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Abstract
This work examines the prototypical MR echo that would be expected for a voxel of spins
evolving in a strong nonlinear field, specifically focusing on the quadratic z2-½(x2+y2) field.
Dephasing under nonlinear gradients is increasingly relevant given the growing interest in
nonlinear imaging, and here we report several notable differences from the linear case. Most
notably, in addition to signal loss, intravoxel dephasing under gradients creating a wide and
asymmetric frequency distribution across the voxel can cause skewed and nonlinear phase
evolution. After presenting the qualitative and analytical origins of this difference, we
experimentally demonstrate that neglecting these dynamics can lead to significant errors in
sequences that assume phase evolution is proportional to voxel frequency, such as those used for
field mapping. Finally, simplifying approximations to the signal equations are presented, which
not only provide more intuitive forms of the exact expression, but also result in simple rules to
predict key features of the nonlinear evolution.
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Introduction
Imaging techniques employing nonlinear gradients have received increasing interest for a
number of reasons. They may allow imaging with lower dB/dt to decrease the possibility of
peripheral nerve stimulation (1). It has already been demonstrated that nonlinear encoding
strategies using multidimensional coil arrays can lead to better reconstruction of highly
undersampled images (2). Furthermore, the spatially varying resolution of these encoding
fields can be exploited to improve resolution specifically over a particular region of interest
(3), (4), and higher-order field shapes provide denser encoding at the periphery, where
surface coil sensitivity is highest. Finally, these shapes can be used to create artificial
effective RF coil profiles that efficiently supplement skipped data from standard imaging
trajectories, such as Cartesian or radial encoding methods (5).

This paper explores some of the basic dynamics of spins evolving under strong nonlinear
fields, particularly our experimentally available z2 - ½(x2+y2) field. The prototypical MR
signal emanating from a boxcar of spins evolving under a linearly varying magnetic field,
henceforth called a linear gradient, is a basic and familiar result. Namely, the magnitude
evolves as a sinc function whose argument is proportional to the frequency range across the
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boxcar. The phase of the signal is independent of this frequency range and changes linearly
with time, with a frequency that depends only on the center of the boxcar. However, the
signal from an object evolving in a quadratic field leads not only to decreased signal
intensity, but also to nonlinear phase evolution. Interpreting this dephasing-based evolution
as a Larmor precession can lead to important consequences either for calibrating nonlinear
imaging gradients or for other standard experiments that map nonlinear fields by equating
phase evolution with frequency, such as those routinely used to calibrate gradient strengths
(6) and measure eddy currents (7). Furthermore, the encoding matrices often used to
reconstruct nonlinearly encoded images typically assume that a voxel’s contribution to the
bulk signal has a phase that is proportional to time. If these voxels are square and the
nonlinearity of the field across them is strong enough to create an asymmetric frequency
distribution, the phase evolution of the voxel is generally nonlinear with time, so this
encoding matrix would be inaccurate and artifacts would appear in the reconstructed image..

The outline of this report is as follows. Section II examines the exact analytical expression
for the bulk magnetization as it evolves in a quadratic gradient. We show that intravoxel
gradient dephasing, which is normally associated only with signal loss, can distort phase
evolution and affect a voxel’s apparent frequency. In Section III, we demonstrate these
distortions experimentally, comparing gradient maps taken at different slice thicknesses and
offsets, which show good agreement with the analytical expression. Section IV attempts to
give a more intuitive picture of the exact expression for S(t) by presenting approximations
that reduce the dynamics to analogs of the classic sinc form. Section V recapitulates the
major findings and concludes.

Analytical Model
Most introductions to magnetic resonance imaging lead into the standard gradient echo by
considering the ideal echo for a one-dimensional boxcar of spin density evolving under a
linear z-gradient. Namely, it is:

[1]

where z1 = z0-Δz and z2 = z0+Δz (7,8). δ(s) in this expression is the Kroenecker delta
function, and we have taken x0 and y0 as isocenter so that integration over these dimensions
is unity. As previously noted, the phase evolves linearly with time, and the magnitude
envelope follows a sinc function. Exact nulls occur at t=(2γGΔz)−1=(Δω)−1, when the range
of phases across the boxcar covers a multiple of 2π.

For evolution under the three dimensional z2 - ½(x2+y2) hyperboloid field, the ideal echo can
be similarly derived for a one dimensional box car of spins (with point like dimensions
along x and y).

[2]

[3]

where erf(x) is the Gauss error function. Though this expression is undefined at t=0, it is
physically clear that Sq(t=0)=M0 (9). The resulting signal can be interpreted as the signal
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from a voxel with point-like area in x and y, but non-negligible thickness in the slice
direction. In this limit, the x and y positions simply lead to a familiar frequency shift of the
signal. Thus we take these to be zero and focus on dynamics arising from the finite width
along z1.

