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ABSTRACT

Motivation: The folding free energy is an important characteristic
of proteins stability and is directly related to protein’s wild-type
function. The changes of protein’s stability due to naturally occurring
mutations, missense mutations, are typically causing diseases.
Single point mutations made in vitro are frequently used to assess the
contribution of given amino acid to the stability of the protein. In both
cases, it is desirable to predict the change of the folding free energy
upon single point mutations in order to either provide insights of the
molecular mechanism of the change or to design new experimental
studies.
Results: We report an approach that predicts the free energy
change upon single point mutation by utilizing the 3D structure
of the wild-type protein. It is based on variation of the molecular
mechanics Generalized Born (MMGB) method, scaled with optimized
parameters (sMMGB) and utilizing specific model of unfolded state.
The corresponding mutations are built in silico and the predictions are
tested against large dataset of 1109 mutations with experimentally
measured changes of the folding free energy. Benchmarking resulted
in root mean square deviation = 1.78 kcal/mol and slope of the linear
regression fit between the experimental data and the calculations
was 1.04. The sMMGB is compared with other leading methods of
predicting folding free energy changes upon single mutations and
results discussed with respect to various parameters.
Availability: All the pdb files we used in this article can
be downloaded from http://compbio.clemson.edu/downloadDir/
mentaldisorders/sMMGB_pdb.rar
Contact: ealexov@clemson.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Protein folding free energy is an important characteristic directly
related to protein stability. Some proteins are very stable, while
others unfold under very small perturbation of the native conditions.
In both cases, not all amino acids contribute equally to the protein
stability and interactions, some of them being crucial and frequently
termed ‘hot spots’ (Acuner Ozbabacan et al., 2010; Dixit et al.,
2009) while others contributing very little to the folding free
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energy. However, the contribution of a given amino acid to protein
stability cannot be easily predicted, even if the 3D structure of the
corresponding protein is available. Therefore, developing methods
to improve predictions of hot spots and even more to assess the
contribution of a given amino acid to the folding or binding free
energy is of great importance (Gromiha, 2007; Moreira et al., 2007).
Accurate predictions [see Khan and Vihinen (2010) for comparison
of different methods] will be beneficial for understanding the role
of individual amino acids on protein stability and to rationalize
the effects of non-synonymous single nucleoside polymorphism
(Shastry, 2009; Teng et al., 2008) and missense mutations on the
protein fold (Witham et al., 2011; Zhang et al., 2010, 2011).

Of particular interest is predicting the effects caused by disease-
causing missense mutations since the function of protein can be
affected in a variety of ways (Teng et al., 2008; Yue and Moult,
2006; Yue et al., 2006). Among them, the most common effect
is changing protein stability, i.e. destabilizing or stabilizing the
wild-type protein fold (Capriotti et al., 2005a; Karchin et al.,
2005; Ramensky et al., 2002; Wang and Moult, 2001, 2003; Ye
et al., 2006; Zhang et al., 2011; Zhou et al., 2004), in addition
to altering the macromolecular interactions (Teng et al., 2009),
hydrogen bond network (Chen et al., 2001; Hunt et al., 2008; Zhang
et al., 2010) and many other effects (Eriksson et al., 1992; Xu et al.,
1998). However, the predictions about the changes of the folding
energy should not only indicate if they favor the stability or not,
but also the predicted absolute magnitude should be accurate as
well to allow to distinguish between disease-causing and harmless
mutations. Because of this significance, efforts were devoted to
develop methods and approaches to evaluate the stability changes
upon amino acid substitutions, but despite of the efforts, accurate
calculations of folding free energy are still a challenge (Beveridge
and DiCapua, 1989).

Currently, there are several distinctive approaches that were
developed to predict the protein stability changes due to mutations.
They can be classified into four categories: (i) first principle methods,
which calculate the folding free energy changes based on detailed
atomic models (Bash et al., 1987; Duan and Kollman, 1998; Khare
et al., 2006; Kuhlman and Baker, 2000; Lee, 1995; Lee and
Levitt, 1991; Miyazawa and Jernigan, 1994; Pitera and Kollman,
2000; Prevost et al., 1991; Tidor and Karplus, 1991; Vorobjev and
Hermans, 1999) and may be quite computationally expensive and
may not be applicable in cases of large set of mutations (Kollman
et al., 2000). (ii) Methods using statistical potentials (BenNaim,
1997; Thomas and Dill, 1996), which were successfully used to
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estimate the change of protein stability upon the mutations (Gilis
and Rooman, 1996, 1997, 1999, 2000; Hoppe and Schomburg,
2005; Ota et al., 2001; Topham et al., 1997; Zhou and Zhou, 2002).
(iii) Methods utilizing empirical potential combining both physical
force fields and free parameters fitted with the experimental data
(Bordner and Abagyan, 2004; Domingues et al., 2000; Munoz and
Serrano, 1997; Takano et al., 1999; Villegas et al., 1996; Xiong,
1986). (iv) Machine learning methods, generating predictions based
on learned relations delivered from the training set (Carpriotti et al.,
2004; Casadio et al., 1995; Frenz, 2005; Joachims, 2002; Masso and
Vaisman, 2008).

The approaches, utilizing physics-based energies to calculate the
folding free energy or its change upon mutation(s), have to address
the issue of how to model the unfolded state as well. This is
non-trivial task, since the unfolded state, perhaps, has different
characteristics for each particular protein and may differ depending
on the experimental conditions (for example, thermal unfolding
versus urea unfolding). Over the years, various approaches were
reported in the literature, some of them starting from the original
X-ray structure and modeling unfolding by either increasing van
der Waals radii of the atom (Elcock and McCammon, 1998) or
the temperature above the normal (Ma and Nussinov, 2003; Yan
et al., 2010). Others, starting from extended amino acid chain
and modeling unfolded as a Gaussian chain (Zhou, 2002, 2003;
Zhou et al., 2004) or quasi-random distribution of amino acids
(Kundrotas et al., 2002a, 2002b). In terms of assessing the difference
between unfolded state energy of wild type (WT) and mutant protein,
alternative approaches assumed either no interactions in unfolded
state (Zhang et al., 2010, 2011) or interactions limited within a
short segment of residues centered at the site of mutation (Alexov,
2004; Ofiteru et al., 2007). All the above-mentioned methods have
advantages and disadvantages with respect to the computational time
and the applicability to full-scale energy calculations.

