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Thiazolidinediones (TZDs) dramatically reduce the growth of human prostate cancer cells in vitro and in vivo. To determine
whether the antitumor effects of TZDs were due in part to changes in the MEK/Erk signaling pathway, we examined the regulation
of Erk phosphorylation by the TZD troglitazone within the PC-3 and C4-2 human prostate cancer cell lines. Western blot analysis
revealed troglitazone-induced phosphorylation of Erk in both PC-3 and C4-2 cells. Troglitazone-induced increases in Erk phos-
phorylation were suppressed by the MEK inhibitor U0126 but not by the PPARy antagonist GW9662. Pretreatment with U0126 did
not alter the ability of troglitazone to regulate expression of two proteins that control cell cycle, p21, and c-Myc. Troglitazone was
also still effective at reducing PC-3 proliferation in the presence of U0126. Therefore, our data suggest that troglitazone-induced

Erk phosphorylation does not significantly contribute to the antiproliferative effect of troglitazone.

1. Introduction

The thiazolidinediones (TZDs) are a group of high-affinity
agonists for the peroxisome proliferator activated receptor
gamma (PPARy) that includes the compounds ciglitazone,
troglitazone (Rezulin), rosiglitazone (Avandia), and pioglita-
zone (Actos) [1, 2]. TZDs were initially recognized for their
ability to induce adipocyte differentiation in mouse cell lines
[2] and in human patients increase insulin sensitivity and
reduce plasma glucose levels [3]. However, subsequent stud-
ies have shown that TZDs also reduce growth of multiple
types of cancers. Micromolar concentrations of TZDs inhibit
growth of tumor cells derived from the breast [4-7], bladder
[8, 9], stomach [10], and colon [11-13]. Furthermore, data
from our laboratory and others have shown that TZDs inhi-
bit growth of human prostate cancer cells in vitro [8, 14—
17] and in vivo [18, 19]. In two clinical trials the TZD trog-
litazone slowed the progression of prostate cancer within

patients [16, 20], suggesting that TZDs may serve as effective
therapeutic agents for prostate cancer.

Although multiple investigators have shown that TZDs
suppress the growth of prostate cancer cells, the mechanism
by which these compounds reduce human prostate tumor
growth is not fully understood. Previous studies suggest
TZD-induced decreases in prostate cancer cell proliferation
are due in part to cell cycle arrest. The TZDs rosiglitazone
and troglitazone increase the percentage of cells in the Go/G;
phase of the cell cycle within androgen-independent human
prostate cancer cell lines [8, 14, 17]. Furthermore, exposure
to the TZD troglitazone induces apoptosis in LNCaP, C4-2,
and PC-3 prostate cancer cells [14, 21]. The ability of TZDs
to increase apoptosis and cell cycle arrest appears to be asso-
ciated with alterations in protein expression and/or activity.
In PC-3 and C4-2 cells the TZDs ciglitazone, rosiglitazone,
and pioglitazone increase the level of the cyclin-dependent
kinase inhibitor p21 [15, 22]. TZD treatment also stimulates
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proteasomal degradation of cyclin D1 and f-catenin within
human prostate cancer cells [15, 23, 24]. In addition, there
is decreased phosphorylation and subsequent inactivation of
retinoblastoma protein (Rb) in PC-3 cells exposed to ciglita-
zone [15]. Data from Shiau et al. indicate troglitazone in-
duces apoptosis in PC-3 cells by reducing the activity of the
antiapoptotic proteins Bcl-2 and Bclxy, [21]. Troglitazone also
reduces levels of c-Myc, a protein that plays a critical role in
cell cycle progression and apoptosis, within PC-3 and C4-2
cells [14]. Therefore, TZDs modulate the level and function
of several proteins that control proliferation of human pros-
tate cancer cells.

