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Abstract

Background: The use of in vitro models to unravel the phenotypic characteristics of circulating viral variants is key to
understanding HIV-1 pathogenesis but limited by the availability of primary viral isolates from biological samples. However,
overall in vivo genetic variability of HIV-1 within a subject may not be reflected in the viable viral population obtained after
isolation. Although several studies have tried to determine whether viral populations expanded in vitro are representative of
in vivo findings, the answer remains unclear due to the reduced number of clonal sequences analyzed or samples
compared. In order to overcome previous experimental limitations, here we applied Deep Pyrosequencing (DPS) technology
in combination with phenotypic experiments to analyze and compare with unprecedented detail the composition of viral
isolates and in vivo quasispecies.

Methodology/Principal Findings: We amplified by DPS HIV-1 genomic regions covering gag, protease, integrase and env-
V3 to characterize paired isolates from plasma and peripheral blood mononuclear cells and compare them with total plasma
viral RNA in four recently HIV-1 infected subjects. Our study demonstrated the presence of unique haplotypes scattered
between sample types with conservation of major variants. In addition, no differences in intra- and inter-population
encoded protein variability were found between the different types of isolates or when these were compared to plasma
viral RNA within subjects. Additionally, in vitro experiments demonstrated phenotypic similarities in terms of replicative
capacity and co-receptor usage between viral isolates and plasma viral RNA.

Conclusion: This study is the first in-depth comparison and characterization of viral isolates from different sources and
plasma circulating quasispecies using DPS in recently HIV-1 infected subjects. Our data supports the use of primary isolates
regardless of their plasma or cellular origin to define genetic variability and biological traits of circulating HIV-1 quasispecies.
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Introduction

Human immunodeficiency virus (HIV-1) exhibits a high degree

of genetic diversity particularly difficult to characterize due to the

complexity of the RNA viral populations. This complexity is

associated with factors such as the lack of proof-reading activity of

HIV-1 polymerase, the high rate of generation of viral particles,

and the recombination and hypermutagenesis process favored by

host cellular proteins [1,2,3,4,5,6,7]. Consequently, the HIV-1

population is composed of a swarm of genetically related variants,

known as viral quasispecies, which grant the virus with the ability

to quickly adapt to various selective pressures. Examples of the

rapid adaptive machinery of HIV-1 are the selection of mutations

enabling escape from the humoral and cellular host immune

responses [8,9,10,11] and the selection of mutations generating

resistance to currently available antiretroviral drugs [12]. There-

fore, to define the composition of HIV-1 quasispecies and identify

virus diversity or variability within a single infected subject or at

the population level it is essential to understand the pathogenesis of

HIV-1 and design optimal antiretroviral treatments and vaccines.

Some studies associated pathogen diversity with poor prognosis

[13,14,15], and increased diversity of HIV-1 has been related to
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disease progression [16,17]. As a result, the maintenance of virus

population structures in primary isolates is a key feature for the

accurate study of specific viral biological traits, such as fitness and

co-receptor usage, which are central to completing our under-

standing of the HIV-1 pathogenesis. The recent development of a

new generation of massively parallel sequencing technologies has

enabled us to carry out comprehensive studies of the genotypic

characteristics of viral populations, genetically comparing thou-

sands of sequences and increasing our chances of identifying

minority variants. Deep Pyrosequencing (DPS) technology has

made possible to describe the complexity of viral dynamics during

immune escape, to quantify the presence of minority drug

resistance variants, and to define virus co-receptor use for the

management of CCR5 antagonists [18,19,20,21,22].

This study aims to investigate with the use of DPS technologies

whether viral isolates from biological samples preserves the

variability of circulating viruses and the phenotypic features found

in vivo. For that reason, we compared paired HIV-1 isolates

obtained from plasma and cells with total plasma viral RNA in

four recently HIV-1-infected subjects. We combined multiple-

amplicon DPS covering gag, protease, integrase, and env-V3 with in

vitro replicative capacity and virus co-receptor use assays in order

to address the genetic and phenotypic associations between HIV-1

isolates and viral quasispecies.

Results

Efficiency of HIV-1 recovery correlates with sample viral
load for both plasma-derived and cell-derived viral
isolates

In order to compare the efficiency of the methods used to obtain

primary HIV-1 isolates from plasma or peripheral blood

mononuclear cells (PBMCs), we analyzed a total 94 samples from

different subjects at unique time-points, with the exception of the

four included in the study; 56 plasma samples and 38 PBMCs

samples with viral loads ranging from 10 to .106 copies/ml. Of

those, we recovered a total of 63 primary isolates (34 from plasma

samples and 29 from PBMCs). After stratification of samples by

viral load, we observed an increase in the efficiency of virus

recovery concomitant with the increase in viral load for both

plasma and PBMCs HIV-1 isolation methods, Fig. 1. Further-

more, the categorization of viral load ranges into linear values

demonstrated the existence of a direct correlation between sample

viral load range and efficiency of virus recovery (Plasma: r = 0.94,

p,0.016; PBMCs: r = 0.94 p,0.016 [Spearman correlation test]).

