glycolate to glyoxylate by GOX. We

propose that the H2O2 generated specifically by HAOX2 and

GOX3 activates components of the SA signal transduction

cascade and also seems to regulate JA and ET pathways.

GOX1 andGOX2 are known to play an essential role during basic

metabolism (Foyer et al., 2009), and they also seem to play a

secondary or indirect role during defense responses, although

they are essential in the transition between defense responses

and basic metabolism to restore homeostasis.

METHODS

Bacterial Strains and Arabidopsis thalianaMutants

Agrobacterium tumefaciens strains were grown at 288C in Luria-Bertani

medium supplemented with rifampicin (25mg/mL) and kanamycin (50mg/

mL). Pseudomonas syringae strains were grown in King’s B medium at

308C supplementedwith rifampicin (25mg/mL), kanamycin (50mg/mL), or

streptomycin (50 mg/mL) when needed; Xanthomonas campestris pv

vesicatoria was grown in Luria-Bertani medium. Bacterial strains used in

this study are listed in Supplemental Table 1 online.

We obtained T-DNA insertions in GOX1 (SAIL177_G11), GOX2

(SALK_044052), HAOX1 (SAIL84_A04), and HAOX2 (SALK102409) from

the ABRC (Alonso and Stepanova, 2003), and the T-DNA insertion in

GOX3 (Gabi-Kat_523D09) was obtained from the European Arabidopsis

Stock Centre (Rosso et al., 2003).

Fast-Forward Genetic Screening Using VIGS to Identify Genes

Required for Nonhost Resistance

We used a normalized pTRV2-cDNA library in A. tumefaciens strain

GV2260 containing clones from RNA isolated frommixed-elicitor–treated

leaves of Nicotiana benthamiana (Anand et al., 2007). Agroinoculation for

VIGS was performed using the toothpick method described previously

(Anand et al., 2007;Wangdi et al., 2010). Two to 3weeks after inoculation,

fully expanded leaves of both silenced plants and vector control plants

were infiltrated (using a needleless syringe) with a type I nonhost path-

ogen, P. syringae pv glycinea, and a type II nonhost pathogen, P. syringae

pv tomato strain T1, at 3 3 108 cfu/mL. HR and/or disease symptoms

were observed between 2 and 7 DAI.

HR Assays in N. benthamiana

To study the role of GOX in gene-for-gene resistance and PAMP-mediated

immunity, silenced and control plants were coinfiltrated with a mixture of

Agrobacterium strains containing various combinations of Avr-R genes

(35S:AvrPto-35S:Pto; 35S:Avr9- 35S:Cf9; and 35S:tvEIX-35S:Eix2; Tang

et al., 1996; Frederick et al., 1998; Van der Hoorn et al., 2000; Ron and

Avni, 2004). In addition, an Agrobacterium strain carrying the PAMP-

inducing Inf1 (35S:Inf1; Kamoun et al., 1997) was also infiltrated.

HR symptoms were visually scored at 4 DAI, and samples were taken

at 5 DAI for quantification. Quantification of the HR was done micro-

scopically bymonitoring the autofluorescence associatedwith the ensuing

cell death (Klement et al., 1990). Ten disks (0.5 cm2) per treatment were

collected and observed under an epifluorescencemicroscope using a GFP

filter (excitation, 480 nm; emission, 535nm).A total of 50 imagesper sample

were collected from random microscopic fields and were analyzed by

ImageJ software (http://rsb.info.nih.gov/ij/) by converting the images to

gray scale and measuring the mean gray value for the entire image.

Cloning of Full-Length GOX from N. benthamiana

The clone TRV:16G11was sequenced, and that partial sequencewas used

to design primers to clone the full-length gene using FirstChoice RLM-

RACE Kit (Ambion) by following the manufacturer’s instructions. Briefly,

total RNA was extracted fromN. benthamiana leaves using the RNeasy Kit

(Qiagen). To clone the 59 end, total RNA was first treated with calf intestine

alkaline phosphatase to remove free 59-phosphates from fragmented

mRNA, rRNA, and tRNA. After phenol extraction, the RNAwas then treated

with tobacco (Nicotiana tabacum) acid pyrophosphatase to remove the cap
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structure from the full-length mRNA. A 45-base RNA adapter oligonucle-

otide was then ligated to the RNA using T4 RNA ligase at 378C for 1 h. The

ligatedRNAwas used for reverse transcription at 428C for 1 h using random

decamers provided by the manufacturer. The cDNA was then used to

amplify the 59 end of the GOX gene by nested PCR using the following

primer sets: 59RACE (inner) and 59RACE (outer). The PCR products were

purified and cloned into pGEM-T vector (Promega). To clone the 39 end of

GOX, first-strand cDNA was directly synthesized from total RNA using the

supplied 39 RACE adapter. The cDNA was then subjected to nested PCR

using the following primers: 39RACE (outer) and 39 RACE (inner) in addition

to the supplied primers. The cloned endsofGOXwere sequencedandused

for full gene cloning. All primer sequences used for cloning are shown in

Supplemental Table 2 online.