Typically, a modeling utilizing all-atoms energy calculations is
accomplished using a particular force field and plausible concern
could be to what extent it can be applied in conjunction with the
another force field. In the past, we were attempting to address such a
question in terms of electrostatic component protein–protein binding
energy (Talley et al., 2008) and effect of single point mutations on
protein stability and interactions (Zhang et al., 2010, 2011). In our
hands, the trend of the results was generally similar among different
force fields, but individual cases were frequently strongly force field
dependent. Such an observation motivated us to suggest averaging
over the results obtained with different force fields (Zhang et al.,
2010, 2011), an approach that we apply in this study as well.

In the past years, several prominent methods and web servers
for predicting free folding energy changes upon mutations have
immerged. One of them is Eris (Ding and Dokholyan, 2006; Yin
et al., 2007a, 2007b), developed by Dokholyan and coworkers,
which utilizes Medusa force field (Ding and Dokholyan, 2006).
It was tested against 595 mutants with experimentally available
data and the resulting root mean square deviation (RMSD) was
reported as 2.4 kcal/mol. Recently, Zhou and Zhou constructed a
residues specific all-atom potential of mean force from 1011 protein
structures and used it to calculate the folding free energy change for
895 mutants (Zhou and Zhou, 2002). The benchmarking resulted in
RMSD of 1.52 kcal/mol. The FoldX is perhaps the most popular web
server (Schymkowitz et al., 2005) for predicting folding free energy
changes. It was developed by Serrano and coworkers. FoldX is based

on empirical potential function and was tested against 667 mutants
(Guerois et al., 2002). From machine learning algorithms, the most
prominent is I-Mutant (version 2.0), developed by Casadio and
coworkers. It was benchmarked against 2087 data points (Capriotti
et al., 2005b).

In this work, we apply molecular mechanics Generalized Born
(MMGB) approach to estimate the folding free energy of the WT
and the mutants in conjunction with a specific model of the unfolded
state. Since it is established in the literature (Benedix et al., 2009)
that MMGB/PB approaches tend to overestimate the free energy
changes, we scale down the originally predicted changes by a linear
function and optimize the weights against experimental data points
of 662 mutants. To reduce the sensitivity of the results with respect
to the particular choice of force field, the calculations are done
with three force field parameters (Charmm, Amber and OPLS) and
then results averaged. Then the optimized weights were used to
carry a blind test against 447 experimentally determined folding
free energy changes resulting in RMSD of 1.78 kcal/mol. The slope
of the corresponding fitting line was 1.0382 with the correlation
coefficient of 0.3 and the SD was 0.54 kcal/mol.

2 MATERIALS AND METHODS

2.1 Experimental dataset
The experimental dataset was derived from the ProTherm website
(Thermodynamic Database for Proteins and Mutants: http://gibk26.bio
.kyutech.ac.jp/jouhou/Protherm/protherm_search.html) (Bava et al., 2004;
Chen et al., 2002; Gromiha and Sarai, 2010). The ProTherm database
provides information of various experimental conditions including pH of the
experiment. For the purpose of this study, we choose the experimental pH to
be between 6 and 8, assuming that at such pH the ionizable residues will have
default charged states. No pKa calculations were performed to either explore
experiments done at low/high pH or to adjust charges of amino acids with
pKa shifted away from the standard values. This was done to avoid the effect
of plausible errors in assigning charges of titratable groups. In addition, only
cases of single mutations were collected resulting in 2395 experimentally
determined changes of the folding free energy (��G).

During the initial screening of the data, it was noticed that for some
mutations the change of the folding free energy was reported by either
different sources or different experimental methods [for example, the change
of the folding free energy for the mutant C112S in azurin from Pseudomonas
aeruginosa (the pdb ID: 5AZU) (Nar et al., 1991) has reported 15 times and
the ��G values range from −4.4 kcal/mol to −0.24 kcal/mol at pH of 7.5].
In all such cases, including cases with available data for different pH (6 < pH
< 8) and temperature, we took the average value, since there is no indication
which data point is the most reliable.

The ProTherm database provides the Protein Data Base (PDB) identifiers
for the corresponding 3D structures of the proteins for which experimental
��G were collected in the database. These structures are the core of our
approach. However, frequently the 3D structures in PDB have missing atoms,
residues or entire structural segment. In order to carry our analysis, we need
polypeptide chain not to have missing atoms, residues and gaps. To fix such
structural defects, we used Profix software, developed by Barry Honig lab
(see next section for details). During this procedure, some structures with
unusual numbering or long missing segments failed to be fixed properly.
They were deleted from the initial dataset. In addition, our protocol requires
the wild-type structure and the structure of the corresponding in silico built
mutant to be energy minimized with TINKER (Ponder, 1999) (see next
section for details). It was noticed that several proteins failed to be minimized
because TINKER generated identical hydrogen coordinates [for example,
maltodextrin/maltose-binding protein, pdb ID: 3MBP (Quiocho et al., 1997)
and barnase, pdb ID: 1BNI (Buckle et al., 1993)]. The proteins corresponding
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Fig. 1. Ribbon presentation of the approach of modeling folded and unfolded
states representative structures. The magenta part represents the ‘x’ residue
segments, and the cyan part represents the ‘the rest of protein’. The unfolded
state is split into two parts which are ‘x residue segments’ and ‘unfolded
state of the rest of protein’.

to either of the above cases were filtered out from our dataset resulting in a
final dataset containing 1109 mutants from 60 wild-type proteins.

2.2 Fixing structural defects and in silico mutant
generation

The PDB files were downloaded from the Protein Data Bank (Berman et al.,
2000; Kouranov et al., 2006). However, it was found that frequently the
corresponding structures had either missing atoms or residues. Thus, the
first task was to generate in silico these missing atoms back to the protein
according to the protein sequence record located at the top of each pdb
file. It was done by ‘Profix’, a program in Jackal package (http://wiki.c2b2
.columbia.edu/honiglab_public/index.php/Software:Jackal), which can be
downloaded from Barry Honig’s Lab, Columbia University. The parameters
that were used in our approach are Amber force field in conjunction with the
option of fixing the structural defect using heavy atoms representation (no
hydrogens). The hydrogen will be added later with ‘pdbxyz’ module in the
TINKER package (Ponder, 1999).

All the mutants were made by the program SCAP (Xiang and Honig, 2001)
in Jackal package as well. SCAP-generated mutations were done with both
Amber and Charmm force field using the option ‘heavy atom modeling’. No
significant differences were found for the predictions made with Amber and
Charmm force fields, but this dual option was used in cases where SCAP
failed to generate mutant side chain with Amber/Charmm force field and
vice versa.