Therefore, overall efficiency of the HIV-1 isolation methods used

was similar and correlated to sample viral load.

Phylogenetic analysis of multiple-amplicon DPS reveals
clusters of interspersed variants between cell virus
isolates, plasma virus isolates, and plasma viral RNA

Four naı̈ve, recent HIV-1-infected subjects were enrolled in the

study. A summary of their clinical and epidemiological character-

istics is shown in Table 1. Three sample types from a unique blood

sample were obtained per subject, as represented in Fig. 2, for

comparative purposes: 1.Total plasma viral RNA (RNA); 2.

Plasma virus isolates (VP) after HIV-1 capture from plasma and

virus in vitro expansion and; 3. Cell virus isolates (VC) obtained

from PBMCs co-culture and virus in vitro expansion.

VP and VC primary isolates were expanded in vitro for a period

of 2 to 3 weeks and 3 to 4 weeks respectively. Afterwards, virus

were harvested for further genotypic (DPS) and phenotypic

characterization (Tropism and Replicative Capacity) Fig. 2.

Multiple-amplicon DPS was carried out in the three samples

types RNA, VP, and VC, thus covering the gag, protease,

integrase, and env-V3 regions with an average number of reads

per nucleotide of 4039, 4193, 3629, and 4488, respectively. Data

extracted using DPS were corrected for sequencing errors, filtered

to a final number of unique reads, and merged into haplotypes

(unique sequences represented in $1%), a resume of the sequences

obtained after the various filtering steps is represented in Table 2.

Final haplotypes were used to build phylogenetic trees based on

the best-inferred model for conserved regions gag, protease and

integrase as well as variable regions env-V3 of the HIV-1 proteome.

As shown in Fig. 3, the phylogenetic trees for gag, protease, and

integrase did not show segregation of clusters between VC, VP,

and RNA variants, with low genetic distances between sample

types and preservation of major variants after in vitro culture. A

similar tree topology was observed for the variable env-V3 loop

region, with clear interspersion of major variants from VC, VP,

Figure 1. Comparison of the efficiencies of HIV-1 isolation
methods from PBMCs or plasma samples. To determine the
efficiency of HIV-1 isolation from PBMCs and plasma, we compared
virus recovery from 56 plasma samples and 38 PBMCs samples with viral
load ranging from 10 to .106 copies/ml. (A) Efficiency of HIV-1 recovery
from PBMCs in percentages per viral load range. (B) Efficiency of HIV-1
recovery from plasma samples in percentages per viral load range. Bars
represent mean values. Numbers next to the bars indicate (number of
positive samples/total number of samples tested).
doi:10.1371/journal.pone.0032714.g001
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and RNA. A tendency toward clustering of VP was found in the

case of P21 for gag, P23 for integrase, and P22 for env-V3.

However, this pattern was not consistent for other genes within the

same subjects. In summary, VC, VP, and total plasma viral RNA

populations were structured in closely related quasispecies

represented by interspersed variants with a low genetic distance

between them.

Low intra- and inter-population variability for VC, VP, and
RNA variants among HIV-1 proteins

To define in detail VC, VP, and total viral RNA populations,

we calculated intra- and inter-population variability, defined as the

tendency for individual genomes to vary from one to another in a

population. For that purpose, we simulated a viral population by

considering the sequences obtained in the DPS run as a sample of

the real population. We measured pairwise intra- and inter-

population variability according to sample type for each HIV-1

protein and subject. We found low intra-population variability,

with values close to zero for VC, VP, and RNA populations in all

subjects and genetic regions (Table 3). Additionally, inter-

population analyses comparing RNA with VC, RNA with VP,

and VC with VP (Table 3) demonstrated a similar pattern of low

variability. These results indicated that VC, VP, and plasma viral

RNA populations were composed of HIV-1 variants with low

intra- and inter-population variability.