It is not clear whether modulation of growth factor sig-
naling pathways contribute to TZD-induced alterations in
prostate cancer cell proliferation. However, one signaling
pathway that plays a critical role in the regulation of cancer
growth and progression is the mitogen-activated protein
kinase (MEK)/extracellular signal regulated protein kinase
(Erk) signaling cascade. Upon binding ligand, growth factor
receptors induce the phosphorylation of MEK which then
phosphorylates the downstream kinases Erk 1 and Erk 2. The
active, phosphorylated forms of Erk are then able to phos-
phorylate several proteins within the cytosol and nucleus to
regulate cell cycle progression and apoptosis (reviewed in
[25] and [26]). Gioeli et al. demonstrated that the amount of
active phosphorylated Erk 1 and Erk 2 increases with increas-
ing grade and stage of human prostate cancer [27]. Higher
levels of activated Erk are also present in the more aggressive
androgen-independent prostate cancer cells [28]. TZDs have
been reported to regulate Erk activation in normal epithe-
lium and cancer cells. Both troglitazone and ciglitazone
increase Erk phosphorylation in the rat GN4 liver epithelial
cells [29]. Troglitazone also induces Erk phosphorylation
in the HCT-116 human colorectal cancer cell line [30]. In-
creases in Erk activation have been associated with the ability
of TZDs to regulate cancer cell activity. Erk activation was
associated with ciglitazone-induced increases in MMP-2 acti-
vity within HT1080 fibrosarcoma cells [31]. Ciglitazone also
increases Erk phosphorylation and induces apoptosis in the
HT-29 colon cancer cell line [32]. Furthermore, in NCI-H23
human nonsmall cell lung cancer cells, troglitazone-stimu-
lated increases in apoptosis were accompanied by an eleva-
tion in Erk 1/2 phosphorylation [33]. To determine whether
the anti-proliferative effects of troglitazone in prostate cancer
cells are associated with altered Erk 1/2 activity, we examined
whether troglitazone regulates Erk phosphorylation in the
present study. Our data indicate that troglitazone does en-
hance Erk phosphorylation. However, this increase in Erk
phosphorylation plays a minimal role in the anti-prolife-
rative effect of troglitazone within human prostate cancer
cells.

2. Matrials and Methods

2.1. Materials. Penicillin/streptomycin solution and DMEM/
F12 media were purchased from Invitrogen. Dimethylsul-
phoxide (DMSO) was purchased from Sigma Aldrich. Fetal
bovine serum was purchased from HyClone. Zap-Oglobin
and Isoton II Diluent were purchased from Beckman
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Coulter Inc. The MEK inhibitor U0126 was purchased from
Promega Corp. The PPARy antagonist GW9662 was pur-
chased from Cayman Chemicals. Horseradish peroxidase-
conjugated donkey anti-rabbit and sheep anti-mouse secon-
dary antibodies were purchased from Amersham Bioscien-
ces. All tissue culture plasticware and additional chemicals
were purchased from Fisher Scientific.

2.2. PPARy Agonists. The compounds troglitazone, rosiglita-
zone, and pioglitazone were obtained from Cayman Chem-
icals. To prepare stock solutions of these compounds, each
drug was diluted in 100% DMSO. All stock solutions were
stored at —20°C.

2.3. Cell Culture. The PC-3 cellline was obtained from ATCC
(Rockville, MD). PC-3 cells were grown in DMEM/F-12
media supplemented with 10% FBS and 1% penicillin/strep-
tomycin. Cell cultures were maintained in a 37°C incubator
in an atmosphere supplied with 5% CO,.

2.4. Western Blot Analysis. To examine the effect of PPARy
agonists on Erk phosphorylation and total Erk levels, cells
were plated in 10 cm dishes at a density of 750,000 cells/dish
and allowed to attach for 48 hours. The cells were next
placed in 10 mL of serum free media (DMEM/F-12) for 24
hours. Cells were then treated with vehicle (100% ethanol or
DMSO) or the PPARy ligands rosiglitazone, pioglitazone, or
troglitazone (0-40 uM) for the indicated times. In a subset
of experiments, cells were pretreated for one hour with
10 uM GW9662 or 10 uM U0126 prior to the addition of
PPARy ligand. The cells were then harvested by scraping and
lysed in RIPA buffer containing 1 mM sodium vanadate and
0.6 mM phenylmethylsulfonyl fluoride (PMSF). The protein
concentration of each sample was determined by using the
Bradford protein assay (BioRad). Equal amounts of protein
(50-100 pg) from each sample were separated on SDS-PAGE
gels and transferred to a nitrocellulose membrane. Mem-
brane blots were initially blocked in TBST (1X TBS, 0.1%
Tween 20) containing 5% nonfat powdered milk (total ERK
1/2) or 5% BSA (phospho-ERK 1/2). The membranes were
then incubated with primary antibody overnight at 4°C. The
primary antibodies used were the phospho-ERK 1/2 rabbit
monoclonal antibody (Cell Signaling; 1:1000) and total
ERK 1/2 antibody (Cell Signaling, 1:1000). Blots exposed
to each Erk antibody were washed in TBST-5% BSA or
TBST-5% milk and incubated with donkey anti-rabbit HRP
secondary antibody (GE Healthcare, 1:5,000) diluted in
TBST for one hour. The blots were then washed in TBST,
incubated with ECL or ECL Plus solution according to the
manufacturer’s instructions (GE Healthcare) and exposed
to BioMax Light autoradiography film (Kodak). Blots were
stripped and reprobed with an actin antibody (Millipore) as a
loading control. The UN-SCAN-IT program (Silk Scientific)
was used to quantify the data from western blots.