In Figure 1, we simulate the signal described in Eq. [3] for various slice thicknesses and
offsets from isocenter. These figures use a gradient of 2kHz/cm2, meaning that the
frequency offset at a given (x0,y0,z0) is equal to 2(z0

2 - ½(x0
2+y0

2))kHz. Figure 1a shows
the phase evolution as a function of time for slices of various thickness, but all centered at
isocenter. For vanishingly thin slices (blue line) the phase is constant over time, as would be
expected for a voxel at isocenter and on resonance. However, at larger thicknesses, the voxel
has a nonlinear phase evolution that mimics a nonlinear Larmor evolution. The most salient
evolution occurs as the signal phase sweeps through the peak of the echo, and it can be
physically attributed to the unique symmetry of the quadratic gradient field across z=0. In
the moments just after the peak of the echo, the spins both above and below the isocenter are
all moving in the same direction. This shifts the phase of the bulk magnetization causing
phase precession of the bulk signal. This is in sharp contrast to the dynamics under a linear
gradient field, where there is antisymmetry about the center of the slice. In the linear case,
evolution by those spins above the slice center is counterbalanced by evolution of the spins
below it, so no coherent precession of the bulk is observed.

These deviations from linearity become significantly more pronounced as we consider slices
away from isocenter, as Figure 1b shows (different scale) for the phase evolution observed
for a slice at z=1cm. In these figures, regularities in the evolution become more apparent,
and it is seen that significant deviations from linearity occur with a period t=1/Δωz, where
Δωz is the frequency range across the slice thickness. Furthermore, the overall apparent
frequency of this voxel differs dramatically as a function of the slice thickness, which could
cause serious errors in gradient field mapping. In general, the through-plane dephasing
causes the apparent frequency to shift toward lower frequencies. This can be qualitatively
explained by noting that, assuming |z1|< |z2|, the frequency bins become spatially narrower
as they go from z1 to z2. Thus, for a sample of uniform density, there are more spins at
frequencies near z1 than near z2, and these slower frequencies dominate the signal. We also
show the magnitude envelopes that correspond to these signals, both at isocenter (Figure 1c)
and at z=1cm (Figure 1d). From these plots, we can note that the off center magnitude
envelope does bear some similarity to the sinc expected from linear dephasing. For example,
though the signal does not go through a true null, it does have characteristic minima
occurring at t=n/Δωz.

Finally we simulate how these results are expected to affect the signal from a realistic single
slice phantom. We simulate the signal from the numerical phantom shown in Figure 2a
evolving in a three dimensional z2 - ½(x2+y2) gradient of 2kHz/cm2 at z=3cm, and Figures
2b and 2c show the phase and magnitude of the echoes with varying slice thickness.

Though our simulations are performed on a more realistic, structured phantom, the object is
roughly circular, and we can approximate the signal from a negligibly thin slice (blue line)
as: [4]

1In general, nonlinear phase evolution is expected from any voxel whose overall frequency histogram is asymmetric, and it can be
induced by nonlinear fields along any direction. However, for the analytical field considered here, the contributions are separable, and
the full signal is a product of the 1D solutions. Thus, for simplicity we focus on one dimension, and we choose z since the (typically
larger) slice dimension is more likely to give rise to an asymmetric frequency distribution. Furthermore, since most of the nonlinear
imaging work has focused on single slice imaging, through-slice evolution is an especially overlooked phenomenon.
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[4]

As previously reported (2), this integral is of the form eudu,u=r2, and is mathematically
equivalent to the integral of a square shape under linear gradients. Thus, it results in the
familiar sinc(Δωrt), where Δωr is the range of frequencies along the radial direction, and
minima occur at r=1/Δωr. At the other end of the spectrum, we can look at the thickest
slices, where Δωz is greater than Δωr. Here, the through-plane dephasing appears to
dominate, and the minima occur near t=1/Δωz. Intermediate cases fall between these.

Finally, panel 2d examines the Fourier transform of these signals. The transforms of very
thin slices, whose echoes closely resemble sinc functions, are unsurprisingly similar to top
hats. However, as we begin integrating over a finite slice thickness in the z-direction, the
projections not only broaden, but also become asymmetric. This is yet another consequence
of the frequency bins being spatially narrower as they go from z1 to z2, thus reducing the
intensity at each frequency bin in the transform domain.

Experimental Consequences
One clear example of how this nonlinearity can affect even routine experiments is in a
standard field mapping experiment. Field maps were generated by inserting a nonlinear
gradient pulse into the echo time of a FLASH sequence, incrementing the flat top time of the
nonlinear gradient pulse on subsequent images, and fitting the resulting phase progression to
a line. In the linear case, intravoxel dephasing should not change the unwrapped phase
progression of the voxel, whereas we have shown that it can significantly affect a voxel’s
phase under a quadratic gradient.

