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Abstract

The need to collect accurate and complete pedigree information has been a drawback of family-
based linkage and association studies. Even in case-control studies, investigators should be aware
of, and condition on, familial relationships. In SNP genome scans, relatedness can be directly
inferred from the genetic data rather than determined through interviews. Various methods of
estimating relatedness have previously been implemented, most notably in PLINK. We present
new fast and accurate algorithms for estimating global and local kinship coefficients from dense
SNP genotypes. These algorithms require only a single pass through the SNP genotype data. We
also show that these estimates can be used to cluster individuals into pedigrees. With these
estimates in hand, QTL linkage analysis proceeds via traditional variance components methods
without any prior relationship information. We demonstrate the success of our algorithms on
simulated and real data sets. Our procedures make linkage analysis as easy as a typical
genomewide association study.
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Introduction

Family relationships lie at the heart of all gene mapping studies. Pedigree structure
determines the expected amount of genetic sharing in linkage studies and accounts for
background polygenic similarities in association studies. Even case-control studies need to
be aware of familial relationships to avoid violating the assumption of independent subjects.
There are a number of ways to measure relatedness, but the best rely on the number of
alleles that a pair of individuals share identical by descent (IBD) at a random locus. Two
sampled alleles at the same locus are identical by descent if they are both inherited copies of
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The Mendel statistical genetics software package for Linux, MacOS, or Windows may be obtained from the web site
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the same ancestral allele. This differs from identity by state (IBS), where the two sampled
alleles simply have the same value. Depending on study design and the nature of measured
phenotypes, IBD plays a direct or an indirect role in all family-based association and linkage
studies. In quantitative trait locus (QTL) mapping, kinship coefficients are fundamental.
Misspecfication of the degree of relatedness in a sample can dramatically affect results, in
some cases reducing the power to detect a signal and in other cases leading to a false
positive. It is therefore crucial to accurately determine IBD sharing among subjects before
declaring linkage or association.

As the density of marker maps has increased, interest has grown in using genotypes to
estimate relatedness. The early research of Thompson [Thompson, 1974, 1975] focused on
identifying and quantifying pairwise relationships from genotype data. Her seminal
contributions inspired the construction and implementation of several methods to test
specific relationships in human pedigree analysis [Boehnke and Cox, 1997; Ehm and
Wagner, 1998; Epstein et al., 2000; McPeek and Sun, 2000; Lange et al., 2001; Sun et al.,
2002; Teo et al., 2009]. These methods, regardless of whether they are frequentist or
Bayesian, benefit from prior knowledge of relationships. They excel at detecting relationship
misspecifications. Relationship assignment is more difficult, particularly in population
surveys omitting family history and in population isolates where pedigree boundaries are
obscure and inbreeding may result in complex relationships [Queller and Goodnight, 1989;
Mousseau et al., 1998; Lynch and Ritland, 1999; Wang, 2002].

The strategy of applying genotype-based estimated IBD rates to improve relationship
information in gene mapping algorithms has been used to good effect for several years. In
studies of non-human populations, QTL analysis is most common and thus the use of IBD
and kinship estimates has received considerable attention [Slate et al., 2002; Slate, 2005]. In
human studies, these estimates were found early on to be useful to map recessive traits in
sibships [Leutenegger et al., 2002, 2003]. More recently, research has continued briskly to
examine IBD estimation in extended pedigree and denser marker sets [Nelson et al., 2006;
Purcell et al., 2007; Anderson and Weir, 2007; Albers et al., 2008; Thompson, 2008].

Genome-wide association studies (GWAS) with case-control samples [Risch and
Merikangas, 1996] can be compromised by several complications. Well conceived studies
always correct for genotyping success rates and ethnic stratification [Pritchard and
Rosenberg, 1999; Reich and Goldstein, 2001; Satten et al., 2001]. It is also important to
eliminate or correct for cryptic relatedness. Failure to do so can be catastrophic [Voight and
Pritchard, 2005]. This has lead to the development of association tests that condition on
evidence of relatedness in the data [Devlin and Roeder, 1999; Bacanu et al., 2000; Slager
and Schaid, 2001; Voight and Pritchard, 2005; Purcell et al., 2007] or on both relatedness
and ethnic stratification simultaneously [Yu et al., 2006].