To measure the combined effect of U0126 and GW9662
on protein expression, PC-3 cells were plated in DMEM/F-12
+10% FBS supplemented with 1% penicillin/streptomycin
solution at a density of 500,000-750,000 cells/10 cm dish and
allowed to attach overnight. The cells were then treated with
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DMSO vehicle or troglitazone (10-40 uM) in the presence
or absence of 10 uM U0126 for 24 hours. Cell lysates were
prepared and run on SDS-PAGE gels as described above.
Western blot analysis was then performed as described in
[14] to detect the level of c-Myc in each cell lysate. To mea-
sure p21 levels, blots were initially blocked in TBST contain-
ing 5% non-fat powdered milk and then incubated with the
primary p21 antibody (Cell Signaling, 1:2000) overnight at
4°C. Blots were next washed in TBST-5% milk and incu-
bated with sheep anti-mouse HRP secondary antibody (GE
Healthcare, 1:5,000) diluted in TBST for one hour. After this
incubation, each blot was washed in TBST, incubated with
ECL reagent and exposed to BioMax Light autoradiography
film. Blots were stripped and reprobed with an actin anti-
body (Millipore) to confirm equal gel loading.

2.5. Luciferase Reporter Assays. PC-3 cells were plated at a
density of 75,000-100,000 cells per well of a six-well tissue
culture plate and allowed to attach overnight. The next day,
the lipofectamine reagent (Invitrogen) was used to trans-
fect cells with CMV p-galactosidase reporter construct
(0.05 ug/well) and the PPRE-luciferase reporter plasmid
(0.5 ug/well). After a four-hour incubation, the lipofec-
tamine/DNA mix was removed and the media changed to
DMEM/F12 + 10% FBS. Twenty-four hours following trans-
fection, the cells were treated with DMSO vehicle or varying
concentrations of troglitazone (2.5-40 uM) in the presence
or absence of 10 yuM U0126 or 10 uM GW9662 for twenty-
four hours. For cells exposed to troglitazone + U0126 or
troglitazone + GW9662, U0126 and G9662 were added one
hour prior to the addition of troglitazone. The luciferase
activity in treated cells was then measured using the Dual
Luciferase Assay System kit (Promega) and normalized to the
level of 3-galactosidase activity.

2.6. Cell Proliferation Assays. For cell count assays, PC-3 cells
were plated in six-well plates at a density of 10,000 cells per
well in DMEM/F-12 media supplemented with 10% FBS
and 1% penicillin/streptomycin solution. The next day, the
cells were exposed for six days to DMSO vehicle or different
concentrations of troglitazone (2.5-40 yM) in the presence
or absence of U0126 (10 yuM). In cells exposed to troglitazone
+ U0126, U0126 was added one hour prior to the addition
of troglitazone. Every three days the media was changed
and fresh drug was added. Following treatment, the cells
were washed in Hank’s balanced salt solution (HBSS) and
detached from the wells using 0.25% trypsin-EDTA. The
number of cells in each well was then counted using a Coulter
71 cell counter (Beckman Coulter Inc.).

For [*H]-thymidine incorporation assays, PC-3 cells
were plated in six-well plates at a density of 10,000 cells per
well in DMEM/F12 media supplemented with 10% FBS and
1% penicillin/streptomycin solution. After allowing them to
attach overnight, the cells were then exposed to DMSO or
the indicated concentration of troglitazone (2.5-40 uM) for
2—6 days. In experiments involving U0126, cells were exposed
to 10 uM U0126 for one hour prior to the addition of trog-
litazone. After treatment, the cells were pulsed with [*H]-
thymidine (60-90 Ci/mmol, MP Biomedical) for 1.5 hours.