2.3 Folding free energy calculation
The folding free energy changes upon single point mutations were calculated
as described in our previous works (Witham et al., 2011; Zhang et al.,
2011; Zhang et al., 2010). Here for consistency we briefly outline this
approach (Fig. 1). The folded state is considered to be represented by the
energy minimized structure, either the WT or in silico-generated mutant. The
unfolded state is considered to be represented by two structural elements:
(i) a structural segment of length ‘x’ (x=3, 5, 7, 9, 13, …) centered at the
mutation site and (ii) rest of the protein. Assuming that the residue at the
site of mutation does not interact with the rest of protein, this approach will
result in identical energies of unfolded state ‘b’ of WT and mutant protein,
i.e. the unfolded state that excludes the structural segment of length ‘x’.

Technically, it was done by energy minimizing all WT and mutants
proteins using the program ‘minimize’ in TINKER package (Ponder, 1999)
using the Limited Memory BFGS Quasi-Newton Optimization algorithm
and we set the final RMS gradient (G-RMS) 0.01 per atom. The solvent
was modeled using the Still Generalized Born model and the protein internal
dielectric constant was set as 1.0. In this work, all the protein structures
were minimized with three force field parameters, such as Amber98 (Case
et al., 2005), Charmm27 (Brooks et al., 2009) and OPLS (Jorgensen and
Tiradorives, 1988). After a successful minimization, a length of ‘x’ residues
segments (x = odd numbers like 3, 5, 7, 9, 13, …, for example x=3 means

three residue segments) at the center of the mutation site is extracted from
the minimized structures (both WT protein and the mutants). After this
step, all minimized structures (the entire protein and ‘x’ residue segment)
were subjected to ‘analyze’ module in TINKER package for calculating the
potential energy, and then the results were averaged among the three force
field parameters to test the sensitivity of the results.

The folding free energy of both the WT protein and the mutants is
calculated as:

�G(folding)=G(folded)−G(unfolded)

=G(folded)−G0(unfolded)−Gx(unfolded), (1)

where G(folded) is the total potential energy of the folded state and the
G(unfolded) is the total potential energy of the unfolded state. The free
energy, G(unfolded), of unfolded state, is split into two terms, G0(unfolded)
and Gx(unfolded), as discussed above and in our previous works (Witham
et al., 2011; Zhang et al., 2010, 2011). Gx(unfolded) is the free energy of the
unfolded state of ‘x’ residue segments at the center of mutation site, whereas
G0(unfolded) is the free energy of the unfolded state of the rest of protein
(Fig. 1). Under our assumption, the G0(unfolded) is identical for WT and
mutants and cancels out in Equation (2) and therefore does not need to be
calculated.

The folding free energy change due to a mutation is calculated with the
following equation:

��G(folding_mutation)=�G(folding_WT)−�G(folding_Mutant)

=G(folded_WT)−Gx(unfolded_WT)

−G(folded_Mutant)+Gx(unfolded_Mutant),
(2)

where ��G(folding_mutation) represents the folding free energy change
due to a mutation; �G(folding_WT) and �G(folding_Mutant) are folding
free energy of the WT protein and the mutant, respectively.

The ��G(folding_mutation) are calculated with the three force field
parameters mentioned above and then results averaged:

��Gcal =

[��G(folding_mutation_Amber)
+��G(folding_mutation_Charmm)
+��G(folding_mutation_OPLS)]

3
(3)

where ��G(folding_mutation_Amber), ��G(folding_mutation_ Charmm)
and ��G(folding_mutation_OPLS) are the folding free energy change due
to a single mutation calculated with the force field parameters Amber98,
Charmm27 and OPLS, respectively.

Here four assumptions were made: (i) we assume that missense mutation
affects only a small region surrounding the mutation sites, which is described
by ‘x’ residue segments part, and cause negligible effect to the rest of the
protein, hence G0(unfolded) will be the same for WT protein and the mutants
and will cancel in Equation (2); (ii) the entropy in the WT and mutant proteins
are considered to be very similar, therefore it will cancel out in Equation
(2) as well. The applicability of this assumption will be discussed later in
this article; (iii) the non-polar term of the solvation energy is not taken
into account due to its relatively small contribution to the energy and the
fact that the accessible surface area of the WT and the mutant protein are
very similar (single point mutation); (iv) the approach is based on single-
point calculations where the folded and unfolded states are represented by a
structure instead of ensemble of structures. This assumes that the potential
wells do not change upon the mutation.

2.4 Obtaining the fitting weights
The above-described approach is essentially a simplified version of the
MMGB method (Hou et al., 2011; Kollman et al., 2000; Still et al., 1990)
with a specific model of unfolded state (Witham et al., 2011; Zhang et al.,
2010, 2011). It is recognized that MMGB method tends to overestimate
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the magnitude of the predicted free energy changes (compared with the
experimental data) and because of that the predicted ��G may have to be
scaled to match the experimentally determined changes of the folding free
energy. Here we carry the following optimization procedure to minimize
the RMSD between the scaled calculated results and the experimental data.
The calculated ��Gcal are scaled by a linear function with two adjustable
parameters ‘a’ and ‘b’ and the resulting scaled ��G (s��G) is:

s��Gcal =a×��Gcal+b. (4a)

The RMSD is calculated by Equation (4b) below using the scaled ��G
(s��G):

RMSD=
√∑n

i=1(s��Gi
cal −��Gi

cal)
2

n
(4b)

where ‘n’ is the number of data points; ��Gcal and ��Gexp are calculated
and experimental ��G, respectively. The optimal values of the adjustable
parameters ‘a’ and ‘b’ are obtained by the regular conditions of finding
optimum:

∂(RMSD)

∂a
=0 (5)

∂(RMSD)

∂b
=0. (6)

Solving Equations (5) and (6) with respect to the adjustable parameters ‘a’
and ‘b’ results in the following expressions:

a=
(∑n

i=1��Gi
exp

)
×(∑n

i=1��Gi
cal

)−n×
[∑n

i=1

(
��Gi

cal ×��Gi
exp

)]
(∑n

i=1��Gi
cal

)2 −n×
(∑n

i=1��Gi
cal

2
)

(7)

b=

[∑n
i=1(��Gi

cal ×��Gi
exp)

]
×(∑n

i=1��Gi
cal

)−(∑n
i=1��Gi

cal

)2

×
(∑n

i=1��Gi
exp

)
(∑n

i=1��Gi
cal

)2 −n×
(∑n

i=1��Gi
cal

2
)