VC and VP isolates display similar in vitro replicative
capacity in primary cultures

In certain cases, heterogeneity in the distribution of quasipecies

during in vitro passage of HIV-1 modified virus fitness in the

absence of changes in the consensus sequences [23]. In order to

test whether minor genetic changes described in our populations

(synonymous changes, differences in the number of unique

variants) affected the phenotypic properties of VC and VP

Figure 2. Schematic representation HIV-1 sample types analyzed for comparative purposes per study subject. Total blood was
separated into plasma and PBMCs for the following: 1. Total viral RNA extraction (RNA) used for DPS and virus tropism. 2. Plasma virus isolation (VP)
used for DPS, virus tropism and Replicative Capacity (RC): VP isolates were obtained by mixing plasma extracted anti-CD44 HIV-1 particles with a pool
of CD8+-depleted PBMCs from three seronegative-donors (D1, D2, and D3) and culture during 2 to 3 weeks for virus in vitro expansion. 3. Cell virus
isolation (VC) used for DPS, virus tropism and RC. VC isolates were obtained by co-culture of HIV+ cells with a pool of total PBMCs from three
seronegative-donors (D1, D2, and D3) and culture during 3 to 4 weeks for virus in vitro expansion. Colored red, orange and dark blue circles represent
cells from CD8+ depleted seronegative donors D1, D2 and D3 respectively. Colored red, green and purple circles represent cells from seronegative
donors D1, D2 and D3 respectively. Light blue circles represent HIV+ cells. Red stars indicate virus production.
doi:10.1371/journal.pone.0032714.g002

Table 1. Epidemiological and clinical data of study subjects.

Subject Sex
Virusa

Subtype

Time after
seroconversion
(months)

Viral Load at
sample collection
(HIV-1 RNA copies/ml)

CD4 T-cell count
at sample collection
(cells/ml)

Nadir CD4 T-cell
count (cells/ml)

P20 Male B 5.5 69,000 190 144

P21 Male B 13.4 320,000 181 181

P22 Male BF 4.2 27,000 576 242

P23 Female B 1.3 170,000 627 197

aVirus subtype was determined based on sequences from gag, pol, and env-V3 using the REGA HIV-1 Subtyping tool. BF denotes the recombinant BF HIV-1 form.
doi:10.1371/journal.pone.0032714.t001
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isolates, we measured replicative capacity for VC and VP isolates

in primary cells. After infection, viral growth was monitored by

p24 production for one week and the log-transformed data on the

exponential growth phase used to calculate the virus growth rate

(slope of the linear regression) for each type of isolate. As shown in

Fig. 4, VC and VP pairs display similar replication kinetics with no

differences in replicative capacity per pair in any of the study

subjects. Thus, in spite of minor genetic differences in quasispecies

composition, our data revealed no differences in replicative

capacity between VC and VP isolates for each subject.

Phenotypic determination and genotypic prediction of
co-receptor usage in VC isolates, VP isolates, and plasma
RNA

HIV-1 co-receptor use is a key determinant of viral pathogen-

esis; the presence of CXCR4 using strains has been related to

disease progression, and detection of minor CXCR4 variants has a

clear clinical interest in the management of CCR5-antagonists

[21,24,25,26]. Therefore, in order to understand the relationship

between VC, VP and plasma RNA, we compared virus co-

receptor use by means of U87 cells in VC and VP isolates and by

means of ESTA in plasma RNA. Furthermore, for genotypic

prediction of virus co-receptor, we used the PSSM and g2p

algorithms in env-V3 loop from the most frequent haplotypes, with

cut-off values of 24.75 and #3.5, respectively. These results are

summarized in Table 4. Phenotypic data show a concordance of

100% between U87 and ESTA results. Moreover, genotypic

prediction of co-receptor usage with PSSM was 75% (9/12)

concordant with g2p. In spite of minor discrepancies between the

methods used, plasma RNA, VC, and VP isolates exhibited good

matching in terms of virus co-receptor per study subject and

sample type. Additionally, a more detailed prediction of co-

receptor use was made in VC, VP, and RNA by inference of g2p

and PSSM scores in the unique env-V3 sequences extracted from

DPS. We observed a cluster of combined variants from VC, VP,

and RNA with low intra-patient deviation and preferential R5 use,

with the exception of p20 Fig. S1. In the case of P20, g2p and

PSMM scores from DPS sequences suggest the presence of a

homogeneous population of X4R5 dual tropic virus when

compared to previously defined R5+X4R5 or X4R5 HIV-1

isolates Fig. S1 [27]. Therefore, inference of phenotypic and

genotypic tropism in VC and VP pairs and plasma viral RNA

demonstrated concurrence in virus co-receptor usage among

sample types for each study subject.

Discussion

Primary viral isolates play a key role in our understanding of the

HIV-1 pathogenesis and are a common approach for various in

vitro studies such as antibody neutralization, drug testing, or virus

co-receptor use assays. Furthermore, the relevance of using

Table 2. Number of sequences obtained for each subject and
sample type by DPS.