The level of incorporated [*H]-thymidine was then mea-
sured by scintillation counter.

2.7. Statistical Analysis. Each experiment was performed at
least three times, and representative data are shown for each
experiment. One-way analysis of variance (ANOVA) was
used to detect the differences between control and treated
groups. ANOVAs were performed using the Sigma Stat 3.1
program (Systat Software Inc.).

3. Results and Discussion

3.1. Troglitazone Induces Erk Phosphorylation in PC-3 Cells.
Our previous work has shown proliferation of C4-2 cells,
an androgen-independent derivative of the LNCaP cell line,
is dramatically inhibited by troglitazone [14]. Micromolar
concentrations of troglitazone also significantly reduced pro-
liferation of the androgen-independent PC-3 human pros-
tate cancer cell line (Figure 1). Troglitazone produced a time-
and dose-dependent decrease in PC-3 cell number and the
level of [*H]-thymidine incorporation. At each time point
tested, the greatest decrease in cell number and [*H]-thy-
midine incorporation was produced by a concentration of
40 uM troglitazone. To determine whether concentrations of
troglitazone that inhibit proliferation also regulate Erk phos-
phorylation, we performed a series of western blot analyses.
Troglitazone at a concentration of 40 yM did induce phos-
phorylation of Erk 1/2 in the PC-3 cell line. Elevated phos-
phorylation of Erk 1/2 was noted as early as fifteen minutes
following treatment with troglitazone. However, this increase
was more pronounced after two hours of troglitazone expo-
sure (Figure 2(a)). The induction of Erk phosphorylation
was also dose dependent. Over the concentration range tes-
ted, there was little to no increase in Erk phosphorylation
at troglitazone concentrations less than 40 uM. However,
there was a robust induction of Erk phosphorylation in cells
exposed to 40 uM troglitazone (Figure 2(b)).

To determine whether this response was unique to the
PC-3 cell line, we tested the effect of troglitazone on Erk
activation in the C4-2 cell line. Troglitazone at a concentra-
tion of 40 uM was also effective at inducing phosphorylation
of Erk within C4-2 cells (data not shown). Troglitazone has
been shown to induce Erk phosphorylation in breast [34],
colon [30], and nonsmall cell lung cancer cells [33]. However,
to our knowledge this is the first study to report that trog-
litazone induces Erk phosphorylation within human prostate
cancer cells.

3.2. Troglitazone-Mediated Increases in Erk Phosphorylation
Do Not Require PPARy. The fact that only high concentra-
tions of troglitazone were effective at inducing Erk phos-
phorylation led us to suspect that this response might be
due to activation of a PPARy-independent signaling pathway.
To define the role of PPARy in troglitazone-induced Erk
phosphorylation, we first tested whether other TZDs were
equally effective at inducing activation of Erk within PC-3
cells. While troglitazone strongly induced Erk phosphoryla-
tion, we saw no increase in Erk phosphorylation in PC-3 cells
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FiGure 1: Troglitazone inhibits proliferation of PC-3 human prostate cancer cells. (a) PC-3 cells were plated in 6-well plates at 10,000 cells/
well and treated for up to six days with DMSO vehicle or troglitazone (2.5-40 yuM). Following treatment, the cells in each well were detached
using trypsin-EDTA and counted using a Coulter Counter. (b) PC-3 cells were plated in 6 well plates at 10,000 cells/well and treated for up
to six days with DMSO vehicle or troglitazone (2.5-40 uM). Following treatment, the cells were pulsed with [*H]-thymidine for 1.5 hours.
The level of [*H]-thymidine incorporation was then measured using a scintillation counter. In both panels, each bar represents the mean +
SD for three wells. *P < 0.05 compared to DMSO vehicle at each time point. A representative experiment is shown.