Kinship coefficients are the most useful summaries of pairwise IBD sharing; these come in
two flavors, global (also known as theoretical and unconditional) and local (a.k.a. empirical
and conditional). A global kinship coefficient between two relatives i and j is not tied to a
specific locus or observed genotypes. It is defined as the probability that a randomly
sampled allele from i at some anonymous locus is IBD to a randomly sampled allele from j
at the same locus. If i and j coincide, then sampling is done with replacement. Given
accurate and complete pedigree structures, global kinship coefficients are straightforward to
compute [Lange, 2002]. The local kinship coefficient of i and j measures their relationship at
a specific locus conditioned on all observed genotypes. The process of sampling and
comparing alleles is the same in both settings, but the probabilities differ in being
unconditional or conditional.
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In this paper we describe three new, fast algorithms that exploit whole-genome data on
single nucleotide polymorphisms (SNPs) to estimate kinship coefficients and find related
individuals. These algorithms run very quickly, the rate limiting step is a single pass through
the SNP genotype data. No prior knowledge of relatedness is invoked. The first algorithm
estimates global kinship coefficients, the second estimates local kinship coefficients, and the
third applies the global estimates to cluster individuals into pedigrees. We show that the
results of the algorithms can be used to map quantitative trait loci, without the time and
expense of determining accurate and complete pedigree structures.

The first algorithm we present relies on an exact method-of-moments formula extended to
all markers [Milligan, 2003]. In estimating the global kinship coefficient between a pair of
individuals, it assumes a homogeneous population with known allele frequencies. The
algorithm is both fast and accurate. Accuracy is almost inevitable given the overwhelming
number of SNPs currently being typed. The generated global kinship coefficients can
quickly identify any misspecified or cryptic relatedness.

Various approaches to a method of moments analysis for IBD and kinship estimation have
been previously investigated and implemented [Purcell et al., 2007; Browning, 2008;
Browning and Browning, 2010], however most of these have used hidden Markov model
(HMM) techniques, which may be computationally intensive. More recently, some
maximum likelihood methods have also been proposed and implemented [Choi et al., 2009;
Thornton and McPeek, 2010]. Another interesting implementation [Manichaikul et al.,
2010] relaxes the assumption of a homogenous sample population, allowing subsets of the
sample to have different allele frequencies.

The second algorithm we present applies dynamic programming to minimize an objective
function capturing local IBD sharing. The objective function includes a penalty tying
together the local method of moments estimates. In this fashion the weak marker-by-marker
estimates borrow strength from one another. At any particular locus, for each two
individuals, there are four possible pairs of alleles, where one allele is from each individual.
The Kkinship state counts how many of these pairs of alleles are IBD. The algorithm requires
just a single pass through the data to assign one of the four possible kinship states 0, 1, 2, or
4 at each marker to a pair of individuals. The fact that the algorithm imputes a discrete state
rather than estimates a continuous coefficient improves accuracy and eliminates
computationally expensive iteration. This accuracy and speed differentiates our algorithm
from the previous approaches to kinship estimation.

The third algorithm we present clusters individuals into pedigrees using the global kinship
estimates and a standard graph theory procedure that finds connected components within a
graph. Since the individual algorithms are each fast, this hybrid procedure quickly generates
clusters of related individuals.

We check the accuracy of the algorithms on simulated data and demonstrate on real data
how they can be combined to map a QTL in the absence of firm pedigrees. These successful
trials of the algorithms suggest that they will be of considerable utility in dense genome
scans for linkage or association.