Quantification of Bacterial Growth in N. benthamiana

To follow the kinetics of bacterial growth, GOX-silenced and control N.

benthamiana plants were vacuum infiltrated with host and nonhost

pathogens at 3 3 104 cfu/mL to achieve uniform infection. At 0, 3, and

7 DAI, two leaf samples from four biological replicates were collected

using a 0.5-cm2 core borer; leaf samples were ground, subjected to serial

dilution, plated on King’s B agar medium supplemented with appropriate

antibiotics, and incubated at 288C for 2 d for bacterial colony counting.

For visualization of bacterial growth using GFPuv-labeled strains, plants

were syringe-inoculated at 104 cfu/mL, and observations were made at 7

DAI as described previously (Wang et al., 2007).

In Planta Inoculation to Evaluate Symptom Development and

Bacterial Growth in Arabidopsis

Two methods and two nonhost pathogens were used to study symptom

development in Arabidopsis: flood inoculation that mimics natural infec-

tion and syringe inoculation to accomplish uniform infection. For flood

inoculation, 4-week-old plants grown in Murashige and Skoog plates

were incubated for 5 min with 40 mL of a bacterial suspension containing

P. syringae pv syringae strain B728A at a concentration of 33 107 cfu/mL

(Ishiga et al., 2011). Symptoms were observed after 5 d. To examine

bacterial growth, the entire rosette was harvested, ground, and serially

diluted as described (Uppalapati et al., 2008; Ishiga et al., 2011).

For syringe inoculation, 6-week-old plants were infiltrated with a

needleless syringe on the abaxial side of the leaves with the nonhost

pathogen P. syringae pv tabaci at a concentration of 53 106 cfu/mL, and

symptoms were evaluated after 3 d. This method was also used to

examine bacterial growth in planta by nonhost pathogens as well as by

host pathogens. For that purpose, bacteria were infiltrated at a concen-

tration of 104 cfu/mL. At 0 and 3 DAI, two leaf samples from four biological

replicates were collected, and the bacteria were quantified in a similar

fashion as described above for N. benthamiana.

Enzymatic Assays

A total of 1 g of tissue harvested from 6-week-old Arabidopsis plants was

resuspended in 6 mL of protein extraction buffer (0.25 M Suc, 50 mM

Hepes-KOH, pH 7.2, 3 mM EDTA, 1 mMDTT, 0.6% polyvinylpyrrolidone,

3.6 mM l-Cys, 0. mM MgCl2, and complete-EDTA–free proteinase inhib-

itor cocktail [Roche Applied Science]), vortexed, and filtered through

cheesecloth. The filtrate was centrifuged at 48C at 10,000g for 45 min.

Supernatantswere transferred to new tubes and used directly tomeasure

GOX activity or to extract membranes for NADPH oxidase activity assay.

Spectrophotometric assay to measure GOX activity was performed

using sodium glycolate as substrate and by detecting the formation of the

o-dianisidine radical cation at 440 nm as described previously (Macheroux

et al., 1991). To measure NADPH oxidase activity, membrane fractions

were separated fromsupernatants by centrifugation at 203,000g for 60min,

and pellets were then resuspended in 10 mM Tris-HCl (pH 7.4) (Sagi and

Fluhr 2001). The NADPH-dependent O2
2 generating activity in the mem-

brane fractionwas determined after the reduction of XTTbyO2
2. The assay

mixture contained 50 mM Tris-HCl buffer (pH 7.5), 0.5 mM XTT, 100 mM

NADPH, and 15 to 30 mg of membrane proteins. XTT reduction was

determined at 492 nm, and rates of O2
2 generation were calculated using

an extinction coefficient of 2.163 104 M21cm21 (Jiang et al., 2002).

Detection of H2O2

Six-week-old Arabidopsis plants were inoculated with either P. syringae

pv tabaci or P. syringae pv tomato strain DC3000 (AvrRpm1) at 106 or 107

cfu/mL or mock-inoculated. Only one-half of each leaf was inoculated.