(8)

For the purpose of this work, the database of experimentally determined
��G is split into two parts: training (60%) and test (40%) sets. The training
set was used to find the optimal values of the parameters ‘a’ and ‘b’, whereas
the test set was used for benchmarking. The selection of the sets was done by
ranking the wild-type protein PDB ID based on alphabet and chose the first
37 wild-type protein with 405 mutants as the part of the training database.
The next protein in the dataset with respect to the alphabetical order is the
staphylococcal nuclease (PDB ID: 1STN) (Hynes and Fox, 1991) which has
537 mutants, almost half of the whole database. In our analysis, we refer to
the mutations as mutation involving charged residue (for example, A → E),
mutations do not involving charged residue (for example, A → L), mutations
preserving the charge (for example, E → D) and mutations reversing the
charge (for example, E → K). Since mutations in the 1STN represent such
a significant fraction of the entire dataset, the cases for the training set were
selected to have proportional presentation for the above-mentioned classes.
Thus, there are 171 1STN mutations involving charged residue (for example,
1STN_E57G) and half of them, 85, were selected for the training set. There
are 342 1STN mutations not involving charged group and half of them,
172, were included in the training dataset. The total number of mutations
from 1STN protein that was included in the training set is 172+85=257,
resulting in 662 cases in the final training set. Note that rare mutations in
the 1STN protein, as two charges shift like 1STN_K28E and zero charge
shifts like 1STN_E43D were not included in the training set, but included in
the benchmarking set. In addition, the training and benchmarking sets were
shuffled to test the sensitivity of the method (Supplementary Table S1).

3 RESULTS

3.1 Obtaining the optimal values of the parameters ‘a’
and ‘b’ using the training set

The changes of the folding free energy, ��G, were calculated as
described in Section 2 [Equation (2)] for the mutants in the training
set. The length of the segment ‘x’ was fixed to be equal to three
(x=3). The effect of different lengths is discussed latter in this
article.

Using Equations (7) and (8) with 662 training data points to
minimize the RMSD, one obtains the following values for the
adjustable parameters: ‘a’ = 0.093 and ‘b’ =−1.088. Using these
values, s��G is calculated with Equation (4a) (Supplementary
Table S2) and plotted against the experimental data of the training set
(Fig. 2A). The slope of the fitting line is 1.0026, and the correlation
coefficient R=0.28. The corresponding SD is 0.51 kcal/mol and
RMSD between ��Gexp and s��Gcal is 1.79 kcal/mol. While
the correlation coefficient is not impressive, mostly due to several
outliers at the top of the figure, the corresponding RMSD is very
good. Another indication of the success of the approach is that the
slope of the fitting line is practically one and the free coefficient
is practically zero and this was achieved without enforcing such
conditions in the optimization procedure.

3.2 Blind test using the obtained optimal values for
‘a’ and ‘b’ parameters

The blind test was done on the rest 40% of the data points (447
mutants) using the optimal parameters obtained above. Detailed
results are provided in Supplementary Table S3. Figure 2B shows the
correlation of experimental ��G (��Gexp) and scaled calculated
��G (s��Gcal) for the blind test. The slope of the fitting line is
1.0868 and the free coefficient is practically zero. The corresponding
correlation coefficient R is 0.34, the resulting SD is 0.58 kcal/mol
and the RMSD between ��Gexp and s��Gcal is 1.76 kcal/mol.
These results are very similar to the results obtained with the training
set indicating the training was successful. The low correlation
coefficient is due to the outliers on the right-hand side of the graph,
wrongly predicted due to structural defects or deficiencies of our
protocol.

3.3 Testing the method against the entire dataset
To further test the protocol and to demonstrate that the results are
independent of the specific choice of the training and testing datasets,
we benchmark the scaled ��G, s��G, against all experimental
values collected for our work (Fig. 2C). The results are fitted with

Fig. 2. Comparison between experimental ��G (��Gexp) and scaled
calculated ��G (s��Gcal). The parameters of the fitting line are provided
in the graph. (A) For the training database and the correlation coefficient R is
0.28; (B) for the blind test and the corresponding correlation coefficient R is
0.34; (C) for the entire dataset and the correlation coefficient R is 0.3.
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a straight line with slope practically one and zero free coefficient,
again demonstrating the validity of the proposed method. The
corresponding SD is 0.54 kcal/mol and the RMSD between ��Gexp
and s��Gcal for the entire 1109 mutants is 1.78 kcal/mol.

To address the sensitivity of the results with respect to the
choice of the training and benchmarking sets, the entire dataset
was reshuffled and randomly split into two equal parts and then the
above procedure was repeated. The results (Supplementary Table S1
a,b) show that the protocol is not sensitive to the selection of the
training set.

3.4 Finding the optimal length of the segment ‘x’
The results above were obtained using a fixed length of three for the
segment ‘x’. However, different lengths may generate better results.
To test the effect of the segment ‘x’ length on the performance of our
method, the calculations, including finding the optimal parameters
‘a’ and ‘b’ were repeated with x=3, 5, 7, 9, 11 and 13. The results
are shown in Supplementary Figure S1.

The results shown in Supplementary Figure S1 and Table 1
indicate that s��G calculated with different length of segment ‘x’
are practically the same. The calculations were repeated against the
test dataset and entire dataset and the corresponding parameters are
provided in Table 1 as well. One can see that the slopes of the fitting
lines, the RMSDs and R values are practically unchanged as ‘x’ takes
different lengths. More details are provided in the Supplementary
Table S4: Supplementary Table S4 (a) for the Training Database,
Supplementary Table S4 (b) for the Blind Test and Supplementary
Table S4 (c) for the Entire Dataset.

The parameters shown in Table 1 indicate the similarity of
s��Gcal calculated with different length of segment ‘x’. However, a
slight tendency is observed such that with the increase of the segment
length, the RMSD tend to increase and the correlation coefficient to
decrease. The optimal value is x=3.

3.5 Comparison with other existing methods
To the best of our knowledge, currently three methods dominate the
field of predicting folding free energy change upon single point
mutations: Eris (Ding and Dokholyan, 2006; Yin et al., 2007a,
2007b), FoldX (Guerois et al., 2002) and I-Mutant 2.0 (Capriotti
et al., 2005b). It is desirable to compare our method against these
leading solutions in order to assess the performance. Below we
outline the results obtained with each of the above-mentioned
solutions on our dataset.

