Table 2.
Pairwise invasion analysis in a lattice structured population. In each cell we compare two strategies, resident and mutant. The resident’s initial frequency is 0.97, and the invader’s initial frequency is 0.03. The fraction of simulations in which the invader takes over the whole population is shown. We set b = 5, c = 1 and α = 1, and conduct 50 simulations, each lasting 125,000,000 generations. We consider small errors, ε = 0.01, and a 50 × 50 lattice for a total population size N = 2500. We use viability updating with parameter values γ = 0.1 and θ = 0.1.
| β = 1 | Resident | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| DN | DP | DA | DS | CN | CP | CA | CS | ||
| Invader | DN | 1 | 0.24 | 1 | 1 | 1 | 1 | 1 | |
| DP | 0 | 0 | 0.35 | 0 | 0 | 1 | 1 | ||
| DA | 0 | 1 | 1 | 1 | 1 | 1 | 1 | ||
| DS | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
| CN | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
| CP | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
| CA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
| CS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
| β = 5 | Resident | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| DN | DP | DA | DS | CN | CP | CA | CS | ||
| Invader | DN | 1 | 0.20 | 1 | 1 | 0 | 1 | 1 | |
| DP | 0 | 0 | 0.05 | 0 | 0 | 0 | 0 | ||
| DA | 0 | 1 | 1 | 1 | 0.17 | 1 | 1 | ||
| DS | 0 | 0 | 0 | 0 | 0 | 1 | 1 | ||
| CN | 0 | 1 | 0 | 0 | 0 | 1 | 1 | ||
| CP | 0.95 | 1 | 0 | 1 | 0 | 1 | 1 | ||
| CA | 0 | 0 | 0 | 0 | 0 | 0 | 0.30 | ||
| CS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
| β = 10 | Resident | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| DN | DP | DA | DS | CN | CP | CA | CS | ||
| Invader | DN | 1 | 0.21 | 1 | 1 | 0 | 1 | 1 | |
| DP | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
| DA | 0 | 1 | 1 | 1 | 0 | 1 | 1 | ||
| DS | 0 | 0.03 | 0 | 0 | 0 | 1 | 0 | ||
| CN | 0 | 1 | 0 | 0 | 0 | 1 | 1 | ||
| CP | 1 | 1 | 0 | 1 | 0 | 1 | 1 | ||
| CA | 0 | 0 | 0 | 0 | 0 | 0 | 0.08 | ||
| CS | 0 | 1 | 0 | 0 | 0 | 0 | 0 | ||