Global Kinship Coefficient Estimation

To estimate global kinship coefficients, we begin by writing the expected number of IBS
matches between individuals u and v under random sampling as
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where m is the number of SNPs, @, is the global kinship coefficient for u and v, pj is the
major allele frequency at SNP i, and g; = 1 — p; is the minor allele frequency. The first term
in the summation accounts for matches that are IBD at i, while the second term accounts for
matches that are IBS but not IBD. Equation (1) holds for both autosomal and X-linked
SNPs. Solving for @, gives

m
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To derive our method of moments estimator, we equate e, to the observed number of IBS
matches over all m SNPs. Because kinship coefficients involve random sampling of alleles,
we interpret the observed number of IBS matches as a conditional expectation given the
SNP genotypes of u and v. Thus, if i is an autosomal SNP, then we define the observed
number of IBS matches at SNP i as

;1

Our= 4 [1 {i=K;} +1 i+L;} +1 (Vi=Ki} +1 =L} ] ’

where lj and J; represent the alleles of u at SNP i, K;j and L; represent the alleles of v at i, and
1 with a subscripted condition takes the value 1 when the condition is met and 0 otherwise.
If SNP i is X-linked, then the same formula applies when u and v are both females. When u
is male and v is female,

;1 '
0“"_5 [l‘lizki}+1|’i:1‘i] ’

and when u and v are both males, 02|-=1‘,r,(1.}. Computation of the observed number of

m .
matches between u and v requires a single pass through the genome. Substitution of Zizlofn
for e,y in equation (2) now yields our estimate of their global kinship coefficient.

Because formula (2) depends heavily on allele frequencies, it is a good idea to check its
sensitivity to errors in these frequencies. Supplementary Tables 25-34 show the impact of
various kinds of errors on estimated global kinship coefficients. The bottom line is that
random errors are relatively harmless, but systematic errors significantly degrade global
kinship coefficient estimates.

Local Kinship Coefficient Imputation

To estimate local kinship coefficients, we invoke formula (2) in a small window centered on
the current SNP j. This gives the point estimate
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where w counts the number of SNPs in the window. In practice, we use windows that cover
roughly 50 Kbp on either side of the current SNP. (If one suspects very large blocks of
linkage disequilibrium in the population, one may use even larger windows.) The estimates
yj are very noisy. To improve matters, we substitute imputation for estimation. Given full
information, one can easily decide how many alleles two relatives u and v share IBD at SNP
j- The local kinship coefficient between them at SNP j therefore takes one of the four values

11
0, 7y orl (We note that our kinship estimation procedures also work with inbred
popu%ation, as evident by allowing the value 1 for a local kinship coefficient.) The goal now
is to impute one of these four numbers at each SNP j. At SNP j call this number z;.

Imputation of the state variables z; is guided by several principles. First, zj should resemble
yj on average. Second, zj takes jumps at IBD block boundaries but is otherwise constant.
Because IBD blocks tend to be long, these jumps should be rare. Third, one should use
observed SNP genotypes to narrow the range of possible values of z;.

Suppose we record the observed number 0{;‘, of IBS matches at each SNP j. The condition
ol =11is a necessary but not a sufficient condition for zj = 1. More importantly, the condition
ol =0 is a sufficient but not a necessary condition for zj=0. If we find two SNPs i and j less

than 1 Mbp apart with o{“.zo;ﬁ‘,zo, then we assign all intervening SNPs k the state variable z
= 0. This rule is quite successful at determining regions of no IBD sharing. An intervening
SNP k with z; # 0 would constitute evidence of two recombination events in a 1 Mbp
interval, a very unlikely scenario in most pedigrees.

These considerations motivate simultaneous fitting and smoothing. We proceed by
minimizing the objective function

m—1

f @i, zm) =Z()’i — 22+ Z(Zi - q)uv)2+/lzz(2i+1 -z)? 3
pr py =1

11
subject to the restrictions < € > 4’2’ 1t and to our interval rule for assigning zj = 0. Here
A1 and A are nonnegative tuning constants and @y, is the estimated global kinship
coefficient for the pair. In practice, we work chromosome by chromosome, so @, is specific
to the current chromosome and m is the number of SNPs on that chromosome. Readers
familiar with the fused lasso [Tibshirani, 1996; Tibshirani et al., 2005] will recognize our
debt to lasso penalized estimation in constructing the objective function f(z4, ... , ).