Images were collected on a 3.0-T Siemens Trio human magnet (Erlangen, Germany)
equipped with an actively-shielded 12-cm insert coil (Resonance Research Inc., MA) able to
generate the z2 -½(x2+y2) spherical harmonic at strengths up to 18 kHz/cm2, though the
presented field maps were generated for a field of 450Hz/cm2 over a 10cm FOV, TE/
TR=10/100ms. In the acquired images, the in-plane resolution is high enough (.7mm/pixel)
that intravoxel dephasing along the transverse direction can be neglected, but the through-
plane dimension is not usually as small. Thus, each voxel in the image behaves much like
the rod of infinitesimal area that is simulated in Figure 1. While magnitude modulations due
to intravoxel dephasing, as well as their recovery, have been thoroughly examined elsewhere
(10–15), we highlight that, even when imaging is performed with linear gradients, the phase
of the reconstructed image can be significantly affected by nonlinear fields. This can have
serious consequences for imaging techniques that rely on phase, and particularly for those
that linearly equate phase evolution with frequency, such as frequency mapping.

The first row of Figure 3 shows a slice at isocenter, with 3a displaying a magnitude image
and 3b displaying the frequency map for a 1cm thick slice. Panels 3c–f show the bias in the
observed frequency as the slice thickness is increased to 4, 6, 8 and 10mm, and it is
imperceptible. This corroborates the predictions of Figure 1a for a slice at isocenter: aside
from a jump near t=0, the phase of the signal at isocenter is minimally affected by through-
slice dephasing. Off isocenter, however, we see a significant bias in the frequency maps 3i–
l, which is also in qualitative agreement with our simulations (Figure 1b).

Finally, we examine how thin a slice must be such that its apparent evolution actually
reflects the frequency we would normally associate with that slice, i.e. the frequency at its
center. The answer greatly depends on the offset of the slice, as shown in Figure 4. This plot
shows that the effect is most pronounced in slices where there is a large frequency range
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across the voxel in some direction, either because of a large offset, a large slice thickness, or
both of these. In the next section, we derive a more quantitative formulation of this rule of
thumb.

Approximate Solutions
We now return to the analytical expression for a voxel of infinitely small area and finite
slice thickness to consider simplifying approximations. For slices near isocenter and times
near zero, the argument of the error functions in Eq. [3] are small, and a Taylor expansion is
appropriate.

Applying the two term expansion, , to Eq. [2] yields:

[5]

Thus, near zero, the phase should follow

[6]

and the phase slope of the signal near t=0 is

[7]

For slices at isocenter, this would predict an initial frequency proportional to Δz2, which is
precisely what is observed in the linear portions of Figure 1a.

For large offsets, we can revisit the integral in Eq. [2]. Multiplying by , we can
integrate by parts:

[8]

[9]

For large values of Gz2tz2, the second integral can be dropped since

[10]

This is equivalent to an asymptotic expansion of the error functions in the exact solution of
the integral. (16) It yields:
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[11]

Where we have incorporated the fact that γGz2z2 − ωq(z), the frequency at z under a
quadratic gradient. Note this already bears striking similarity to the standard sinc function,
which can be written as:

[12]

where we have similarly rewritten the frequency at a given z under a linear gradient as ωl(z).
To further the connections between Eq. [12] and the sinc form of Eq. [1], we can define

 and Δωq = ωq(z2) − ωq(z1). Note that this definition fundamentally differs
from the linear case in that ω0,q ≠ ωq(z0); it is shifted towards ωq(z2).

[13]

When Δz is small and the second term can be neglected, this expression is essentially a sinc
magnitude envelope with a linear phase slope of ω0,q. However, as Δz becomes significant,
it is more appropriate to view this as the product of two vectors: one that traces out a circle
at a rate of ω0,q and one that describes precession around an ellipse with major and minor
axes of z0 and Δz, respectively. The phase of the product, i.e. of Sq(t), is simply:

[14]

This explains several of the features observed in Figure 1b. The second term contains the

nonlinearity, which is periodic and repeats every . Furthermore, the phase of a linear
frequency precession over an ellipse, (simulated in Figure 5), qualitatively matches the
observed nonlinearities in the phase, changing very quickly near the minor axis and very
slowly near the major axis.