Before presenting the results, it should be pointed out that
the predictions with Eris were done with fixed backbone without
pre-relaxation. Eris failed to generate results involving Cys, and

Table 1. Comparison of linear regression of ��Gexp versus s��Gcal

with the s��Gcal performed with different length of residue segments for
Training Database/Blind Test/Entire Dataset

Segments Slope R value RMSD

3 seg. 1.003/1.087/1.038 0.28/0.34/0.3 1.79/1.76/1.78
5 seg. 1.017/1.128/1.066 0.25/0.32/0.28 1.80/1.77/1.79
7 seg. 0.999/1.168/1.073 0.23/0.3/0.26 1.82/1.78/1.8
9 seg. 0.995/1.114/1.043 0.23/0.28/0.25 1.82/1.79/1.8
11 seg. 0.999/1.084/1.033 0.22/0.26/0.24 1.82/1.8/1.81
13 seg. 1.001/0.965/0.980 0.23/0.25/0.24 1.82/1.8/1.81

Table 2. Comparison of linear regression of ��Gexp versus ��Gcal with
the ��Gcal performed with different methods

Slope R value RMSD Mean of SD
��Gcal

sMMGB T 1.003 0.28 1.79 −1.2 0.51
B 1.087 0.34 1.76 −1.17 0.58
E 1.038 0.3 1.78 −1.19 0.54

Eris T 0.554 0.29 3.92 −1.26 1.87
B 1.082 0.48 3.83 −1.38 1.93
E 0.754 0.36 3.89 −1.3 1.89

FoldX T 0.458 0.17 5.29 −1.2 1.87
B 0.683 0.34 3.57 −1.6 3.73
E 0.544 0.22 4.67 −1.23 1.86

I-Mutant T 0.518 0.32 1.86 −1.24 1.17
B 0.783 0.52 1.65 −1.00 1.24
E 0.624 0.4 1.78 −1.14 1.2

T: for the Training Database (662 mutants); B: for the Blind Test (447 mutants); E: for
the Entire Dataset (1109 mutants).

therefore these cases were omitted from our analysis. With respect
to FoldX and I-Mutant 2.0 generated predictions, we used the
default parameters for the temperature and pH, namely T = 298K
and pH = 7.0. The details of calculated results with Eris, FoldX and
I-Mutant 2.0 are shown in Supplementary Table S5: Supplementary
Table S5 (a) for the Training Database, Supplementary Table S5
(b) for the Blind Test and Supplementary Table S5 (c) for the
Entire Dataset. The linear regressions of ��Gexp versus ��Gcal
were performed and the comparison of these three methods is
shown in Table 2 alone with our method. The receiver-operating
characteristic curve was also calculated following the methodology
described by Khan and Vihinen (2010) and results are shown in
Supplementary Figure S2 and Table S6. Comparing with results
reported in Khan and Vihinen (2010), one can see that sMMGB
slightly underperforms at very low false positives (FPR < 0.1), but
outperforms servers listed in the same reference at FPR >0.1.

Table 2 provides interesting trends of the performance of the
methods. With respect to the mean value, all methods predict mean
��G of similar magnitude. The mean value is negative indicating
that all methods, including ours, tend to overpredict the destabilizing
effect of mutations. In terms of the correlation coefficient, the best
performer is the I-Mutant; however, all four methods result in poor
correlation coefficient. The RMSD is an important characteristic of
the predictions and our method together with I-Mutant outperforms
the others. Similarly, the SD of our protocol is much smaller than
other methods, including I-Mutant, indicating that our predictions
are less scattered. Lastly, the slope of the fitting line is the best for our
method, almost equal to one, whereas all other methods give much
worst coefficients. Similar observations were made by excluding the
data points used to train I-Mutant (Supplementary Table S7).

4 DISCUSSION

4.1 Analysis of scaled calculated s��Gcal

Summarizing the results of sMMGB predictions benchmarked
against various datasets (Table 3), one can see that there is not
much difference of the corresponding RMSDs, mean and SD of
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Table 3. The results of linear regression for training database, blind test and
the entire dataset

Database Slope R value RMSD Mean of SD
��Gcal

Training database 1.0026 0.28 1.79 −1.2 0.51
Blind test 1.0868 0.34 1.76 −1.17 0.58
Entire dataset 1.0382 0.3 1.78 −1.19 0.54

the corresponding distributions. The correlation coefficient in all
cases is not impressive, but has a slight tendency to get better in
the blind test, compared with the training dataset. However, the
effect is small. The low correlation coefficient is due to relatively
small fraction of outliers, which we choose not to remove from
our analysis. In summary, the results indicate that the choice of the
optimal value for the adjustable parameters ‘a’ and ‘b’ is not dataset
specific and results in performance almost identical across different
datasets. In addition, the optimal value for the ‘b’ parameter is small,
about a unity, indicating that there is no significant constant shift in
our predictions. The fact that the optimal adjustable parameter ‘a’
is close to 1/10 reflects the trend that standard MMGB approach
overpredicts the energy changes by factor of 10.

4.2 Analysis of the performance of the sMMGB
approach with respect to assumptions taken

The model of unfolded state in our approach assumes that the ‘x’
residue segments have the same conformation in folded and in
unfolded states. Obviously, this is a simplification that does not
necessary should hold for all cases. In addition, the probability
of having different conformations in folded and in unfolded states
should increase with the length of the segment ‘x’. In another words,
large ‘x’ should make this assumption less valid. Indeed, Table
1 shows that the results correspond to such an expectation. With
increase of the residue segment ‘x’ length, the correlation coefficient
decreases from 0.34 (x=3) to 0.25 (x=13). Therefore, the optimal
length is recommended to be x=3.

Another hypothesis which the sMMGB implies is to assume the
entropy of the WT protein is very similar to that of the mutant.
Thus, the entropy terms would cancel out in Equation (2). While
it is beyond the scope of the present work to investigate the role
of conformational ensembles of folded and unfolded states on the
output of the predicted s��Gcal on such large set of mutations, here
will present an analysis based on the side chain entropy estimation
using side chain length as measure of the side chain entropy. Ala and
Gly are two amino acids having much shorter/smaller side chains
comparing to rest of the amino acids. Assuming that the entropy
of an amino acid can be estimated from the degree of freedom
of its side chain, the Ala and Gly residues should have much less
entropy than the other types amino acids and substitution to another
type of residues should involve change of the entropy. To probe
the effect, we select mutations involving Ala/Gly from the entire
dataset (termed ‘Entropy test data set’), and then use Equation (2)
and the empirical parameters ‘a = 0.093’ and ‘b =−1.088’ to
obtain s��Gcal. The data are shown in Figure 3 together with
the parameters of the linear fit. Additional parameters are shown in
Supplementary Table S8. The slope is 1.0531 and the correlation R is
0.35. The SD is 0.56 kcal/mol and RMSD is obtained as 1.6 kcal/mol.