Fortunately, the z; values that minimize this objective function can be found in a single pass
through the data using standard dynamic programming techniques. Our solution begins by
reformulating the objective function as

m—1

S @i 2m) =iﬁ (z) +ng (i zie1) -
i=1 =1
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The loss function fi(z;) = (Yi-zi)? + A1(zi-®yy)? has just four values. The penalty function
0i(zi, Zi+1) = A2(zi+1-Zi)2. To find the optimal z; values by dynamic programming, define the
partial solutions hy(z;) = f1(z1) and

k k=1
iy (zi) =_min {Zf,- @)+ g G zi+1)}
<1,..,<k=1 i—1

i=1 i=

1

1
for k > 1. If one records the values % (0) - (Z) i (2) and hy(1), then the recurrence

hie () =min {1 (@i-1) +8k-1 (-1, 2} + i (20

determines the next partial solution. Finally, z,, is the value that minimizes hy(zy). The
standard traceback procedure supplies the rest of the solution zy, ... , zy_1 Once zy, is
imputed.

Our remaining task is to find the best penalty weights, A1 and A, in equation (3) for various
relative pairs. Equation (3) shows that 1, determines the extent of the penalty when the local
kinship coefficient estimate diverges from the global estimate. Similarly, A, determines the
extent of the penalty when there are frequent changes in the local IBD status. To determine
which penalty weights would work well, we used 100 simulated replicates of the pedigree in
Figure 1, each typed at the same 200K SNPs. We searched for the penalty weights that
minimized the average absolute difference between the estimated and true local kinship
coefficients. Fortunately, there was a pair of values that minimized this difference for all
tested relationships and both long and short chromosomes. Setting A1 = 0 and A, = 100 gives
a quick, accurate, and universal algorithm for estimating local kinship coefficients. The
Supplementary Material describes the grid search performed and Supplementary Tables
35-38 show the results of our search for the best penalty weights.

Construction of Pedigree Clusters

To cluster individuals into pedigrees we use the global kinship estimates and a standard
graph theory procedure. In this hybrid algorithm, genotyped individuals constitute the nodes
of an undirected graph. An edge is drawn between a pair of individuals if their estimated
global kinship estimate exceeds a fixed cutoff value. A standard graph theory procedure
[Aho and Hopcroft, 1974] then clusters the individuals into pedigrees by finding the
connected components of the graph. This procedure operates by visiting successive nodes
and merging existing components containing the current node.

With a high cutoff value, say 0.2, only close relationships will contribute to clustering. Thus,
individuals with no close genotyped relatives form isolated one-person clusters. With a low
cutoff, say 0.02, distant relatives are clustered even if their intervening close relatives are not
genotyped.

Global Kinship Coefficient Estimation

To determine the accuracy of the global kinship estimator, we simulated genotypes for 500
replicates of the pedigree depicted in Figure 1 at each of four SNP scan densities: 10K,
100K, 200K, and 500K SNPs per genome. For the sake of simplicity, we took genetic map
distances proportional to physical distances and independent of sex. We used the Caucasian
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allele frequencies published by Affymetrix for their commercial SNP arrays. Simulation by
gene dropping allowed us to record IBD status at each and every SNP. Of course, all
estimates were calculated without reference to this knowledge. To assess accuracy, we
estimated global kinship coefficients for eight relative pairs in the pedigree. For the sake of
brevity, we discuss here the results for two pairs. All our results can be found in
Supplementary Supplementary Tables 1-24.

