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Abstract

Recent studies suggest that protein motions observed in molecular simulations are related to 

biochemical activities, although the computed time scales do not necessarily match those of the 

experimentally observed processes. The molecular origin of this conflicting observation is 

explored here for a test protein, cyanovirin-N (CV-N), through a series of molecular dynamics 

simulations that span a time range of three orders of magnitude up to 0.4 microseconds. Strikingly, 

increasing the simulation time leads to an approximately uniform amplification of the motional 

sizes, while maintaining the same conformational mechanics. Residue fluctuations exhibit 

amplitudes of 1–2 Å in the nanosecond simulations, while their average sizes increase by a factor 

of 4–5 in the microsecond regime. The mean-square displacements averaged over all residues (y) 

exhibit a power law dependence of the form y ∝ x0.26 on the simulation time (x). Essential 

dynamics analysis of the trajectories, on the other hand, demonstrates that CV-N has robust 

preferences to undergo specific types of motions that already can be detected at short simulation 

times, provided that multiple runs are performed and carefully analyzed.
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INTRODUCTION

Native proteins are not static entities under physiological conditions. On the contrary, they 

undergo a broad range of motions around their native state structures, ranging from local 

conformational changes such as peptide bond re-orientations or amino acid side chain 

isomerization to global rearrangements involving entire domains or subunits. The type and 

size of these motions are governed by the free energy landscape near native state 

conditions.1–3 In terms of functional relevance, many structural rearrangements, especially 
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those collectively involving large substructures, are necessary for proteins to carry out their 

chemical and biological activities.1–5 Therefore, in order to understand protein function, it is 

necessary to also examine the dynamics of proteins and not only their atomic structures. In 

particular, the lowest frequency internal motions, or global motions, need to be evaluated 

since they usually relate to the molecules’ biological functions.

Despite the complexity of protein motions, and contrary to expectations, experimental and 

computational studies suggest that dynamic features that are detected computationally or 

experimentally at short times may explain experimental data associated with much slower 

processes. A typical example is the dataset of order parameters derived by Palmer and 

coworkers for protein G binding domain 3,6 based on two alternative datasets: NMR 

relaxation parameters for probing motions on the order of nanoseconds7 and residual dipolar 

couplings (RDCs) that probe motions on the microsecond time scale.8 Notably, the order 

parameter profiles extracted from these two datasets exhibit similar shapes,6 and the most 

‘disordered’ residues, associated with the minima in the order parameter profiles plotted as a 

function of residue number (Fig. 1A), become more pronounced in the longer-time events. 

In contrast, the shape of the profiles, i.e., the distribution of order parameters as a function of 

residue index, remains essentially unchanged, suggesting that events at short time scales and 

those at long time scales share common features. Another example that indicates similar 

behavior is an NMR study of ubiquitin in which RDC and spin-lattice relaxation 

experiments exhibit comparable profiles that also agree with the predictions of accelerated 

molecular dynamics (MD) simulations, except for the amplitudes of the motions at long 

times.9–11 Likewise, results for GB1 from two different length MD runs (Fig. 1B) also 

demonstrate that the two simulations result in comparable order parameter profiles.12 In 

addition, other observations indicate a correspondence between experiments and 

computations, such as the relationship between MD events and catalytic turnover times 

observed by Kern and coworkers for adenylate kinase, even though the MD events are 

several orders of magnitude faster than the experimental ones.13 All these observations point 

to the existence of robust mechanism(s) of motions that underlie both short-time and long-

time dynamics.

Atomic motions can be divided into three basic components: the time scale of the motion, its 

amplitude, and its direction. In the strictest sense, characterization of protein dynamics 

requires the collection of thousands of time-resolved data at multiple length and time 

scales.5 As mentioned above, a broad range of experimental techniques provides information 

on protein dynamics, including NMR relaxation measurements,14,15 Laue X-ray diffraction 

data,16,17 infrared and fluorescence spectroscopy,18 and single-molecule studies,19 although 

they inform about different aspects and time scales of protein dynamics. On the 

computational side, structure-based methods such as MD simulations20 and normal mode 

analysis (NMA) with elastic network models (ENMs)21–24 have been exploited to gain 

insights into biomolecular systems dynamics. In particular, MD simulations are uniquely 

suited for examining time-resolved events in proteins at high resolution. Although extremely 

powerful, two shortcomings are inherent to MD simulations.25 The first arises from 

sampling inefficiency, which becomes increasingly noticeable in large molecular 

systems.25–27 Limitations of this nature can be alleviated to some extent by performing 

multiple independent runs for assessing convergence.26,28–31 Second, the lengths of MD 
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runs often remain below microseconds due to memory and computing time limitations.25 