With this approximation, we can justify a simplified rule of thumb for the observed
frequency in a gradient mapping experiment. The observed phase precession will be ω0,q

with an additional -π accruing (nonlinearly) every . This rule of thumb should be used
with caution since it depends on describing a nonlinear but periodic phase progression as a
linear phase slope2. However, for our experimental frequency maps (Figure 3), such a
calculation would predict observed frequency biases of −300, −650, −900 and −1200Hz,
which is in reasonable agreement with the observed shifts. We can also use this rule of
thumb to roughly estimate the impact of weaker nonlinear gradients, like those that might be

2Note also that, for extremely curved slices, as might be expected if the strong quadratic field were due to B0 in homogeneities, one

may need to alter the given equations to account for the fact that both z0 and Δz (and thus ω0,q and ) would be functions of (x,y),
due to both the curvature of the surface and the spatially varying thickness of {z2-½(x2+y2)} isocontours.
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encountered due to susceptibility gradients or poor shim. For example, at 1cm off isocenter
with a gradient of 50Hz/cm2, this model would predict observed frequencies of 50, 39, 29,
21, 14, and 8Hz if the dimensions along the quadratic field are 0.1, 2, 4, 6, 8 and 10mm,
respectively, assuming we fit the phase over a large range of timepoints. If a smaller range
of timepoints is taken (<1/Δωz) and the nonlinear region of phase evolution happens to be
avoided, the apparent evolution will approach ω0,q, which is 50, 51, 53, 56, 62 and 68Hz,
respectively.

Conclusion
In conclusion, we have examined both the phase and magnitude of echoes resulting from
evolution under a quadratic z2-½(x2+y2) gradient with both numerical simulations and
analytical derivations. We have analyzed its impact on the standard gradient mapping
experiment and shown that, because of the three dimensional nature of the gradient, slice
thickness can significantly impact the observed frequency in the slice. Finally, we presented
several approximations that can be used to estimate the impact of this through-slice
dephasing and verified their agreement with our own experimental findings.

More broadly, this report highlights that intravoxel dephasing under nonlinear gradients
leads not only to a signal loss, but also to complex phase behavior. Whenever the frequency
distribution across the voxel is asymmetric, the observed phase evolution is nonlinear, and
care should be taken when assuming that the frequency of the voxel is proportional to the
observed phase change. While this paper follows the precise dynamics of the z2-½(x2+y2)
field, we can expect these effects to be present in any case where there is a significant and
asymmetric frequency spread across the voxel. As an example, this correction may be of
value to susceptibility weighted imaging studies, which begin with field maps that assume
phase is a linear function of time, even though it is known that the intravoxel fields are
generally nonlinear. Quantifying the nonlinearity of the phase evolution may provide
another parameter to characterize the susceptibility variations within a voxel (17,18).
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Figure 1. Signal Evolution of a One Dimensional Voxel
Through slice dephasing under a z2 -½(x2+y2) field can lead to phase evolution of the bulk
signal, even for a slice at isocenter where evolution would not be expected (1a). For slices
away from isocenter, this evolution can dramatically impact the apparent phase slope of the
voxel, thus distorting its apparent frequency (1b). Through plane dephasing is also seen to
impact the magnitude envelope of the signal (1c–d), though certain sinc-like features are
preserved.
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Figure 2. Signal Evolution of a Three Dimensional Slice
The phantom (FOV=6cm) used to simulate signal from a three dimensional slice centered at
z=1cm is shown in panel a. For very thin slices (blue), the phase, magnitude, and transform
of the signal are similar to the line, sinc, and tophat that would respectively be predicted
from an infinitely thin disk. As the slice gets larger, the phase and magnitude plots exhibit
the features noted in Figure 1. Furthermore, the transform of these signals becomes lopsided,
as well as broadened, reflecting the asymmetric distribution of frequency bins across the
rectangular slice.
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Figure 3. Slice Thickness Affects Frequency Maps
With linear gradients, the slice thickness would not be expected to affect the frequency map
generated by a standard field mapping sequence. In our uniform phantom (a), the slice at
isocenter yields the same frequency map (b) for the z2-½(x2–y2) gradient regardless of slice
thickness. There is no bias introduced as the slice is widened to 4, 6, 8, or 10mm (c–f).
However, at z=2.5cm (g), the analytical expression predicts that phase evolution from
intravoxel dephasing becomes significant. If this evolution is interpreted as evolution of the
bulk, the observed frequency of the slice becomes a function of the slice thickness (h–l). A
linear fit to the exact expression in Eq. [3] predicts biases of −100, −400, −550, −900Hz for
these thicknesses, in good agreement with the data.
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Figure 4. Apparent Frequency
The apparent frequency depends on both the position of the slice center and also its
thickness. Apparent frequencies were calculated by applying a linear fit to the phases
simulated over 1ms of evolution under a 1.5kHz/cm2 hyperboloid field.
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Figure 5. Phase Evolution of Elliptical Precession
In the asymptotic limit (Eq. [14]), the nonlinear component of the phase evolution under a
z2-(x2+y2) gradient can be described by precession about an ellipse. Here, we simulate just
the nonlinear component of the phase evolution that would be expected for a slice centered
at z=3cm evolving under a 100Hz/cm2 field.
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