Consider first the pair of unrelated individuals 1 and 2, both founders of the pedigree (Figure
1). We computed the minimum, mean, maximum and standard deviation of the estimates for
this pair over the 500 replicates at each of the four SNP densities (see Supplementary Table
1). The mean value for each density is essentially zero, confirming lack of bias in unrelateds.
To formally test for bias, we conducted a Kolmogorov-Smirnov (KS) test comparing the
empiric distribution against a normal distribution with mean 0 and standard deviation taken
from the estimates. The KS test was unable to reject the null hypothesis of unbiasedness (see
Supplementary Table 3). Figure 2 shows histograms of the estimates for this pair for the
10K, 100K, 200K, and 500K densities. Not surprisingly, the standard deviations of the
estimates shrink and accuracy improves as the density of SNPs increases. At the 500K SNP
density, it possible to distinguish the degree of relatedness of the unrelated pair 1 and 2 from
that of the distantly related pair of cousins 7 and 21 in the pedigree. Figure 3 displays the
two histograms side by side. The difference between the kinship coefficient (0.0) of the pair
1 and 2 and the kinship coefficient (0.015625) of the cousins 7 and 21 is probably near the
lower bound of what is detectable. From our perspective, this level of resolution is more
than adequate for practical purposes.

Second degree relatives such as the uncle-niece pair 4 and 7 in Figure 1 have a global
kinship coefficient of 0.125. The mean value of our global kinship estimator accurately
captures this level of relatedness at all four SNP densities (see Supplementary Table 7).
Again, better mean estimates and smaller standard deviations are seen with increasing
numbers of SNPs (Figure 4). As before, the KS test does not reject the hypothesis of
unbiasedness (see Supplementary Table 9). With 500K SNPs there is a good separation
between the distributions of the estimators for all relative pairs with global kinship
coefficients in excess of 0.007 (Supplementary Figures 1-5). Of course, one cannot
distinguish pairs with the same global kinship coefficients. Examples include siblings versus
parent-offspring and uncle-niece versus grandparent-grandchild. Other more detailed
coefficients of relatedness help in making these distinctions, but estimation of these detailed
identity coefficients is more difficult.

The software package PLINK currently has the most widely used method for estimating
global relatedness from genome-wide SNP data [Purcell et al., 2007]. PLINK employs a
method-of-moments algorithm that estimates IBD sharing and is more complicated than the
method-of-moments algorithm described here. We analyzed the same set of 500 simulated
pedigrees detailed above using PLINK’s genome option, again without reference to the
known relationships. Supplementary Tables 2, 5, 8, 11, 14, 17, 20 and 23 show the
comparisons between our estimates and PLINK’s estimates. These tables illustrate that our
simpler method-of-moments algorithm performs as well as PLINK in all instances, and
slightly better as the individuals become more distantly related.

We also tested our global kinship algorithm on a real data set from the San Antonio Family
Heart Study (SAFHS) [Mitchell et al., 1996]. The data set consists of 1942 immigrants, or
descendents of immigrants, from near Monterrey, Mexico who have settled in San Antonio
in the US. We restricted our analysis to the 858 individuals genotyped on the Illumina 550K
SNP platform. In the reported pedigrees, 51 people in this subset are unrelated to the
remaining 807, who were spread over 45 pedigrees ranging in size from 3 to 62 people.
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Allele frequencies for the SNP markers typed in this study were previously summarized
[Goring et al., 2007].

We considered all pairs of individuals in the data with global kinship coefficients of 0.25,
0.125, 0.0625, and 0.03125 based on their self-reported ancestry. For each pair we estimated
a global kinship coefficient via our algorithm. Figure 5 and Table 1 show the results. The
estimates appear accurate and unbiased. To assess the sensitivity of these conclusions to
misspecified allele frequencies, we conducted extensive simulation studies. When major
allele frequencies are systematically underestimated, global kinship coefficients are
overestimated. The reverse occurs when major allele frequencies are systematically
overestimated. These biases are a natural consequence of equation (2) in the Methods
section. Allele frequency misspecification does not appear to have much impact on the
variances of the estimates. Details of this analysis for an uncle-niece pair is given in
Supplementary Tables 25-34. Fortunately, the large number of published GWAS studies
ensures accurate allele frequencies for most major populations.