Subject Protein Sample
Total
Readsa

Valid
Readsb

Unique
Haplotypesc

P20 RNA 2,979 786 4

Gag VC 4,812 197 17

VP 4,842 1,383 3

RNA 3,180 2,321 2

PR VC 2,374 1,800 10

VP 2,541 1,726 5

RNA 6,898 4,271 3

IN VC 2,970 2,102 4

VP 1,640 1,266 5

RNA 1,823 1,535 3

Env-V3 VC 4,776 2,951 3

VP 3,101 2,701 3

P21 RNA 2,425 1,213 2

Gag VC 3,850 89 12

VP 3,875 2,541 4

RNA 6,503 5,115 2

PR VC 5,385 4,315 5

VP 3,443 2,806 2

RNA 3,931 2,702 4

IN VC 212 120 6

VP 1,484 899 9

RNA 3,073 2,511 2

Env-V3 VC 5,723 3,594 2

VP 4,265 3,545 1

P22 RNA 2,960 2,370 3

Gag VC 5,284 2,238 1

VP 3,910 3,146 3

RNA 2,582 2,138 3

PR VC 7,605 3,063 3

VP 1,812 1,443 2

RNA 8,334 4,527 6

IN VC 6,593 4,143 8

VP 1,301 1,070 5

RNA 2,698 2,412 1

Env-V3 VC 10,669 3,476 2

VP 5,140 4,335 4

P23 RNA 5,707 4,255 4

Gag VC 4,585 2,802 7

VP 3,244 2,748 3

RNA 4,189 3,640 2

PR VC 2,694 2,282 5

VP 8,019 6,565 2

RNA 5,752 4,746 4

IN VC 2,906 2,387 2

VP 1,527 1,289 4

Env-V3 RNA 2,417 2,083 1

VC 5,534 3,298 4

VP 4,639 4,180 1

aTotal reads is the total coverage of sequences obtained after direct DPS.
bValid reads are those sequences obtained after cleaning the total reads by
selecting unique sequences with .70% homology to HXB2 and manual
correction of homopolymer tacks.
cUnique haplotypes are defined by similar sequences represented as a
proportion $1% from the total unique reads. DPS, deep pyrosequencing; PR,
protease; IN, integrase; RNA, plasma viral RNA; VC, cell virus isolates; VP, plasma
virus isolates.
doi:10.1371/journal.pone.0032714.t002
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primary isolates for an accurate description of virus phenotype has

been highlighted by differences in replicative capacity found

between recombinant viruses and full isolates [28,29].

Previous studies in the HIV-1 field have determined whether

viral populations from primary isolates were representative of in

vivo findings with contradictory results. Some of them report a

decrease in HIV-1 gp120 diversity in isolates [30], while others

support the maintenance of major variants in blood after co-

culture with PBMCs [31]. Additionally, most of these studies are

limited by the number of samples analyzed, the number of clonal

sequences obtained, and their focus on comparing proviral DNA

to primary isolates recovered from co-cultured PBMCs. In order

to overcome previous experimental limitations, we carried out

multiple-amplicon DPS to genetically compare thousands of

sequences in four regions of the HIV-1 genome and clearly define

phylogenetic relationships between primary isolates obtained from

VP, VC after in vitro HIV-1 expansion and plasma circulating

quasispecies (RNA) in vivo. Our results demonstrate a structured

population of interspersed major VC, VP, and RNA variants with

fluctuations in low frequency unique sequences in most of the

HIV-1 genes studied (gag, protease, integrase, and env-V3) and

among subjects but with no significant differences in the total

numbers of unique haplotypes (data not shown). The presence of

major variants in similar frequencies for VC and VP primary

isolates, when compared to in vivo RNA, demonstrates the

maintenance of high frequency variants after in vitro expansion

in both VC and VP isolates. Furthermore, the low intra- and inter-

population variability, with values close to zero, reflects homoge-

neous populations both within HIV-1 proteins or sample types.

Nevertheless, relative homogeneous viral populations have been

reported in both proviral HIV-1 DNA and plasma HIV-1 RNA

during early infection [16,32]. As a consequence, the low level of

genetic variability found among primary viral isolates and total

RNA, could be related to the short time after seroconversion in

our samples, where homogeneous viral populations will be present

before diversification at later stages of disease [16]. On the other

hand, recent studies on founder virus evolution support early

variation in the HIV-1 genome after transmission and accumu-

lation of changes over the first year after infection [33]. In this

context, our results suggest an adequate representation of RNA

circulating quasispecies after HIV-1 in vitro expansion. However,

these results should be viewed with caution until they are

confirmed in chronically infected samples.