Therefore, it still is an open issue whether functional motions at low frequencies can be 

inferred from relatively short MD runs.

The present study is carried out using cyanovirin-N (CV-N), a potent HIV-inactivating 

protein widely investigated in our previous studies,32 to answer the following questions: (i) 

How similar are the residue fluctuation profiles for different lengths runs? (ii) Do top-

ranking modes from a short simulation become high frequency modes with increasing 

simulation time?33 (iii) Do short MD simulations provide insights into functional motions, 

i.e., to what extent are the directions of motions near the native state energy minimum at 

short simulation times preserved at longer times? (iv) Do simulations provide information 

on the absolute sizes of various mechanisms of motions?

The results obtained for CV-N in combination with data reported previously for other 

systems, suggest that the distribution (or relative size) of residue fluctuations along the 

polypeptide chain is a robust quantity under equilibrium conditions, predominantly defined 

by the 3-dimensional architecture in the native state, while their absolute size predicted by 

MD simulations change with simulation duration, in the time regime (< 400 ns) investigated. 

The ratios of the mean-square displacements, y = <(ΔR)2>MDk/<(ΔR)2>MDk′ observed in 

two MD runs k and k′ of different durations, and that of the total simulation times, x = 

tMDk/tMDk′, are governed by a power law of the form y = x0.26, similar to results reported by 

Scheraga and co-workers.34,35 The decomposition of the trajectories into essential modes 

reveals that well-defined directions of the global motions, encoded by the native topology of 

inter-residue contacts, can be discerned even in short runs, as long as the region around the 

native state energy minimum is comprehensively sampled by multiple runs.

MATERIALS AND METHODS

MD simulations

The starting CV-N structure (PDB ID: 2EZM)32 is highly anisotropic, occupying a volume 

of about 30 × 52 × 27 Å3. The inset of Fig. 2 shows the CV-N structure. We used a 

simulation box of size 40 × 62 × 37 Å3, which ensured a minimal water layer thickness of 5 

Å for all surface residues. This thickness has been verified in our earlier simulations,36 and 

shown in previous work,37 to satisfactorily solvate the protein. The resulting system 

consisted of 8,159 atoms, including 2,216 TOP3P water molecules. NAMD38 with the 

Charmm22 force field39 was used with a 2 fs time step. After energy minimization and 

equilibration, multiple independent runs were performed at constant temperature (298 K) 

and pressure (1 atm).

Principal component analyses (PCAs) of MD trajectories and NMR models

The instantaneous position Ri(t) of each residue i is defined by the coordinates of its α-

carbon atoms, which are organized into a 3n-dimensional vector of instantaneous 

configurations, R(t), for the protein of n residues. The configuration vector definition applies 

to snapshots recorded at fixed intervals from MD runs, as well as the models in the NMR 

structure ensemble (where t is replaced by the model index). The global changes in 
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configuration originating from the collective fluctuations sampled in each MD run, or 

associated with the structural deviations observed in NMR ensemble, are identified by the 

same procedure, described here for MD snapshots. First, the instantaneous fluctuation ΔRi(t) 

= Ri(t) − <Ri> from mean position <Ri> is evaluated for each residue, for each recorded 

time t (a total of m snapshots or models). This is performed after optimal superimposition of 

the configuration onto the starting structure so as to eliminate the rigid-body translations and 

rotations. The superimposition is achieved by least squares fitting to backbone heavy atoms. 