Fig. 3. Linear regression of ��Gexp versus s��Gcal—for the entropy test
dataset.

Comparing these values with previously obtained (Fig. 2), we see
that they are very similar, i.e. the slope is quite close to unity, and
RMSD is quite small. The absence of significant difference between
cases involving short and long side chains indicates that side chain
entropy is not a dominant factor for the sMMGB analysis.

4.3 Effect of different force field parameters
The sMMGB predictions were made with three force field
parameters: Amber98 (Case et al., 2005), Charmm27 (Brooks et al.,
2009) and Oplsaa (Jorgensen and Tiradorives, 1988), to minimize
the 3D structures of both WT proteins and the mutants and to obtain
the corresponding molecular mechanics and solvation energies. The
resulting energy changes per mutation were found to differ among
the force fields, which confirm our previous observation made for
protein–protein interactions (Talley et al., 2008) and protein stability
(Zhang et al., 2010, 2011). In some exceptional cases, the predicted
s��Gcal was found to vary >30 kcal/mol across different force
fields. For global comparison, Supplementary Figure S3 shows
s��Gcal calculated with different force field parameters and the
trend of prediction is quite similar, but there are some outliers
which are not associated with the same mutation for each force field
parameters. The fact that the calculations with different force field
parameters started with identical 3D structures (of the WT and the
mutant), but generated different predictions indicate how sensitive
the results are with respect to the choice of the force field [detailed
results are provided in Supplementary Table S9: Supplementary
Table S9 (a) for the Training Database, Supplementary Table
S9 (b) for the Blind Test and Supplementary Table S9 (c) for
the Entire Dataset]. Overall, the best results in terms of RMSD
(between ��Gexp versus calculated ��Gcal) were obtained with
AMBER force field parameters (RMSD = 7.97 kcal/mol), while the
worst performance was obtained with OPLS force field parameters
resulting in RMSD = 8.18 kcal/mol. Such a sensitivity of the
results with the respect to the force field parameters was our
motivation for averaging the results across different force fields.
Indeed, the averaged ��Gcal perform much better, resulting in
RMSD = 5.53 kcal/mol. These RMSDs are taken without scaling
of ��G, i.e. prior to performing the optimization. After scaling,
the corresponding RMSD were RMSDAMBER =1.80 kcal/mol,
RMSDOPLS =1.81 kcal/mol and RMSDAVE =1.78 kcal/mol.

During the time the article was under review, new experimental
data was added to ProTherm database and we used these new entries
to perform an additional test the results of which are presented in
Supplementary Tables S10 and S11.
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Additional test was done using an optimized linear combination
of the results obtained with each force field parameters, but the
performance was found to be worse (Supplementary Table S12 a, b).

Funding: This work was supported by funds from National Institutes
of Health, grant number (1R01GM093937).

Conflict of Interest: none declared.

REFERENCES
Acuner Ozbabacan,S.E. et al. (2010) Conformational ensembles, signal transduction

and residue hot spots: application to drug discovery. Curr. Opin. Drug Discov. Dev.,
13, 527–537.

Alexov,E. (2004) Numerical calculations of the pH of maximal protein stability.
The effect of the sequence composition and three-dimensional structure. Eur. J.
Biochem., 271, 173–185.

Bash,P.A. et al. (1987) Free energy calculations by computer simulation. Science, 236,
564–568.

Bava,K.A. et al. (2004) ProTherm, version 4.0: thermodynamic database for proteins
and mutants. Nucleic Acids Res., 32, D120–D121.

Benedix,A. et al. (2009) Predicting free energy changes using structural ensembles.
Nat. Methods, 6, 3–4.

BenNaim,A. (1997) Statistical potentials extracted from protein structures: Are these
meaningful potentials? J. Chem. Phys., 107, 3698–3706.

Berman,H.M. et al. (2000) The Protein Data Bank. Nucleic Acids Res., 28, 235–242.
Beveridge,D.L. and DiCapua,F.M. (1989) Free energy via molecular simulation:

applications to chemical and biomolecular systems. Annu. Rev. Biophys. Biophys.
Chem., 18, 431–492.

Bordner,A.J. and Abagyan,R.A. (2004) Large-scale prediction of protein geometry and
stability changes for arbitrary single point mutations. Proteins, 57, 400–413.

Brooks,B.R. et al. (2009) CHARMM: the biomolecular simulation program. J. Comput.
Chem., 30, 1545–1614.

Buckle,A.M. et al. (1993) Crystal structural analysis of mutations in the hydrophobic
cores of barnase. J. Mol. Biol., 234, 847–860.

Carpriotti,E. et al. (2004) A neural network-based method for predicting protein stability
changes upon single point mutations. In Proceedings of the 2004 Conference on
Intelligent Systems for Molecular Biology (ISMB04). Oxford University Press.

Capriotti,E. et al. (2004) A neural-network-based method for predicting protein
stability changes upon single point mutations, Bioinformatics, 20 (Suppl. 1),
i63–i68.

Capriotti,E. et al. (2005b) I-Mutant2.0: predicting stability changes upon mutation from
the protein sequence or structure. Nucleic Acids Res., 33, W306–W310.

Casadio,R. et al. (1995) Predicting free energy contributions to the conformational
stability of folded proteins from the residue sequence with radial basis function
networks. Proc. Int. Conf. Intell. Syst. Mol. Biol., 3, 81–88.

Case,D.A. et al. (2005) The Amber biomolecular simulation programs. J. Comput.
Chem., 26, 1668–1688.

Chen,H. et al. (2001) Missense polymorphism in the human carboxypeptidase E gene
alters enzymatic activity. Hum. Mutat., 18, 120–131.

Chen,Z.Y. et al. (2002) Gut-enriched Kruppel-like factor represses ornithine
decarboxylase gene expression and functions as checkpoint regulator in colonic
cancer cells. J. Biol. Chem., 277, 46831–46839.

Ding,F. and Dokholyan,N.V. (2006) Emergence of protein fold families through rational
design. Plos Comput. Biol., 2, 725–733.