Local Kinship Coefficient Imputation

In our local kinship estimation algorithm, the strength of the penalty depends on two tuning
constants. We found that one of these could be set to 0 and the other to a single positive
value appropriate to all SNPs and relative pairs. (See the Methods section and
Supplementary Tables 35-38). These universal choices simplify the already fast dynamic
programming algorithm. For each SNP density, we used the previously described 500
simulated replicates of the pedigree depicted in Figure 1 to assess the accuracy of the local
kinship estimates. Figure 6 plots the local kinship coefficient estimate along chromosome 1
for a typical replicate of an uncle-niece pair. For this replicate only 249 of the 40,326 SNPs
on chromosome 1, roughly 0.6%, were assigned an incorrect Kinship state. This replicate is
typical in the sense that it gives the median error rate across all SNPs on chromosome 1.
Supplementary Figure 30 shows the distribution of the error rates over all replicates.
Comparisons of estimated and true local kinship coefficients for other relationships and SNP
densities appear in Supplementary Figures 7-13 and Supplementary Tables 39-46.

Overall, our results validate the accuracy of the local kinship algorithm. We obtained
accurate results for all relative pairs examined and for all chromosomes, regardless of their
length. Incorrect imputations occur at IBD block boundaries. Errors tend to extend one block
at the expense of a neighboring block.

Construction of Pedigree Clusters

Our third goal was to cluster related individuals into groups using only estimated global
kinship coefficients. These clusters, although lacking fully defined relationships, can replace
standard pedigrees in QTL mapping. Recall that QTL mapping uses local kinship
coefficients to locate the major gene determining trait variation. To account for background
polygenic inheritance, it uses global kinship coefficients. More nuanced pedigree
information is ignored.

We again used the simulated replicates of the pedigree in Figure 1 for testing. We ran the
clustering algorithm ignoring the genotypes of individuals 7 through 12 at the cutoffs 0.2,
0.125, and 0.1. In all replicates, the remaining typed individuals cluster as expected
(Supplementary Table 47).

We also tested the clustering algorithm on the SAFHS data set. The pedigrees in the SAFHS
data set are based on interviews and standard relationship testing procedures using the
PREST software [Sun et al., 2002]. This type of software helps identify clear relationship
misspecifications, but correct relationship reconstruction is harder to achieve, especially
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when inbreeding is present. After computing global kinship estimates, we clustered 858
individuals in the SAFHS data set with cutoffs of 0.2, 0.1, and 0.0625. Using a 0.2 cutoff,
we clustered 740 of the individuals into 122 pedigrees of size 2 to 36. Figure 7 is an example
of how our clusters compare to the pedigrees defined in the SAFHS data set. In this figure,
individual 1a moves from pedigree (a) to pedigree (b) because he has estimated global
kinship coefficients of 0.329, 0.201, 0.215, and 0.326 with individuals 1b, 2b, 3b, and 4b,
respectively. After lowering the cutoff to 0.1, the two separate pedigrees merged because
individual 1a has estimated global kinship coefficients of 0.193, 0.190, and 0.175 with
individuals 3a, 4a, and 5a, respectively. Using a 0.1 cutoff, a total of 793 individuals were
clustered into 31 pedigrees of size 2 to 568. Finally, using a cutoff of 0.0625, all 858
individuals were clustered into a single pedigree. Since all of the individuals claim ancestry
from the same narrow region of Mexico, we believe our results reveal relationships not
evident in the interviews.

QTL Analysis

Standard QTL mapping is based on a variance components model that represents QTL
contributions as random effects [Hopper and Mathews, 1982; Almasy and Blangero, 1998;
Lange, 2002]. The pertinent input include trait values, marker genotypes, and pedigree
structures. Pedigree structures determine global kinship coefficients. Observed marker
genotypes and pedigree structures jointly generate local kinship coefficients. Once the
global and local kinship coefficients are computed, marker genotypes and pedigree
structures can be discarded. As seen above, dense SNP genotyping allows one to circumvent
pedigree structures altogether. Restricting the size of pedigrees avoids computational
bottlenecks such as the inversion and storage of large matrices. Thus, it is a good idea to
cluster individuals into pedigrees even though lumping them all into a single large pedigree
is in principle consistent with gene mapping.