Second, the fluctuation vectors ΔRi(t) (1 ≤ i ≤ n) are organized in a trajectory matrix A of 

dimension 3n × m, for a set of m snapshots. Multiplication of A by its transpose and division 

by m yields the 3n × 3n covariance matrix C for each run (or for the NMR ensemble). C 
may be expressed as an n × n supermatrix, the element Cij of which is a 3×3 matrix of the 

form

(1)

Here, <ΔXi ΔYj > represents the cross-correlation between the X-component of ΔRi for 

residue i and the Y-component of ΔRj for residue j, averaged over all m snapshots. Third, 

the eigenvalue decomposition of C produces 3n − 6 nonzero eigenvalues and the 

corresponding eigenvectors. The eigenvectors define the directions of motions, and the 

eigenvalues scale the squared amplitudes of fluctuations. The Gaussian Network Model 

(GNM)21,22 and anisotropic network model (ANM)40,41 analyses also lend themselves to a 

series of eigenmodes, as described in the Supporting Information.

RESULTS AND DISCUSSION

The distribution of residue fluctuations is insensitive to the duration of simulations

We selected CV-N as our model system, based on its small size (n = 101 residues), its 

considerable thermodynamic stability and the large body of prior data available in our 

laboratory.42–45 We compared the dynamic information retrieved from 1 ns to 400 ns MD 

runs. As depicted in the Fig. 2 inset, CV-N has a compact, pseudo-symmetric fold and is 

made up of two domains. Residues 1-39 and 91-101 form domain A (green), and 40-90, 

domain B (blue). The two domains share 32% sequence identity and are connected by short 

helical linkers. Each domain is composed of a triple-stranded β-sheet with a β-hairpin 

packed on top. There are two carbohydrate-binding sites located at distal positions (shown in 

red), one in each domain.46 The two binding sites exhibit distinct affinities and specificities 

for high-mannose sugars.47 The rotational correlation time τc of CV-N has been measured to 

be 4.5 ns.48 Our simulations thus permit us to investigate both the sub-τc and supra-τc 

dynamics of CV-N under native state conditions.

Fig. 2 presents the results from a series of fifty-eight runs, adding up to a total simulation 

time of 2 microseconds. Multiple trajectories were generated for each simulation time (tMDk 

= 1, 5, 25, 100 and 400 ns, also called the time window) to reduce inaccuracies arising from 
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inadequate sampling of sub-states near the native state, especially for the short runs. The 

curves in Fig. 2 represent the mean-square-fluctuations (MSFs) in residue positions, 

<(ΔRi)2> for residue 1 ≤ i ≤ n, for each time window in the range 1 to 400 ns, averaged over 

all runs of a given duration. Residue positions are those of the α-carbons.

As can be appreciated, the family of curves shown in Fig. 2 exhibits a striking similarity 

between the shapes of the residue fluctuation profiles for the different time windows. 

Essentially, all peaks/maxima that are noted at short time scales (e.g., 1–5 ns simulations) 

are amplified at longer times, with small changes in the relative sizes of the residue 

excursions. In principle, one might expect to detect new modes of motion at longer times, 

possibly changing the MSF profiles. However, only slight variations can be discerned in the 

profiles, such as the emergence of a peak near the helical hairpin loop around residues 65-67 

in domain B in the longer time windows. Indeed, most features are robustly maintained: the 

loop regions usually tend to have high fluctuations, while secondary structure elements 

exhibit more restricted motions. Interestingly, an asymmetry in residue fluctuations can be 

seen, with residues in domain B exhibiting larger motions than those in domain A, 

consistently noted in all simulations.

A quantitative measure of the degree of similarity between these MSF profiles is provided 

by the correlation coefficients listed in Table I. The correlation coefficient between the 

MSFs for the 1 ns runs and the 400 ns runs is 0.83. Thus increasing the time window of 

observation by 4–5 orders of magnitude essentially leaves the shape of the fluctuation 

profile unchanged. A recent study of MDM2 dynamics also showed that the correlations 

between dihedral angle motions were conserved while the motional amplitudes changed 

upon binding the p53-peptide ligand,49 which also supports the view that the conformational 

mechanisms are robustly maintained while the sizes of motions differ.