RNA virus populations are composed of a swarm of closely

related genotypes or quasispecies in which viral evolution operates

as a unit and adaptation is the result of cooperative interactions

between multiple genomes [15]. Various studies have demonstrat-

ed how minor genetic differences in composition and quasispecies

heterogeneity can modulate HIV-1 fitness in the absence of

changes in population sequence [23,34]. Additionally, genetic

similarities in studied regions cannot be extrapolated to the whole

viral genome. Therefore, similarities in virus genotype might not

take the form of similarities in virus phenotype. In this context, our

data revealed no differences in terms of virus replicative capacity

in paired VC and VP isolates, regardless of minor differences in

genotypic composition of the viral quasispecies studied. However,

our approach is limited by the short-term in vitro culture of the

replicative capacity experiments and presence of antiretroviral

drugs, neutralizing antibodies, cytotoxic T lymphocytes, or other

selective pressures may induce unpredictable fluctuations in closely

related viral populations, which are not capture in this study.

Together with replicative capacity, HIV-1 co-receptor use is an

essential trait when defining HIV-1 pathogenesis. The presence of

CXCR4-using HIV-1 variants is associated with disease progres-

sion [24,25,26], and detection of minor CXCR4 HIV-1

populations has become a key marker for the management of

CCR5 antagonists [21,35]. A previous study showed high

concordance of co-receptor usage in paired plasma and PBMCs

samples during primary infection [36]. In agreement with this

observation, we found concordance in co-receptor use between

VC isolates, VP isolates, and plasma RNA as measured both by

ESTA and U87. Comparable results were obtained by genotypic

inference of virus co-receptor use in DPS env-V3 sequences with

g2p and PSSM. Regardless of small differences in the methods

applied intra-subject, co-receptor use was very homogeneous.

Many studies have described the use of DPS in combination

with genotypic algorithms in the env-V3 variable region as a key

tool when detecting minor CXCR4 populations for the manage-

ment of CCR5 antagonists. We used the same approach to com-

pare VC isolates, VP isolates, and circulating plasma quasispecies.

Figure 3. Phylogenetic trees for HIV-1 gag, protease, integrase and env-V3 sequences extracted from VC, VP, and RNA using DPS.
Symbols represent unique haplotypes extracted from DPS for subjects P20 #, P21 n, P22 e, and P23 %, according to sample type: VC (light
symbols), VP (dark symbols), and RNA (empty symbols). Numbers next to symbols indicate haplotype frequencies obtained from the total reads; only
values above 20% are indicated in the figure. Node numbers indicate bootstrap values over 75%. (A) gag maximum-likelihood phylogenetic tree
based on the TrN model. (B) Integrase maximum-likelihood phylogenetic tree based on the HKY model. (C) Protease maximum-likelihood
phylogenetic tree based on the HKY+ G (a= 0.565) model. (D) env-V3 maximum-likelihood phylogenetic tree based on the TrN model.
doi:10.1371/journal.pone.0032714.g003

Table 3. Comparison of intra- and inter-population variability
for each subject, HIV-1 protein, and sample type (RNA, VC, or
VP).

Pa
intra Pinter

Subject Protein
Pint

RNA
Pint

VC
Pint

VP
RNA
vs VC

RNA
vs VP

VC
vs VP

P20 Gag 0.0011 0.0110 0.0008 0.0010 ,0.0001 0.0009

PR 0.0005 0.0075 0.0041 0.0022 0.0033 0.0002

IN 0.0005 0.0013 0.0004 ,0.0001 ,0.0001 ,0.0001

Env-V3 0.0051 0.0050 0.0018 ,0.0001 0.0037 0.0035

P21 Gag 0.0240 0.0300 ,0.0001 0.0037 0.0023 0.0040

PR 0.0006 0.0010 ,0.0001 ,0.0001 ,0.0001 ,0.0001

IN 0.0009 0.0025 0.0014 ,0.0001 ,0.0001 ,0.0001

Env-V3 0.0002 0.0006 ,0.0001 ,0.0001 0.0194 0.0194

P22 Gag ,0.0001 ,0.0001 ,0.0001 ,0.0001 ,0.0001 ,0.0001

PR 0.0033 0.0018 0.0009 0.0013 0.0012 ,0.0001

IN 0.0009 0.0016 0.0005 ,0.0001 ,0.0001 0.0002

Env-V3 ,0.0001 ,0.0001 0.0437 ,0.0001 0.0033 0.0033

P23 Gag 0.0023 0.0036 ,0.0001 ,0.0001 0.0007 0.0012

PR 0.0002 0.0029 0.0010 ,0.0001 ,0.0001 ,0.0001

IN 0.0004 0.0002 0.0006 ,0.0001 0.0042 0.0042

Env-V3 ,0.0001 0.0012 ,0.0001 ,0.0001 ,0.0001 ,0.0001

aAverage number of nucleotide differences per site between sequences. PR,
protease; IN, integrase; RNA, plasma viral RNA; VC, cell virus isolates; VP, plasma
virus isolates.
doi:10.1371/journal.pone.0032714.t003
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We found clusters of mixed sequences from VC, VP, and RNA

sequences with homogeneous populations and preferential R5 use.