Dixit,A. et al. (2009) Computational modeling of structurally conserved cancer
mutations in the RET and MET kinases: the impact on protein structure, dynamics,
and stability. Biophys. J., 96, 858–874.

Domingues,H. et al. (2000) Improving the refolding yield of interleukin-4 through the
optimization of local interactions. J. Biotechnol., 84, 217–230.

Duan,Y. and Kollman,P.A. (1998) Pathways to a protein folding intermediate
observed in a 1-microsecond simulation in aqueous solution. Science, 282,
740–744.

Elcock,A.H. and McCammon,J.A. (1998) Electrostatic contributions to the stability of
halophilic proteins. J. Mol. Biol., 280, 731–748.

Eriksson,A.E. et al. (1992) Response of a protein structure to cavity-creating mutations
and its relation to the hydrophobic effect. Science, 255, 178–183.

Frenz,C.M. (2005) Neural network-based prediction of mutation-induced protein
stability changes in Staphylococcal nuclease at 20 residue positions. Proteins, 59,
147–151.

Gilis,D. and Rooman,M. (1996) Stability changes upon mutation of solvent-accessible
residues in proteins evaluated by database-derived potentials. J. Mol. Biol., 257,
1112–1126.

Gilis,D. and Rooman,M. (1997) Predicting protein stability changes upon mutation
using database-derived potentials: solvent accessibility determines the importance
of local versus non-local interactions along the sequence. J. Mol. Biol., 272,
276–290.

Gilis,D. and Rooman,M. (1999) Prediction of stability changes upon single-site
mutations using database-derived potentials. Theor. Chem. Acc., 101, 46–50.

Gilis,D. and Rooman,M. (2000) PoPMuSiC, an algorithm for predicting protein mutant
stability changes: application to prion proteins. Protein Eng., 13, 849–856.

Gromiha,M.M. (2007) Prediction of protein stability upon point mutations. Biochem.
Soc. Trans., 35, 1569–1573.

Gromiha,M.M. and Sarai,A. (2010) Thermodynamic database for proteins: features and
applications. Methods Mol. Biol., 609, 97–112.

Guerois,R. et al. (2002) Predicting changes in the stability of proteins and protein
complexes: a study of more than 1000 mutations. J. Mol. Biol., 320, 369–387.

Hoppe,C. and Schomburg,D. (2005) Prediction of protein thermostability with a
direction- and distance-dependent knowledge-based potential. Protein Sci., 14,
2682–2692.

Hou,T. et al. (2011) Assessing the performance of the molecular mechanics/Poisson
Boltzmann surface area and molecular mechanics/generalized Born surface area
methods. II. The accuracy of ranking poses generated from docking. J. Comput.
Chem., 32, 866–877.

Hunt,D.M. et al. (2008) Single nucleotide polymorphisms that cause structural changes
in the cyclic AMP receptor protein transcriptional regulator of the tuberculosis
vaccine strain Mycobacterium bovis BCG alter global gene expression without
attenuating growth. Infect. Immun., 76, 2227–2234.

Hynes,T.R. and Fox,R.O. (1991) The crystal structure of staphylococcal nuclease refined
at 1.7 A resolution. Proteins, 10, 92–105.

Joachims,T. (2002) Learning to classify text using support vector machines.
Dissertation. Springer/Kluwer, London.

Jorgensen,W.L. and Tiradorives,J. (1988) The Opls potential functions for proteins -
energy minimizations for crystals of cyclic-peptides and crambin. J. Am. Chem.
Soc., 110, 1657–1666.

Karchin,R. et al. (2005) LS-SNP: large-scale annotation of coding non-synonymous
SNPs based on multiple information sources. Bioinformatics, 21, 2814–2820.

Khan,S. and Vihinen,M. (2010) Performance of protein stability predictors. Hum.
Mutat., 31, 675–684.

Khare,S.D. et al. (2006) FALS mutations in Cu, Zn superoxide dismutase destabilize
the dimer and increase dimer dissociation propensity: a large-scale thermodynamic
analysis. Amyloid, 13, 226–235.

Kollman,P.A. et al. (2000) Calculating structures and free energies of complex
molecules: combining molecular mechanics and continuum models. Acc. Chem.
Res., 33, 889–897.

Kouranov,A. et al. (2006) The RCSB PDB information portal for structural genomics.
Nucleic Acids Res., 34, D302–D305.

Kuhlman,B. and Baker,D. (2000) Native protein sequences are close to optimal for their
structures. Proc. Natl Acad. Sci. USA, 97, 10383–10388.

Kundrotas,P.J. and Karshikoff,A. (2002a) Model for calculation of electrostatic
interactions in unfolded proteins. Phys. Rev. E Stat. Nonlin. Soft Matter Phys.,
65, 011901.

Kundrotas,P.J. and Karshikoff,A. (2002b) Modeling of denatured state for calculation
of the electrostatic contribution to protein stability. Protein Sci., 11, 1681–1686.

Lee,C. (1995) Testing homology modeling on mutant proteins: predicting structural and
thermodynamic effects in the Ala98–>Val mutants of T4 lysozyme. Fold Des., 1,
1–12.

Lee,C. and Levitt,M. (1991) Accurate prediction of the stability and activity effects of
site-directed mutagenesis on a protein core. Nature, 352, 448–451.

Ma,B. and Nussinov,R. (2003) Molecular dynamics simulations of the unfolding of
beta(2)-microglobulin and its variants. Protein Eng., 16, 561–575.

Masso,M. and Vaisman,II (2008) Accurate prediction of stability changes in protein
mutants by combining machine learning with structure based computational
mutagenesis. Bioinformatics, 24, 2002–2009.

Miyazawa,S. and Jernigan,R.L. (1994) Protein stability for single substitution mutants
and the extent of local compactness in the denatured state. Protein Eng., 7,
1209–1220.

Moreira,I.S. et al. (2007) Hot spots–a review of the protein-protein interface determinant
amino-acid residues. Proteins, 68, 803–812.

Munoz,V. and Serrano,L. (1997) Development of the multiple sequence approximation
within the AGADIR model of alpha-helix formation: comparison with Zimm-Bragg
and Lifson-Roig formalisms. Biopolymers, 41, 495–509.

670



[14:15 25/2/2012 Bioinformatics-bts005.tex] Page: 671 664–671

Protein folding free energy

Nar,H. et al. (1991) Crystal structure analysis of oxidized Pseudomonas aeruginosa
azurin at pH 5.5 and pH 9.0. A pH-induced conformational transition involves a
peptide bond flip. J. Mol. Biol., 221, 765–772.