To test our kinship estimation algorithms in QTL mapping, we re-analyzed the SAFHS data
set. This data set includes vannin 1 (VNN1) expression levels as a quantitative phenotype.
Using microsatellite markers genotyped on roughly 1318 of the individuals, an eQTL for
VNN1 was mapped near marker D6S1040 on chromosome 6 [Goring et al., 2007]. We
sought to replicate this finding using only the dense SNP genotypes on 858 individuals,
ignoring prior relationship information. We first performed traditional QTL linkage analysis
on the SAFHS pedigrees and microsatellite genotypes, but restricted to the 858 individuals
with SNP genotypes. The maximum LOD score was 6.5 at D6S1040. This is the same locus
previously mapped in the entire data set with a higher LOD score [Géring et al., 2007]. We
used the same variance components software with pedigrees as originally defined by the
SAFHS study, but all local kinship coefficients estimated from the dense SNP genotypes.
The maximum LOD score obtained was 4.2 at the SNP closest to the peak microsatellite
marker. We next ran our standard variance components software ignoring reported pedigrees
and relying on global and local kinship coefficients estimated from the dense SNP
genotypes. In clustering individuals, we first used a global kinship cutoff of 0.2, a lax
criterion that clusters based only on closely related individuals. The maximum LOD score
obtained in this re-analysis was 4.5, at the same peak SNP. Finally, we performed the same
analysis using a global kinship cutoff of 0.1 in our pedigree clustering, which allows
clustering based on more distant relationships. Here the maximum LOD score was 4.3, again
at the same peak SNP. LOD score curves for all four analyses are shown in Figure 8.

The most time-consuming step in a variance component analysis is inverting an n x n
matrix, where n is the size of the largest pedigree. Inversion takes on the order of n3
operations. Thus it is not surprising that the change from a largest pedigree of 36 individuals
to one of 568 individuals, in practice means a run time increase from 20 seconds to 2.5
hours.
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The drop in LOD scores from the original microsatellite data can be attributed to three
possible reasons: (a) loss of information in reassembling the pedigrees, (b) poor values for
the global kinship coefficients, and (c) poor values for the local kinship coefficients. Our
simulations imply that these algorithms are finding excellent estimates for global kinship
coefficients, so we rule out explanation (b). Some loss in power is to be expected when
losing information on the specific relationships between each pair of individuals, which
usually informs the kinship coefficient calculations. To compensate, refinements may well
be possible in the pedigree clustering and local kinship imputation. However, the LOD
scores that we obtain without pedigree information are still highly significant.

Discussion

In the past few years genome-wide association studies (GWAS) have scored some huge
success in mapping genes influencing complex traits [Hindorff et al., 2009]. One enticement
of case-control studies is their avoidance of the long and arduous task of collecting accurate
and complete pedigree structures, particularly for the large pedigrees that contain the
majority of linkage information. Despite the successes in the numerous GWAS studies
undertaken, most of the variation of the complex traits investigated remains unexplained
[Altshuler and Daly, 2007]. Undoubtedly some of the missing genetic effects are rare
mutations. These will often remain hidden to association tests but may be exposed by well-
designed linkage studies.

We propose an easier route to linkage analysis, one that does not require collecting pedigree
structures. For a QTL, it should suffice to collect dense SNP genotyping of cases, and
perhaps their first degree relatives, from regions of low demographic mobility.
Alternatively, as in the SAFHS, one can sample immigrants from such a region. The
algorithms we have presented can then quickly and accurately estimate all kinship
coefficients and assemble pedigree clusters. Current variance components software, though
designed to take in whole pedigrees, can easily be rewritten to substitute estimated
coefficients in mapping genes influencing quantitative traits. For qualitative traits, we
suggest also collecting the first degree relatives of the affecteds and recoding affecteds as 1
and unaffecteds as 0. Recoding turns a qualitative trait into a quantitative trait and renders it
amenable to QTL mapping. Because asymptotic p-values are based on a multivariate normal
distribution of trait values, nominal p-values would no longer be trustworthy, but they could
still serve to quantify the evidence in favor of linkage. Ranking of markers is an
indispensable guide in mounting further studies.