Trog (uM)

Trog (40 uM) - + - + - + p-Erk 1/2

p-Erk 1/2

Total Erk 1/2
Total Erk 1/2

Actin Actin

pErk/total Erk 1 3.56 1 245 1 7.65
(a) (b)

pErk/total Erk 1 1.33 1.44 2.67 12.96

FiGure 2: Troglitazone induces phosphorylation of ERK 1/2 MAPK in human prostate cancer cells. (a) PC-3 cells plated in serum free
DMEM/F-12 media were treated with DMSO vehicle (—) or troglitazone 40 uM (+) for different times (0-2 hours). The level of phosphoryla-
ted Erk 1/2, total ERK 1/2, and actin in treated cells was then measured by western blot. The data from each blot was quantified using the
UN-SCAN-IT program and expressed related to the signal present in control cells for each time point. (b) PC-3 cells were treated for two
hours with either DMSO vehicle or varying concentrations of troglitazone (1-40 uM). Western blotting was used to measure the level of
phosphorylated and total ERK 1/2 as well as actin protein in treated cells.

exposed to comparable concentrations of the TZDs rosigli-
tazone or pioglitazone for two hours (Figure 3(a)). We next
examined whether the PPARy antagonist GW9662 altered
troglitazone-stimulated Erk phosphorylation. Luciferase
assays demonstrated that GW9662 at a concentration of
10uM inhibited activation of PPARy within PC-3 cells
(Figure 3(b)). However, GW9662 alone did not dramatically
alter the phosphorylation state of Erk 1/2. Furthermore, this
concentration of GW9662 did not prevent the increase in Erk
phosphorylation produced by troglitazone (Figure 3(c)).

Taken together, these data suggest PPARy activation is
not required for troglitazone to increase Erk phosphorylation
in PC-3 cells. TZDs also appear to phosphorylate Erk via
a PPARy-independent pathway in breast cancer cells. Erk
phosphorylation in MCF7 breast cells is increased by A2-
TGZ, a troglitazone derivative that does not activate PPARy
[34]. However, data from Li et al. demonstrated that siRNA-
mediated reductions in PPARy prevent troglitazone activa-
tion of Erk in the NCI-H23 nonsmall cell lung cancer cell line
[33]. Thus, while a PPARy-independent pathway mediates
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F1GURE 3: Troglitazone-stimulated increases in Erk phosphorylation occur independently of PPARy. (a) PC-3 cells were treated for 30
minutes or two hours with DMSO vehicle control (D) or the PPARy ligands troglitazone (T; 40 uM), rosiglitazone (R; 40 uM), or pioglitazone
(P; 30 uM). The level of ERK 1/2 (both total and phosphorylated) and actin was then detected by Western blot analysis. (b) PC-3 cells were
first transfected with the PPRE-luciferase and CMV-f-galactosidase reporter plasmids. Cells were then treated for 24 hours with DMSO
vehicle or troglitazone (10 or 40 yM) in the presence or absence of the PPARy antagonist GW9662 (10 uM). The level of luciferase activity in
treated cells was measured and normalized to 3-galactosidase activity. Each bar represents the mean SD for three wells. * P < 0.05 compared to
vehicle control (0 Trog, — GW9662). (c) PC-3 cells were treated for two hours with DMSO vehicle (—) or 40 uM troglitazone (+) in the
presence or absence of the MEK inhibitor U0126 (10 uM) or the PPARy antagonist GW9662 (10 uM). Western blotting was then used to
measure Erk and actin levels within treated cells. The data from each blot were quantified and expressed relative to the signal present in the

vehicle control sample (—Trog, —U0126, —~-GW9662).

troglitazone-induced Erk phosphorylation in PC-3 cells,
PPARy can in certain cell lines play a critical role in TZD-in-
duced Erk phosphorylation.

3.3. MEK Inhibition Prevents Troglitazone-Induced Erk Phos-
phorylation but Does Not Affect PPARy Activation. In many
cases, Erk is activated via phosphorylation by the MAPKK
MEK. To determine whether MEK plays a role in troglitazone
induced phosphorylation of Erk, we tested whether this res-
ponse was altered in the presence of the MEK inhibitor
U0126. U0126 at a concentration of 10 uM did not dramati-
cally alter the basal level of Erk phosphorylation in PC-3 cells.
However, pretreatment with U0126 reduced the amount of

Erk phosphorylation produced by troglitazone in the PC-3
cell line (Figure 3(c)).