Ofiteru,A. et al. (2007) Structural and functional consequences of single amino acid
substitutions in the pyrimidine base binding pocket of Escherichia coli CMP kinase.
FEBS J., 274, 3363–3373.

Ota,M. et al. (2001) Knowledge-based potential defined for a rotamer library to design
protein sequences. Protein Eng., 14, 557–564.

Pitera,J.W. and Kollman,P.A. (2000) Exhaustive mutagenesis in silico: multicoordinate
free energy calculations on proteins and peptides. Proteins, 41, 385–397.

Ponder,J.W. (1999) TINKER-Software Tools for Molecular Design, 3.7. Washington
University, St Luis.

Prevost,M. et al. (1991) Contribution of the hydrophobic effect to protein stability:
analysis based on simulations of the Ile-96—Ala mutation in barnase. Proc. Natl
Acad. Sci. USA, 88, 10880–10884.

Quiocho,F.A. et al. (1997) Extensive features of tight oligosaccharide binding revealed
in high-resolution structures of the maltodextrin transport/chemosensory receptor.
Structure, 5, 997–1015.

Ramensky,V. et al. (2002) Human non-synonymous SNPs: server and survey. Nucleic
Acids Res., 30, 3894–3900.

Schymkowitz,J. et al. (2005) The FoldX web server: an online force field. Nucleic Acids
Res., 33, W382–W388.

Shastry,B.S. (2009) SNPs: impact on gene function and phenotype. Methods Mol. Biol.,
578, 3–22.

Still,W.C. et al. (1990) Semianalytical treatment of solvation for molecular mechanics
and dynamics. J. Am.. Chem.. Soc., 112, 6127–6129.

Takano,K. et al. (1999) Experimental verification of the ‘stability profile of
mutant protein’ (SPMP) data using mutant human lysozymes. Protein Eng., 12,
663–672.

Talley,K. et al. (2008) On the electrostatic component of protein-protein binding free
energy. PMC Biophys., 1, 2.

Teng,S. et al. (2009) Modeling effects of human single nucleotide polymorphisms on
protein-protein interactions. Biophys. J., 96, 2178–2188.

Teng,S. et al. (2008) Approaches and resources for prediction of the effects of non-
synonymous single nucleotide polymorphism on protein function and interactions.
Curr. Pharm. Biotechnol., 9, 123–133.

Thomas,P.D. and Dill,K.A. (1996) Statistical potentials extracted from protein
structures: how accurate are they? J. Mol. Biol., 257, 457–469.

Tidor,B. and Karplus,M. (1991) Simulation analysis of the stability mutant R96H of T4
lysozyme. Biochemistry, 30, 3217–3228.

Topham,C.M. et al. (1997) Prediction of the stability of protein mutants based on
structural environment-dependent amino acid substitution and propensity tables.
Protein Eng., 10, 7–21.

Villegas,V. et al. (1996) Stabilization of proteins by rational design of alpha-helix
stability using helix/coil transition theory. Fold. Des., 1, 29–34.

Vorobjev,Y.N. and Hermans,J. (1999) ES/IS: estimation of conformational free energy
by combining dynamics simulations with explicit solvent with an implicit solvent
continuum model. Biophys. Chem., 78, 195–205.

Wang,Z. and Moult,J. (2001) SNPs, protein structure, and disease. Hum. Mutat., 17,
263–270.

Wang,Z. and Moult,J. (2003) Three-dimensional structural location and molecular
functional effects of missense SNPs in the T cell receptor Vbeta domain. Proteins,
53, 748–757.

Witham,S. et al. (2011) A missense mutation in CLIC2 associated with intellectual
disability is predicted by in silico modeling to affect protein stability and dynamics.
Proteins. 79, 2444–2454.

Xiang,Z. and Honig,B. (2001) Extending the accuracy limits of prediction for side-chain
conformations. J. Mol. Biol., 311, 421–430.

Xiong,X.M. (1986) Study of isochronal annealing behavior of neutron-irradiated
hydrogen Fz silicon by positron-annihilation. Chinese Phys., 6, 763–768.

Xu,J. et al. (1998) The response of T4 lysozyme to large-to-small substitutions within
the core and its relation to the hydrophobic effect. Protein Sci., 7, 158–177.

Yan,C. et al. (2010) Temperature-induced unfolding of epidermal growth factor (EGF):
insight from molecular dynamics simulation. J. Mol. Graph. Model., 29, 2–12.

Ye,Y. et al. (2006) Modeling and analyzing three-dimensional structures of human
disease proteins. Pac. Symp. Biocomput., 439–450.

Yin,S. et al. (2007a) Eris: an automated estimator of protein stability. Nat. Methods, 4,
466–467.

Yin,S. et al. (2007b) Modeling backbone flexibility improves protein stability
estimation. Structure, 15, 1567–1576.

Yue,P. and Moult,J. (2006) Identification and analysis of deleterious human SNPs.
J. Mol. Biol., 356, 1263–1274.

Yue,P. et al. (2006) SNPs3D: candidate gene and SNP selection for association studies.
BMC Bioinformatics, 7, 166.

Zhang,Z. et al. (2010) Computational analysis of missense mutations causing Snyder-
Robinson syndrome. Hum. Mutat., 31, 1043–1049.

Zhang,Z. et al. (2011) In silico and in vitro investigations of the mutability of disease-
causing missense mutation sites in spermine synthase. PLoS One, 6, e20373.

Zhou,H.X. (2002) A Gaussian-chain model for treating residual charge-charge
interactions in the unfolded state of proteins. Proc. Natl Acad. Sci. USA, 99,
3569–3574.

Zhou,H.X. (2003) Direct test of the Gaussian-chain model for treating residual charge-
charge interactions in the unfolded state of proteins. J. Am. Chem. Soc., 125,
2060–2061.

Zhou,H. and Zhou,Y. (2002) Distance-scaled, finite ideal-gas reference state improves
structure-derived potentials of mean force for structure selection and stability
prediction. Protein Sci., 11, 2714–2726.

Zhou,M.I. et al. (2004) Tumor suppressor von Hippel-Lindau (VHL) stabilization of
Jade-1 protein occurs through plant homeodomains and is VHL mutation dependent.
Cancer Res., 64, 1278–1286.

671


	Predicting folding free energy changes upon single point mutations
	Z.Zhang, L.Wang, Y.Gao, J.Zhang, M.Zhenirovskyy and E.Alexov
	1 Introduction
	2 Materials and methods
	3 Results
	4 Discussion