When presented with dense SNP data for linkage analysis, many geneticists currently use
only a fraction of the data, roughly mimicking the density of a genome-wide microsatellite
marker panel. This procedure wastes data and gives poor estimates of local kinship
coefficients. Our procedures use all available data and work well with as few as 10K SNPs,
particularly in estimating global kinship coefficients. Of course the methods we present do
have some drawbacks as well. For example, there is no measure of uncertainty in the kinship
coefficient results. Typically linkage analysis requires many fewer individuals than GWAS
to reach genome-wide significance, greatly reducing the cost of gene mapping. Of course the
linkage analysis may highlight a relatively broad genomic region, but still narrow enough to
allow targeted sequencing in a follow-up study. One should keep in mind that marker based
estimation of kinship coefficients also has something to offer in association testing. Here the
primary benefit is control for background polygenic inheritance.

In closing let us emphasize one point. The shift to GWAS has found many common variants
of ancient origin that would have been be hard to pinpoint through linkage studies. As a
complementary tool, linkage can find rare variants of recent vintage that association studies
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cannot. With the procedures we outline, once a suitable population is found, linkage studies
can be made as simple as GWAS.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Structure of simulated pedigrees.
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Figure 2.

Global kinship coefficient estimates for the unrelated pair 1 and 2 (true global kinship
coefficient 0.0) using: (a) 10K SNPs, (b) 100K SNPs, (c) 200K SNPs, and (d) 500K SNPs.
The left and right bold vertical lines represent £2 standard deviations.
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Figure 3.

Distributions of global kinship coefficient estimates using 500K SNPs for unrelated pair 1
and 2 (unshaded, true global kinship coefficient 0.0) versus distantly related pair 7 and 21
(shaded, first cousins twice removed, true global kinship coefficient 0.015625).
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Figure 4.
Global kinship coefficient estimates for uncle-niece pair 4 and 7 (true global kinship

coefficient 0.125) using: (a) 10K SNPs, (b) 100K SNPs, (c) 200K SNPs, and (d) 500K
SNPs. The left and right bold vertical lines represent +2 standard deviations.
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Figure 5.
SNP-based global kinship coefficient estimates for SAFHS pairs with pedigree-based global
kinship coefficient of: (a) 0.25, (b) 0.125, (c) 0.0625, and (d) 0.03125.
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Figure 6.

True and estimated local kinship coefficients on chromosome 1 for a typical replicate of the
500K SNP set using the uncle-niece pair 4 and 7 (true global kinship coefficient 0.125).
Each SNP’s local kinship coefficient is shown with a small square when the true and
estimated values are identical. When they differ, the true value is shown as a circle and the
estimated as a triangle. Of the 40,326 SNPs depicted, 249 were assigned incorrect local
kinship coefficients.
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Example of cluster analysis results for the SAFHS data set. Two SAFHS pedigrees are
shown: (a) and (b). Only individuals drawn in color had SNP genotypes. In the cluster
analysis using a 0.2 cutoff, individual 1a and 2a cluster with pedigree (b), not with the other
individuals in pedigree (a). Using a 0.1 cutoff, all individuals drawn in color cluster together
in one pedigree. See the text for selected global kinship coefficient estimates.
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Figure 8.

QTL analyses of a subset of the SAFHS data set. The solid curve summarizes results using
the SAFHS supplied pedigrees and microsatellite data. The short-dash curve summarizes
results using the SAFHS pedigrees, but local kinship coefficients estimated from the SNP
genotypes. The medium-dash curve summarizes results using reconstructed pedigrees with a
0.2 global kinship cutoff and global and local kinship coefficients estimated from SNP
genotypes. The long-dash curve summarizes results using reconstructed pedigrees with a 0.1
global kinship cutoff and global and local kinship coefficients estimated from SNP
genotypes.
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Global kinship coefficient estimates for selected pairs of individuals from the SAFHS data set.

Table 1

Pedigree-based | Number | SNP-based Global Kinship,
Global Kinship | of Pairs | Mean (Standard Deviation)
0.25 1218 0.2533 (0.030)
0.125 1521 0.1291 (0.021)
0.0625 1950 0.0667 (0.021)
0.03125 1454 0.0349 (0.017)
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