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ABSTRACT

Motivation: Bacteriophages have two distinct lifestyles: virulent and
temperate. The virulent lifestyle has many implications for phage
therapy, genomics and microbiology. Determining which lifestyle a
newly sequenced phage falls into is currently determined using
standard culturing techniques. Such laboratory work is not only
costly and time consuming, but also cannot be used on phage
genomes constructed from environmental sequencing. Therefore,
a computational method that utilizes the sequence data of phage
genomes is needed.

Results: Phage Classification Tool Set (PHACTS) utilizes a novel
similarity algorithm and a supervised Random Forest classifier to
make a prediction whether the lifestyle of a phage, described by its
proteome, is virulent or temperate. The similarity algorithm creates
a training set from phages with known lifestyles and along with
the lifestyle annotation, trains a Random Forest to classify the
lifestyle of a phage. PHACTS predictions are shown to have a 99%
precision rate.

Availability and implementation: PHACTS was implemented in
the PERL programming language and utilizes the FASTA program
(Pearson and Lipman, 1988) and the R programming language library
‘Random Forest’ (Liaw and Weiner, 2010). The PHACTS software is
open source and is available as downloadable stand-alone version
or can be accessed online as a user-friendly web interface. The
source code, help files and online version are available at http://www.
phantome.org/PHACTS/.

Contact: katelyn@rohan.sdsu.edu; redwards@sciences.sdsu.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION

Viruses that infect bacteria are called bacteriophages or phages. It is
estimated that there are 1030 bacterial cells in biosphere (Whitman
et al., 1998). Given that typical ratios of bacteria to phage are on
the order of 1:10 (Wommack and Colwell, 2000), it is estimated
that there exist 1031 phage particles on the planet. Viruses thus
are the most abundant biological entities on the planet. Phages are
ubiquitous and can be found in any environment where their bacterial
hosts are present. Phages are found in high numbers in terrestrial
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environments such as soil, and in aquatic environments such as lakes
and seawater (Srinivasiah er al., 2008). Recent estimates suggest
that there exist globally ~100 million phage species (Rohwer,
2003); however, only a small fraction of phages have so far been
characterized.

When a phage infects a bacterial cell, the phage enters into
one of two distinct lifestyles: virulent or temperate. During a
virulent lifestyle a phage infects a bacteria; its genome is replicated
many times; and the newly created copies are released into the
surrounding environment through lysis, extrusion or budding. In
contrast during a temperate lifestyle, a phage infects a bacteria and
either integrates its DNA into the bacterial genome or re-circularizes
its DNA into a stable plasmid. The temperate phage will live in this
semi-stable lifestyle as a prophage as the host bacteria continues
to grow and divide. The prophage will be carried through future
bacterial cell divisions until appropriate environmental conditions
cause the temperate phage to enter into a virulent lifestyle and
release itself from the host bacterium. This switch into a virulent
lifestyle is referred to as induction and is generally caused by host
cell damage (Witkin, 1976) or environmental stressors (Clarke,
1998; Clark et al., 1986). Not only does the characterization of
phage lifestyles contribute to the understanding of phage population
dynamics, genomics and microbiology; but also the virulent lifestyle
has applications toward phage therapy and biocontrol (Housby and
Mann, 2009).

Previously, the lifestyle of a phage was identified through
culturing and isolation in the lab. This is not only time consuming
but also costly. With the advent of shotgun sequencing, large
numbers of phage are being sequenced at an increasing rate. As
the ability to sequence new phages faster than culturing can identify
the lifestyle, there is a need to computationally annotate genomic
data and also to make predictions about the lifestyle. In addition,
because many of these newly sequenced genomes are derived from
entire environmental community sequencing methods, it may not be
possible to isolate the phages for culturing.

Computationally classifying phages based on their genomes is
difficult due to the highly mosaic organization of their genomes
(Hendrix et al., 1999). Unlike bacteria, which have 16S rRNA and
various other conserved genes that can be used for taxonomy and
phylogeny, phages have no universally present gene that can be
used for analysis (Rohwer and Edwards, 2002). The first attempt
at using genomic data to classify phage by comparing structural
proteins does not work well across all clades of phages (Proux
etal.,2002). An alternative methodology was created by Rohwer and
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Edwards, and was used to create the Phage Proteomic Tree (Rohwer
and Edwards, 2002). To deal with the mosaicism of phages, Lima-
Mendez et al. (2008) implemented a framework for a reticulate
classification based on gene content, by building a weighted
graph where nodes represent phages and edges represent shared
gene/protein similarities. Recently, this reticulate classification was
extended to shared evolutionarily conserved modules consisting of
groups of proteins that have a similar phylogenetic profile (Lima-
Mendez et al., 2011). Certain modules were found to be associated
with either temperate or virulent phages, and it was suggested that
a refining of the methodology might be used for an automated
classification of phage lifestyle. An alternative method uses the
tetranucleotide frequency differences between a phage and host
to classify the lifestyle of the phage (Deschavanne et al., 2010);
however, this method is severely limited by the necessity to have a
phages’ host fully sequenced.