Leaves were detached and stained with a solution of DAB (1 mg/mL) for

6 h as described (Thordal-Christensen et al., 1997). To quantify the

accumulation of H2O2 over time, 20 leaves were collected at 30 min, 2 h,

6 h, and 24 h after inoculation. After DAB staining, leaves were cleared in

100% ethanol and preserved in 25% glycerol. Stained leaves were

scanned, and images analyzed by ImageJ software (http://rsb.info.nih.

gov/ij/) by converting the images to gray scale and measuring the color

intensity in the inoculated area as reported previously (Torres et al., 2005).

Callose Deposition

Wild-type Col-0 and Arabidopsis gox mutants were infected with the

nonhost pathogen P. syringae pv tabaci at 106 cfu/mL. Leaves were

detached, cleared, and stained with 0.1% aniline blue as described (Kvitko

et al., 2009). After destaining, leaves were observed under a Leica TCSSP2

AOBS Confocal Laser Scanning Microscope with 49,6-diamidino-2-

phenylindole filter (Leica Microsystems). Callose deposits were counted

on images taken from 10 randommicroscopic fields at 203magnification

using ImageJ software.

Electrolyte Leakage

Inoculated leaf samples were collected at 24 h after inoculation. Two leaf

disks (0.5 cm2 each) were collected in triplicate for each sample, vacuum

infiltrated with 25 mL water, and shaken for 1 h (López-Solanilla et al.,

2004). Conductivity was measured with the Orion pHuture MMS555A

conductivity meter (Thermo Electron).

qRT-PCR

Whole leaf samples from 4-week-old N. benthamiana or 6-week-old Arabi-

dopsis were harvested and ground in liquid nitrogen. RNA was extracted

using the RNeasy Plant Mini Kit (Qiagen) and treated with DNaseI (Ambion)

before cDNA synthesis. Two micrograms of RNA were used for cDNA syn-

thesis using Omniscript (Qiagen). qRT-PCR primers were designed using

Primer Express Software v 3.0 (Applied Biosystems) and are listed in

Supplemental Table 2 online. Primers for GOX1, GOX2, GOX3, HAOX1,

and HAOX2 were designed to anneal in regions of low sequence similarity,

among theGOX familymembers, toward the 39 untranslated region. For each

sample, three biological replicates with three technical replicates were used.

VIGS of RBOHD in Arabidopsis

We used TRV-based VIGS to downregulate the expression of the NADPH

oxidase-encoding gene, RBOHD, in wild-type Col-0 and all five gox

mutants described in this article. Primers AtrbohD39F and AtrbohD39R

(see Supplemental Table 2 online) were used to clone;350 bp fragment

ofRBOHD in TRV2. TRV:RBOHDwas infiltrated initially inN. benthamiana

as described for VIGS above. Sap from inoculated leaves was used as a

source of virions to inoculate 3-week old Arabidopsis plants as previously

described (Lu et al., 2003). Silencing of RBOHD gene was confirmed by
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qRT-PCR 2 weeks after inoculation. Silenced plants were syringe-

inoculated with the nonhost pathogen P. syringae pv tabaci for symp-

tom evaluation and for quantification of bacterial growth at the

concentrations previously described.

Statistical Analyses

When indicated, Student’s t test was used for pairwise comparison

between treatments. For multiple comparisons, one-way analysis of

variance (ANOVA) was used to determine statistical significance among

treatments at P < 0.05. If statistical significance based on the P value of

the F test was found, the least significant difference (LSD) or Duncan tests

at a P value < 0.05were used to test differences between treatments. SAS

Enterprise (SAS Institute) was used for statistical analyses.

Accession Numbers

Sequence data from this article can be found in the Arabidopsis Genome

Initiative or GenBank/EMBL databases under the following accession

numbers: GOX1 (At3g14420), GOX2 (At3g14415), GOX3 (At4g1836),

HAOX1 (At3g14130), HAOX2 (At3g14150), NHOI (At1g80460), COI1

(At2g39940), EDS1 (At3g48090), PAD4 (At3g52430), RAR1 (At5g51700),

NPR1 (At1g64280), WRKY4A (At1g13960), EIN3 (At3g20770), PR1

(At2g14610), UBQ5 (At3g62250). N. benthamiana sequences: GOX

(HQ110098); clone 6F8 (JN688263), clone 19A10 (JN688262), clone

37G12 (JN688264).
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