In vitro Erk phosphorylates the N-terminus of PPARy,
which consequently decreases the ability of PPARy to regu-
late transcription and protein expression [35-37]. To deter-
mine whether Erk phosphorylation influences the ability of
troglitazone to regulate PPARy function in prostate cancer
cells, we measured PPARy transcriptional activity in PC-3
cells in the presence of U0126. Compared to other human
prostate cancer cell lines, PC-3 cells express a significant
amount of functional PPARy protein [38]. Therefore, in
these studies we transfected PC-3 cells with the PPRE-luci-
ferase reporter to examine endogenous PPARy activity.
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F1Gure 4: U0126 does not alter the transcriptional activity of PPARy
in prostate cancer cells. PC-3 cells were plated in 6-wells plates
and transfected with the PPRE-luciferase and CMV f3-galactosidase
reporter plasmids. The transfected cells were then treated for
twenty-four hours with DMSO vehicle or troglitazone (2.5-40 M)
in the presence or absence of 10 uM U0126. Luciferase activity in
treated cells was measured and normalized to S-galactosidase
activity. Each bar represents the mean + SD for three wells. *P <
0.05 compared to vehicle control (0 uM U0126, 0 uM troglitazone).
At each concentration of troglitazone tested, there was no statis-
tically significant difference noted between the troglitazone and
troglitazone + U0126 groups. A representative experiment is shown.

Troglitazone produced a dose dependent increase in PPARy
activation, with the greatest increase in luciferase activity
occurring at troglitazone concentrations >10 M (Figure 4).
U0126 alone produced a slight increase in basal PPARy
transcriptional activity that was not statistically significant.
In addition, the ability of troglitazone to increase PPRE-
luciferase activity was not altered in cells pretreated with
U0126. Therefore, troglitazone-induced increases in Erk
phosphorylation within PC-3 cells do not appear to reduce
this TZD’s ability to activate PPARy.

3.4. U0126 Does Not Inhibit the Antiproliferative Effects of
Troglitazone in PC-3 Cells. The anti-proliferative effects of
troglitazone within human prostate cancer cells have been
linked to alterations in cell cycle progression and apoptosis.
Therefore, we explored whether inhibition of MEK modified
the ability of troglitazone to regulate proteins that control
these two processes. In these studies we focused on two pro-
teins: p21 and c-Myc. The cyclin-dependent kinase inhibitor
p21 plays a critical role in the G1/S cell cycle transition
[39, 40]. Recent work form our laboratory has also shown
troglitazone suppresses expression of the proto-oncogene c-
Myc [14]. In PC-3 cells, treatment with troglitazone for 24
hours resulted in a significant increase in p21 protein levels.
However, this induction was not altered in cells cotreated
with troglitazone and U0126 (Figure 5). In a similar manner,
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FiGure 5: Combined effect of U0126 and troglitazone on cell cycle
protein levels in PC-3 cells. PC-3 cells were plated in DMEM/F-12
media supplemented with 10% FBS and 1% penicillin/streptomycin
solution and allowed to attach. The cells were then treated for
twenty-four hours with DMSO vehicle or different concentrations
of troglitazone in the presence (+) or absence (—) of 10 uM U0126.
Western blot analysis was used to measure c-Myc, p21, and actin
levels within treated cells.

U0126 did not interfere with the ability of troglitazone to
suppress c-Myc.

We next tested whether U0126 alters the anti-prolife-
rative effect of troglitazone. Cell count assays revealed treat-
ment with either troglitazone or U0126 alone for six days
reduced proliferation of the PC-3 cell line. Cotreatment with
U0126 did not block the decrease in cell number produced by
either 10 uM or 40 uM troglitazone. In fact, the combination
treatment of U0126 and 10 uM troglitazone decreased cell
number to a greater extent than that seen with either com-
pound alone (Figure 6(b)). We saw a similar pattern in assays
where cell proliferation was measured by [*H]-thymidine
incorporation assays. In these studies U0126 did not block
the reduction in thymidine incorporation produced by
micromolar concentrations of troglitazone (Figure 6(a)).
These data would suggest that Erk phosphorylation does not
contribute to the ability of troglitazone to suppress prostate
cancer cell proliferation. At present, we do not know the
reasons that underlie the greater anti-proliferative response
detected in cells cotreated with U0126 and 10 uM troglita-
zone. We and others have shown that troglitazone and other
TZDs can induce apoptosis in human prostate cancer cells
[14, 21]. Our preliminary studies suggest that U0126 does
not enhance the ability of troglitazone to induce apoptosis
within PC-3 cells. However, additional experiments are re-
quired in order to confirm this finding and to explore whe-
ther alterations in cell cycle progression contribute to this
enhanced response.