In this work, a Phage Classification Tool Set (PHACTS) was
developed to classify whether a phage’s preferred lifestyle is virulent
or temperate. PHACTS utilizes a novel similarity algorithm and a
supervised Random Forest classifier to make a prediction whether
the lifestyle of a phage is virulent or temperate. The similarity
algorithm creates a training set from phages with known lifestyles
that, along with the lifestyle annotation, is used to train a Random
Forest to classify the lifestyle of a phage. To test the accuracy of
PHACTS, each phage with an annotated lifestyle was removed from
the database one at a time and treated as a single phage with an
unknown lifestyle. The lifestyle of the phage was predicted using
PHACTS and the predicted lifestyle was then compared with the
actual lifestyle.

2 METHODS

2.1 Implementation

2.1.1 Lifestyle database At the time of this work, the PHANTOME
database of phages with complete genomes contained 654 phages
(www.phantome.org). The lifestyles for 227 of these phages were manually
curated by hand from various literature sources. In this subset of 227 phages
with a known lifestyle, there were 148 temperate phages and 79 virulent
phages, and thus temperate phages predominated the database 2:1. These
phages with a known lifestyle were used to create a local database for use
during PHACTS classifications.

2.1.2 Query proteins A set of query protein sequences Q={Pi, Py, ...,
Py}, is created by randomly selecting M proteins, where M is equal to the
user-specified number of proteins to use for creating the training set. From
each class, M/C proteins are selected at random that belong to phages of
that class, where C is equal to the number of classes in the training set. For
our experiments, it was empirically found that M =600 gave the best results.
When M was decreased the accuracy went down, and when M was increased
the runtimes went up without a corresponding increase in accuracy.

2.1.3 Training sets To create the training set for the Random Forest
classifier, a set of N similarity vectors is assembled, where N is equal to
the number of phages to use as training cases. From each class, N/C phage
genomes are selected at random, without replacement. From these N phages
the list L={G}, G, ..., Gy} is created. The class with the fewest number
of representative samples limits how many training cases can be used. For
our purposes, it was empirically found that N =100 gave the best results.
Having 50 phages per class was adequate to provide accurate results as well
as allowing for a diverse random sampling. For each of these N genomes, a
similarity vector X is assembled. The proteins of a phage are aligned against

every protein in Q using the FASTA program. The percent identity score
for each protein in that phage’s proteome to the protein P is calculated as
a percent identity corresponding to the highest scoring pair S. This percent
identity score S is inserted into the similarity vector X, as shown below.

X1 =1[81,1,81,25--»81,m]

Xo=[82,1,822,...,52,m]

XN =I[SN1,5N2,---sSN.m]

The manually curated lifestyles of the phages are retrieved from the locally
stored database and are used as the classification factors.

2.1.4 Testing set The proteins of the input phage proteome are aligned
against each protein in Q using the FASTA35 program. The percent identity
score for each protein in the input phage’s proteome to the protein P is
calculated. The percent identity corresponding to the highest scoring pair is
inserted into a vector Xy 1. A single similarity vector is assembled for the
input phage’s proteome as shown below.

XN+1=[SN+1,1,SN+1,25---»SN+1.m]

This vector becomes the testing set, and the Random Forest ensemble
classifier is used to predict the lifestyle.

2.1.5 Random Forest To classify the testing set, PHACTS utilizes the
Random Forest algorithm. In the Random Forest classifier, a set of decision
trees is created. For each tree, bootstrapping is performed by selecting N
cases with replacement from the training set of N cases. Each tree is grown
by randomly selecting m number of variables at each node, where m is
equal to the square root of the total number of variables. The best split at
that node is calculated from these m variables, and the tree is grown to the
largest extent possible. Each tree predicts a lifestyle and the final prediction
is a majority-voting rule for the trees in the Random Forest. Random Forest
also returns information on the voting as a percentage that corresponds to
the number of trees that predicted a particular lifestyle divided by the total
number of trees. Since the Random Forest algorithm does not overfit the data,
large numbers of trees can be created. For our predictions, 1001 trees were
created to provide enough coverage of the variable training set. In a Random
Forest classification, a value in the form of a probability is output for each
lifestyle. This value corresponds to the fraction of trees in the Random Forest
that predict that particular lifestyle, thus the values vary from O to 1. The
lifestyle with the higher probability is considered to be the predicted lifestyle
for that phage.