What distinguishes the different MSFs is their absolute size. The longer the simulation, the 

further the displacement of a residue from its mean position is. The increase in fluctuations 

is also evident from the root-mean-square-deviation (RMSD) profiles provided in Fig. S1. 

The RMSD from the original structure remains around 3.7 Å, which may be viewed as an 

indication of sampling the native state energy minimum even though this state may comprise 

narrowly distributed microstates that differ in their local conformers. But the fluctuations 

around the average RMSD increase with increasing simulation time, consistent with the 

observed dependence of <(ΔRi)2> on the duration of the simulation. In order to uncover 

whether and what kind of dependency exists between the MSFs and the simulation time, we 

analyzed the data further (below).

The increase in residue MSFs with simulation duration obeys a power law

First, we consider two sets of trajectories, corresponding to two simulation times, e.g., tMD1 

= 1 ns and tMD2 = 5 ns. Fig. 3A displays the <(ΔRi)2> values of residues 2 ≤ i ≤ 101 for 

these two time windows: the abscissa represents the MSFs observed in MD1, and the 

ordinate, that in MD2. Linear regression of the data yields a correlation coefficient R2 of 

0.95, the slope of which, 1.34 in the present case, represents the average ratio of residue 

MSFs observed in MD2 to those in MD1. In other words, increasing the simulation time by 

a factor of 5 increases the residue MSFs by 34%, on average. Panel B represents a similar 
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plot for two other time windows, tMD3 = 25 ns and tMD5 = 400 ns, which, in turn, yields a 

slope of 2.14, i.e., increasing the simulation time by a factor of 16 enhances the square 

displacements by a factor of 2.14.

Repeating the same analysis for all pairwise combinations of simulation times, tMDk for k = 

1–5 (5!/3!2! = 10 of them), yields the master curve displayed in Fig. 3C. The data points 

show the enhancements in the MSFs accompanying the increases in the simulations, also 

listed in Table SI, for each pairwise combination. In other words, the ratio of MSFs for each 

pair of MD runs is plotted against the ratio of simulation times in Fig. 3C. Each point 

represents the average behavior of all residues, averaged over multiple runs, i.e., the 

resulting dependence represents the outcome from the complete dataset of trajectories with a 

cumulative simulation time of 2 μs. Note that the scales of both, abscissa and ordinate, is 

logarithmic and a linear relationship on such a log-log plot indicates a power law of the form 

y ~ xα. The value of the exponent is evaluated from the slope of the best fit and is 0.26. 

Thus, the overall dependence is

(2)

The subscript i in <(ΔRi)2> has been removed since the MSFs refer to averages over all 

residues. Eq. (2) conveys two messages: (i) the MSFs observed in MD simulations depend 

on the duration of the simulations, and (ii) the dependence obeys a power law, with 

exponent 0.26. While this dependence seems small, it maps to displacements of 

<(ΔR)2>MD1 = 0.5 Å2 for tMD1 = 1 ns, and <(ΔR)2>MD5 = 2.6 Å2 for tMD5 = 400 ns. Thus, 

the square amplitudes of motions are enhanced by a factor of ~ 5 in long simulations. The 

major difference between short and long runs appears to be the larger excursions undertaken 

by the molecule around the native state energy minimum in longer runs, while the preferred 

directions of motions exhibit little, if any, changes.

The power law observed in present simulations (Eq. (2)) applies to CV-N equilibrium 

dynamics near its native state; it cannot be extended to larger scale transitions, such as those 

occurring during unfolding events. Evidently, the shape of the native state energy minimum 

defines the maximal size of fluctuations accessible to a given protein under native state 

conditions, and those beyond a certain range inevitably fall into new energy minima, 

including the unfolded state; and fluctuations in the unfolded state are limited by chain 

connectivity or covalent bonds. Such structural changes involving partial or complete 

unfolding events are beyond the range of current equilibrium simulations which maintain the 

native fold. The increase in the motional amplitudes simply reflects the sampling of a 

broader range of the global energy basin with increasing time window (up to 400 ns), and 

suggests that the observed MSFs simply reflect the portion of the global energy basin that is 

being accessed in a given run.