These data contrast with those of previous studies, where DPS

revealed the presence of more heterogeneous populations in

proviral quasispecies [35], but argue in favor of homogeneous

replication-competent populations obtained after in vitro expansion

in VC primary isolates, regardless of the heterogeneity in proviral

DNA.

In summary, our study provides the first direct comparison of

viral isolates with plasma circulating quasipecies using DPS in

recently HIV-1 infected subjects. Our data demonstrated that VC

and VP share genotypic characteristics with HIV-1 quasispecies

and maintain the presence of major variants after virus in vitro

expansion. In spite of minor genetic differences, phenotypic data

reveal similarities in paired VP and VC isolates with regard to

replicative capacity and co-receptor use. Our data support the

potential use of VP or VC primary isolates as a reliable tool to

characterize the circulating quasispecies. Nevertheless, further

comparisons will help to clarify whether our findings also apply to

later stages of the disease.

Methods

Study subjects and Ethics Statement
The study sample comprised four treatment-naı̈ve HIV-1-infected

subjects. Epidemiological and clinical data are summarized in Table 1.

Virus subtype was assigned based on gag, pol, and env-V3 sequences

using the REGA HIV-1 Subtyping tool. The study was approved by

the institutional review board of Hospital Germans Trias i Pujol, and

all four subjects gave their written informed consent to participate.

Cell lines
The following reagents were obtained through the NIH AIDS

Research and Reference Reagent Program, Division of AIDS,

NIAID, NIH: TZM-bl from Dr. John C. Kappes, Dr. Xiaoyun Wu

and Tranzyme Inc; U87CXCR4 and U87CCR5 from Dr. HongKui

Deng and Dr. Dan R. Littman as previously described [37,38].

Plasma virus isolation
Viral isolates were obtained from plasma samples using anti-

CD44 beads following the manufacturer’s protocol (Miltenyi

Figure 4. Replicative capacity of VC and VP HIV-1 isolates in primary cells. PBMCs stimulated from seronegative donors were infected in
triplicate with each viral variant, and virus growth was monitored by p24 production over one week. Slopes were compared for VC and VP pairs, and
p,0.001 was considered significant. Squares represent mean values and bars represent the standard error of the mean. Light squares correspond to
VC and dark squares correspond to VP. (A) P20, (B) P21, (C) P22, and (D) P23.
doi:10.1371/journal.pone.0032714.g004
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Biotec, Germany) with minor modifications as previously de-

scribed [29]. Briefly, before virus extraction, PBMCs from three

HIV-1-seronegative donors were isolated and CD8+ T cells

depleted using the RosetteSep human CD8+ depletion cocktail

(Stemcell Technologies, France). Pooled CD8+-depleted PBMCs

were then stimulated under three different conditions (‘363’

method, Miltenyi Biotech). After 72 hours, cells were mixed to a

final concentration of 106 cells/ml in R10 supplemented with IL-2

(100 U/ml) (Roche, Spain), and 200 ml of the extracted virus was

added to the culture. Cultures were fed weekly with 106 cells/ml

fresh 363-stimulated cells. Viral growth was monitored weekly

using p24 enzyme-linked immunosorbent assay (ELISA) (Innoge-

netics, Spain). Virus isolates were harvested when the p24

concentration in the supernatant reached at least 100 ng/ml and

then stored at 280uC.

Cell virus isolation
Viral isolates from cryopreserved cells were obtained by co-

culture of PBMCs from each HIV-1-infected subject with a pool of

PBMCs from three HIV-1-seronegative subjects that had been

previously stimulated with phytohemagglutinin (PHA) (3 mg/ml)

and IL-2 (10 U/ml) for 72 hours. Viral growth was monitored

weekly by p24 ELISA and cultures were fed weekly with fresh

cells. Viral stocks were harvested and stored at 280uC.