2.1.6 Replicate iterations The resulting prediction from a single Random
Forest calculation is based on N known phages, which are randomly selected
as training cases, and M proteins, which are randomly chosen to create the
Similarity Vectors. Because of this random selection of training data, an
unknown phage might be predicted as a different lifestyle in each subsequent
Random Forest classification. To better account for this variability in
predictions, 10 replicates are performed with different training phages and a
different set of Query Proteins. Ten replicates are chosen to balance runtime
and accuracy. Predictions based on five replicates were less accurate, whereas
predictions based on 20 replicates caused runtimes to greatly increase
without a concomitant increase in accuracy. The 10 replicate predictions
are averaged, and the lifestyle with the higher average is considered the
predicted lifestyle of the phage. For some phages, the replicate predictions
of which lifestyle they prefer might vary, with some of the replicate
predictions voting for one lifestyle and some replicate predictions voting
for the other lifestyle. The distribution of these predictions was calculated to
be a normal distribution. The final probability score is considered ‘confident’
if a consensus of the 10 replicate predictions is for one particular lifestyle.
To determine whether a prediction was confident, the mean and the SD of the
10 replicate predictions is calculated. The prediction is deemed ‘confident’
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if the averaged probability score of the predicted lifestyle is 2 SD away from
the averaged probability score of the other lifestyle.

2.1.7 Initialization Not all proteins are useful in identifying the class
of a phage. To increase the accuracy of predictions, an importance cutoff
value was incorporated to include only proteins that are important toward
predicting a phage’s class into the creation of the set of Query Proteins Q.
A similarity vector is created for each temperate and virulent phage. This
set of similarity vectors is used by the Random Forest algorithm to calculate
the Gini importance values (also known as the Gini-coefficient) for all the
proteins in the database that belong to the phage with an annotated lifestyle.
The Gini importance value is a measure of how important a protein is toward
classifying a phage’s lifestyle (Gini, 1912). A Gini value of zero corresponds
to perfect equality (unimportant) and a value of one corresponds to perfect
inequality (important). This step is only performed when any new phages,
and thus new proteins, are added to the database. This importance value for
a protein is used during runtime so that only the most important proteins
are selected to create the similarity vectors. To empirically determine which
proteins to include into PHACTS calculations, the importance cutoff value
was set to various percentages at and above the mean, and the 227 phages
were classified using these various importance value cutoff values. It was
found that an importance cutoff value of twice the mean of the importance
values, gave the best results for our dataset, and by excluding less important
proteins both the speed and the accuracy increased. To speed up runtime, the
percent identity scores of every protein to every other protein are calculated at
initialization by the FASTA program, and results are stored in a data structure
for optimized retrieval.

2.2 Partial genomes

Datasets were created that consisted of partial proteomes of various sizes.
The first dataset contained 1000 partial proteomes that consisted of a single
protein. Six more datasets were created by increasing the size of the partial
proteomes in increments of five proteins until the final partial proteome
dataset consisted of 1000 partial proteomes of 30 proteins. Testing partial
proteomes > 30 proteins causes a bias, since phages with small genomes
become excluded. Each proteome was created by randomly choosing with
replacement a phage with a known lifestyle and then randomly selecting a
set of contiguous proteins in that phage. The partial proteomes were then
used by PHACTS to predict the lifestyle of the phage. Accuracy scores were
calculated by dividing the number of confident correct predictions by the
total number of confident predictions.

3 RESULTS

3.1 Accuracy of the lifestyle predictions of PHACTS

To test the efficacy of PHACTS toward classifying a phage’s
lifestyle, each phage with an annotated lifestyle was sequentially
removed from the known database, along with any phages that share
>90% of their proteins with >90% percent identity, and PHACTS
was used to predict its lifestyle. The predicted lifestyle was compared
with the actual annotated lifestyle. Out of the 227 phages with
a known lifestyle, PHACTS was able to confidently calculate the
lifestyle of 199 phages (Fig. 1). The other 28 phages gave variable
results, sometime replicates being classified as virulent and other
times as temperate. Out of the 199 predictions that were confident,
197 of those predictions were correct, giving PHACTS a precision
rate of 99% and sensitivity of 88%, for predicting the lifestyle of a
phage. The results for each phage prediction, along with the SD, are
listed in Supplementary Table S1.