Taken together, our data indicate that increases in Erk
phosphorylation are not required for the growth inhibitory
effects of troglitazone. This is likely due to the fact that U0126
does not prevent troglitazone’s ability to modulate expres-
sion of cell cycle proteins such as p21 and c-Myc. While our
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FIGURE 6: Combined effect of U0126 and troglitazone on PC-3 cell
proliferation. (a) PC-3 cells were first plated in 6-well plates at a
density of 10,000 cells/well. The cells were then treated with DMSO
vehicle or troglitazone (10-40 uM) in the presence or absence of
10 uM U0126. [*H]-thymidine incorporation assays were then used
to measure proliferation of treated cells. (b) PC-3 cells were plated
in 6-well plates at a density of 10,000 cells/well and treated for six
days with DMSO vehicle or troglitazone in the presence or absence
of 10 uM U0126. Following treatment, the cells were detached using
trypsin-EDTA and counted using a Coulter Counter. For both
panels, each bar represents the mean + SD for three wells. *P < 0.05
compared to DMSO control. **P < 0.05 compared to U0126 alone
and 10 uM troglitazone alone.

studies suggest that Erk phosphorylation is not required for
troglitazone-mediated changes in protein expression, this
may vary depending on the cell line and PPARy ligand
tested. Troglitazone increases expression of nucleobindin 2
(NUCB2) via activation of Erk in HTB185 brain medul-
loblastoma cells [41]. Also, Papineni et al. demonstrated
blocking Erk via the MEK inhibitor PD98059 reduced the
ability of the non-TZD PPARy ligand S-CDODA-Me to
increase p21 in LNCaP prostate cancer cells [42]. Therefore,
in some situations Erk does play a role in the regulation of
protein expression by TZDs and other PPARy ligands.

In this study we have primarily examined MEK as an up-
stream regulator of Erk activity. However, MEK can regulate

PPARy independently of Erk. Work by Burgermeister et al.
revealed MEK physically associates with PPARy and pro-
motes nuclear export of PPARy in a manner that does not
require Erk phosphorylation [43]. Both the Erk-dependent
and Erk-independent functions of MEK can be blocked by
the MEK inhibitor U0126. Our experiments involving U0126
suggest that MEK is critical for troglitazone-induced phos-
phorylation of Erk within human prostate cancer cells. How-
ever, it is unlikely that Erk-independent functions of MEK
influence the ability of troglitazone to regulate expression of
cell cycle proteins and cell proliferation. Additional studies
are required to confirm that MEK plays a minimal role in
troglitazone-mediated responses within prostate cancer cells.

Troglitazone has been shown to not only phosphorylate
Erk but also activate the MAP kinases p38 and JNK within
cancer cells. Inhibition of JNK suppresses troglitazone-indu-
ced apoptosis in human breast carcinoma and hepatoma cells
[44, 45]. In MCEF-7 breast cancer cells p38 inhibitors also
enhance the ability of troglitazone to stimulate apoptosis
[45]. To date, we have not been able to detect an alteration
in p38 phosphorylation in PC-3 cells following troglitazone
exposure. Furthermore, preliminary data from our labora-
tory indicate compounds that inhibit p38 and JNK activity
can alone inhibit PC-3 proliferation, but do not alter the
anti-proliferative effect of troglitazone (data not shown). We
therefore believe that the anti-proliferative effect of trog-
litazone within this prostate cancer cell line does not involve
alterations in p38 and/or JNK activity.

4. Conclusions

In summary, our data indicate that troglitazone induce Erk
phosphorylation in human prostate cancer cells via a PPARy-
independent signaling pathway. Inhibition of the MEK/Erk
signaling pathway prevents this phosphorylation of Erk, but
does not interfere with the anti-proliferative effects of trogli-
tazone. Of the TZDs that have been commercially available,
troglitazone is the compound which has produced the most
promising results in clinical studies of prostate cancer. How-
ever, concerns regarding liver toxicity have resulted in trogli-
tazone being removed from the US market in 2000. Com-
bination treatments which could enhance the anti-tumor
effects of troglitazone while minimizing its toxicity could
potentially be one way to reduce the death and suffering asso-
ciated with prostate cancer. Our data demonstrate the combi-
nation of troglitazone with inhibitors of the MEK/Erk path-
way does suppress proliferation of human prostate cancer
cells. However, at most concentrations the response of the
combination is only slightly greater than that seen with
troglitazone alone. Additional studies must be performed to
determine whether the anti-tumor effects of troglitazone can
be further enhanced by other kinase inhibitors.
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