PCR amplification and amplicon preparation
Total viral RNA was extracted (QIAamp Viral RNA Mini

KitTM, QIAGEN, CA) from plasma (2 ml), plasma viral isolates

(1 ml), and cell viral isolates (1 ml) in order to carry out PCR

amplification. gag, pol, and env-V3 were amplified using one-step

reverse transcriptase polymerase chain reaction (RT-PCR) (Super-

ScriptH III One-Step RT-PCR System with PlatinumH Taq High

Fidelity, Invitrogen, Carlsbad, CA, USA) based on a primer set

containing 59-GCA GAA TGG GAT AGA TTG CAT CCA-39

(1,417R1,440, HXB2) and 59-CCT TGT TAT GTC CTG CTT

GAT ATT CAC-39 (5,438r5,464, HXB2), and 59-TAG AGC

CCT GGA AGC ATC CAG GAA G-39 (5853R5877, HXB2)

and 59-TTG CTA CTT GTG ATT GCT CCA TGT-39

(8,913r8,936, HXB2) for gag, pol, and env-V3, respectively.

Amplification conditions were as follows: 30 minutes at 52uC
during reverse transcription, 2 minutes at 94uC, 30 seconds at

94uC, 30 seconds at 55uC, and 4 minutes at 68uC for 25 cycles. A

final polymerization step of 5 minutes at 68uC was applied. The

enzyme used for the RT-PCR was the Super-Script III one-step

PCR (Invitrogen, USA). Amplicons for QDS were generated using

carried 454 adaptor A and subject-specific multiple identifiers;

pyrosequencing was unidirectional. The conditions for the enzyme

were 5 minutes at 94uC, 30 seconds at 52uC, and 1 minute at

68uC for 25 cycles. A final polymerization step of 5 minutes at

68uC was applied. The enzyme used was Platinum High Fidelity

(Invitrogen, USA). The specific primer set was composed of the

forward primers 59-CAG GAT TTA AAC ACC ATG CTA AA-

39 (1,333R1,355 HXB2), 59-AAT TTG CCA GGA AGA TGG-

39 (2,361R2,378 HXB2), 59-TTA AGG CCG CCT GTT G-39

(4,606R4,621 HXB2), and 59-TGG CAG TCT AGC AGA AGA

AG-39 (7,010R7,029 HXB2), and the reverse primers 59-TAT

CCA TCT TTT ATA GAT TTC TCC-39 (1,564r1,587

HXB2), 59-CAA TAG GAC TAA TGG GAA AA-39

(2,546r2,565 HXB2), 59-TTT TGT AAT TTG TTT TTG

TAA TTC-39 (4,863r4,886 HXB2), and 59-CTG GGT CCC

CTC CTG AGG-39 (7,315r7,332 HXB2) for gag, protease,

integrase, and env-V3, respectively. All PCR reactions were

performed in triplicate to reduce amplification bias and the

founder effects. Triplicate amplifications were pooled before the

purification procedure. Reactions were purified using the

Agencourt AMPure Kit (Beckman Coulter, Germany) to eliminate

the primer-dimers produced. The number of molecules was

quantified by fluorometry using the Quant-iT PicoGreen dsDNA

assay kit (Invitrogen, USA). When concentrations were below

5 ng/ml, amplicon quality was assessed by spectrometry using

BioAnalyzer (Agilent Technologies, USA). Quantitative multiple

amplicon DPS was performed in a 454 Genome Sequencer FLX

(454 Life Sciences/Roche, USA) using FLX chemistry. A pNL4.3

clone was sequenced to assess the likelihood of errors during DPS.

Discrepancies between data obtained by DPS and Sanger

sequencing of pNL4.3 clone were attributed to the process.

Multiple amplicon DPS data clean-up and phylogenetic
analysis

Data were cleaned in order to increase the quality of the

sequences for down-stream analysis after multiple-amplicon DPS.

The first step was to retrieve those sequences with a similarity

.70%, when compared with HXB2 from the sequencing run. We

then manually corrected the homopolymer tracks, since these are

the most common sequencing errors produced by the technique.

Sequences with stop codons within the open reading frame of the

protein were removed from the analysis, and sequences containing

gaps were maintained and included in the analysis, rather than

being removed using a conservative bias towards an unknown

nucleotide at this position. Identical sequences were collapsed into

a single unique sequence or haplotype. Haplotypes with less than

1% presence in the population were removed from the analysis. A

summary of the number of reads after the various filtering steps

and the final number of haplotypes is represented in Table 2.

Phylogenetic trees were built on the nucleotide alignment for the

total unique reads collapsed into unique haplotypes. The best

phylogenetic model was inferred using jModeltest v0.1.1 [39] for

each HIV-1 protein in all subjects. Phylogenetic trees were

constructed taking into account the inferred model in PhyML over

Table 4. Phenotypic and genotypic prediction of co-receptor
usage from total plasma RNA, VC, and VP primary isolates.