The two phages that were consistently classified incorrectly
were the Mycobacteriophage D29 (28369.1) and the Lactococcal

Confident
Incorrect
Classifications

Non-Confident
Incorrect
Classifications

MNon-Confident
Correct
Classifications

Confident
Correct
Classifications

Fig. 1. Accuracy of PHACTS predictions when classifying the lifestyle of
the 227 phages with known lifestyles. A confident classification is where the
averaged replicate predictions are >2 SD apart.

bacteriophage ul36 (114416.1). To find out the reason for the
incorrect predictions of D29 and ul36, the genomes of these virulent
double-stranded DNA phages were analyzed. Both phages contain
an integrase gene, and both of these integrases are indeed functional
(Pefia et al., 1998; Labrie and Moineau, 2002). The fact that a
virulent phage contains a functional integrase is counter to the
current idea that only temperate phages contain integrase. In the case
of the Mycobacteriophage D29, a truncated repressor gene that is
necessary for temperate proliferation is the cause of the strictly
virulent lifestyle (Pefia et al, 1998), whereas horizontal gene
transfer seems to be responsible for the presence of the integrase
in the Lactococcal bacteriophage ul36 (Labrie and Moineau, 2002).
The reason that the lifestyle of 28 phages could not be predicted
confidently was not as straightforward, but most likely, arises by a
query phage having low similarity to phages with known lifestyles
in the database.

To determine how the function of a protein correlated to the
importance that a protein had on a prediction, the functional role
was found for every protein in the Query Protein selection pool
from the PHANTOME website (www.phantome.org). Proteins were
grouped according to lifestyle, and for each functional role a
percent importance value was calculated by summing the Gini
importance scores for proteins in that functional role and dividing
by the total number of proteins in all functional roles (Fig. 2).
Even though a large percentage of the proteins have unknown
function, it is clearly visible that Integration/Excision/Lysogeny,
Regulation of Expression and Toxins genes are predominantly
important toward classiying temperate phages, whereas Nucleotide
Metabolism, Phage Lysis and Structural Proteins are predominantly
important toward classifing virulent phages. The fact that Structural
Proteins are one of the most important functional roles for clasifying
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Fig. 2. The correlation between the protein function and the importance
toward lifestyle predictions. Phage functional modules are proteins that have
functions that are unique to phages, such as capsid assembly or phage DNA
packaging.

both temperate and virulent phages shows that by utilizing sequence
similaity, PHACTS is able to distinguish between temperate
phage proteins and virulent phage proteins even if they share
similar functions. These important proteins were compared with
the evolutionarily conserved modules found by Lima-Mendez et al.
(2011) to be associated with a specific lifestyle, and the same
correlation between module 1 and virulent phages, and module 17
and temperate phages was observed (Supplementary Fig. S1).

3.2 Classification of partial genomes

PHACTS has been shown to be highly accurate for classifying the
lifestyle of complete phage genomes. However, often times only
partial genomes are sequenced. To determine how accurate PHACTS
predictions are when incomplete proteomes are used, lifestyle
predictions were made for phages using only partial proteomes.
It was found that with only 20 proteins, PHACTS can identify
the lifestyle of a phage with ~90% precision rate (Fig. 3). The
median number of proteins per phage genome in the database was 57
proteins, which suggests that at least a third of a phage’s proteome
is needed to accurately predict the lifestyle of a phage.

3.3 Classification of unknown phages

The lifestyle of each phage in the database that did not have
an annotated lifestyle was predicted by PHACTS using the same
methodology as above, but without excluding any phages from
the training set (Supplementary Table S1). Out of the 417 phages,
PHACTS was able to confidently predict the lifestyles of 217 phages,
giving this dataset a specificity of <51%. This drop in specificity
suggests that these phages without an annotated lifestyle are more
diverse than the subset of phages with a known lifestyle. Also
of note was the fact the ratio of phages predicted temperate to
phages predicted virulent in this dataset was ~1:1, which is different
from the ratio of 2:1 observed in the set of phages with annotated
lifestyles.
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Fig. 3. The effect of incomplete phage proteomes on the accuracy of
PHACTS lifestyle predictions.

4 CONCLUSIONS AND FUTURE WORK

PHACTS provides a mechanism to determine the lifestyle of a phage
without having to perform costly and time-consuming experimental
lab techniques. PHACTS predictions were shown to have a 99%
precision rate, and PHACTS can also determine the lifestyle of a
phage using only genomic data, which previously could not be done.

One of the limitations of PHACTS currently is that for a small
percentage of phages, a confident lifestyle prediction cannot be
made. This is primarily caused by the variability and that arises
from the random sampling during classifications. If an unknown
phage does not have any similarity to phages with known lifestyles
in the database, predictions will be less certain. It is expected that
as more phages with known lifestyles are added to the database, the
precision rate and sensitivity of predictions will increase.

The web version is simple and easy to use, and the stand-alone
version allows for user customization and alternate training sets.
The application of PHACTS on different classification schemes
(Gram-stain of host and phage Family) has been shown to be
moderately successful (data not shown). In the future, refinements to
the methodology may lead to high precision rates when classifying
the Gram stain of host and phylogenetic Family of phages, as well
as other novel classification schemes.
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