Sample Phenotype Genotype

U87 ESTAa PSSMb g2pb

P20 RNA - X4/R5 R5 Non-R5

VC X4/R5 - R5 Non-R5

VP X4/R5 - R5 Non-R5

P21 RNA - R5 R5 R5

VC R5 - R5 R5

VP R5 - R5 R5

P22 RNA - R5 R5 R5

VC R5 - R5 R5

VP R5 - R5 R5

P23 RNA - R5 R5 R5

VC R5 - R5 R5

VP R5 - R5 R5

aESTA, Enhance Sensitivity Trofile Assay. This assay has a detection limit of 0.3%
for non-R5 variants.
bCut-off values to define non-R5 using sequences were 24.75 for PSSM and
#3.5 for g2p, respectively. Non-R5 sequences include X4 and X4/R5 dual tropic
virus. RNA, plasma viral RNA, VC, cell virus isolates; VP, plasma virus isolates. –
Indicates non-determined.
doi:10.1371/journal.pone.0032714.t004
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1000 bootstrap replicates (www.HIV-1.lanl.gov) were: for gag

(TrN), protease (HKY+G), integrase (HKY) and env-V3 (TrN).

Newick trees were exported and edited with MEGA4 [40].

Population variability per HIV-1 protein and sample type
To study and reproduce the variability according to sample type

and among HIV-1 proteins, we simulated a viral population taking

into account the sequences obtained in the sequencing run as a

sample of the real population. The percentage of each sequence,

based on the sequencing run, was used to create a population of

100 sequences where each haplotype was represented as many

times as indicated by the percentage of the sequence in the

sequencing run. This population of 100 sequences was used to

infer variability among populations in the same patient and among

HIV-1 proteins. We measured pairwise intra- and inter-population

variability using the best model found by jModeltest v0.1.1, as

implemented in MEGA4.

Replicative capacity experiments
Viral isolates obtained from plasma and cells were titrated in the

TZM-bl immortalized cell line. Replicative capacity experiments

were carried out using PBMCs from three seronegative individ-

uals; previous infection PBMCs were stimulated for 72 hours with

PHA (3 mg/ml) and IL-2 (10 U/ml). Stimulated PBMCs were

then infected in triplicate with an equal multiplicity of infection of

each viral variant at 37uC for 2 hours. Pellets were washed twice

with phosphate-buffered saline (PBS) and cultured at 37uC and

5% CO2 in R20 supplemented with IL-2 (20 U/ml) (Roche,

Spain) [41]. Viral growth was measured by p24 ELISA in

supernatants over 10 days (Perkin Elmer, Spain). Replicative

capacity was calculated by fitting a linear model to the log10-

transformed data of p24 production and comparing the slopes as

previously described [42].

Determination of virus co-receptor use
Viral tropism from VP and VC was measured in U87

immortalized cell lines expressing CCR5 or CXCR4, as previously

described [27,38]. Briefly, 5,000 cells were plated on a 96-well

plate and infected with 2 ng of p24 for each viral variant

overnight. The next day, virus was washed 3 times with 200 ml of

PBS and fresh media added to a final volume of 200 ml. Five days

after infection, virus growth was identified microscopically by

observation of syncytium formation, and the results were

corroborated by p24. Furthermore, virus tropism was assessed in

plasma samples at similar time-points using the Enhance

Sensitivity Trofile Assay (ESTA, with a detection limit of 0.3%

for non-R5 variants). In addition, two algorithms were used to

infer virus co-receptor use based on env-V3 loop sequences from

DPS: PSSM (http://indramullins.microbiol.washington.edu/

webpssm) and geno2pheno (g2p) (http://www.geno2pheno.org/)

with a false positive rate of 10%. Cut-off values to define non-R5

using sequences were 24.75 for PSSM and #3.5 for g2p [21].

Supporting Information

Figure S1 Genotipic predicition of co-receptor use in
DPS sequences from VC, VP and total plasma RNA.
Unique sequences obtained from the DPS of the env-V3 loop

region were used to run PSSM and g2p algorithms to infer virus

co-receptor use per sample type VC (ligth symbols), VP (dark

symbols) and RNA (empty symbols) and subject. For comparative

purposes env-V3 loop sequences from virus with dual mix

(R5+R5X4) and dual (R5X4) co-receptor use were included. (A)

Prediction of co-receptor use based on g2p algorithm with a false

positive rate of 10%. Dashed line represents cut-off values (3.5) to

infer R5 and non-R5 use. (B) Prediction of co-receptor use based

on PSSM scores. Dashed line represents cut-off value (24.75) to

infer R5 and non-R5 use.

(TIF)
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