We further analyzed the behavior of each residue. Calculations yielded a range from 0.13 to 

0.46, for the exponent α, depending on residue position/conformation (see Fig. 4). Larger 

exponents indicate a more pronounced dependence of the fluctuation sizes on the simulation 

time, i.e., residues with larger exponents enjoy larger conformational freedom. Examining 
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the exponents with respect to secondary structure elements clearly indicated that loop 

residues possess larger exponents than their neighbors located in helices and β-strands. 

Another interesting observation is the distinctive distributions of exponents in the two 

structurally similar, but distinct, domains of CV-N. Fig. 4 suggests that in some cases it may 

be possible to use the exponent of individual residues or substructures to gain information 

on intrinsic dynamics, or conformational flexibility, which, in turn, may inform on 

functional properties.

The above power law relationship suggests that there may be a time-dependent 

conformational drift throughout our simulations, even though we are exploring the 

neighborhood of the native state energy minimum. The deviation of the time-dependence of 

observed motion from that of a classical Brownian motion (where the exponent α is unity) 

might be attributed not only the subdiffusive motion which has been suggested to originate 

from the trapping in a local minimum/sub-state of the native state in the energy 

landscape35,50 and from the sampling of infrequent and large jumps between such local 

minima,51 but also to the bounded motion of the protein constrained by native contact 

topology in addition to covalent bonds.

Comparison of essential modes extracted from different MD runs

Towards gaining a better understanding of the physical basis of the comparable RMSF 

profiles observed at different time scales (Fig. 1) and identifying the shared mechanisms that 

underlie the observed similarity across different time windows, we examined the principal 

motional modes sampled in simulations of different lengths. To this end, we decomposed the 

CV-N motions in each MD trajectory into a series of collective modes, each ranked by their 

weights. We focused on the top-ranking modes (global modes), also called essential modes, 

since these are usually the most collective modes and numerous applications have shown 

their relevance to biological function.1

We considered two most extreme runs: the 1 ns and 400 ns simulations. The global (lowest 

frequency) mode obtained from two such runs is illustrated in Fig. 5, panels A and B. 

Strikingly, although one might expect that the longer simulations probe more collective 

motions that only emerge at longer time scales, the global motional behavior is remarkably 

similar in the two runs. The correlation coefficient between the two modes is 0.77, 

suggesting that the global modes at either short or long times share robust features that are 

uniquely defined by the structure, and can be extracted to a good approximation from short 

runs.

To validate these findings, the first two modes of two 400 ns simulations were compared 

with the global modes extracted from all other shorter simulations. The results of this 

analysis are presented in Table SII. Thirty-two of all fifty-six short (≤ 100 ns) simulations 

yielded global motions similar to those in the first 400 ns simulation, with similarity defined 

as a correlation coefficient > 0.6 between the two modes. A very similar result was obtained, 

performing the analysis for the second 400 ns simulation. Even though not all the different 

length simulations in our dataset converged completely, a large fraction of them share the 

low frequency motions with the longest runs.
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The correlation between the global mechanisms of motions sampled in runs of different 

durations becomes even more apparent when we combine trajectories from all individual 

runs with the same duration, and compare the principal modes of motions computed for each 

combined trajectory. The results, presented in Table II, further confirm that the directions 

(not the size) of the global motions are effectively conserved across runs of various lengths, 

although the orders of the modes (shown in parentheses) may shift in some cases. This 

analysis also underscores the importance of carrying out multiple simulations and subjecting 

the compiled data to mode decomposition in order to detect the ‘consensus’ global modes 

and extract information on collective mechanics.27,52

Given that the top-ranking modes of motions from long simulations can be extracted to a 

good approximation from short simulations (provided that multiple runs are combined), 

insights into biological motions of low frequencies may be gained via multiple short 

simulations. The explanation for such unexpected behavior may lie in the nature of the 

folding energy landscape. The energy space may be described in terms of an orthogonal 

basis set, with each basis vector defining a different mode of motion. If the global modes of 

motion in long and short simulations, respectively, display the same patterns, this suggests 

that the molecule tends to move along the same direction or to sample the same subspace, in 

both cases, although the amplitudes of the displacements differ.

Both ENM and NMR results are consistent with the MD simulation results

As further verification of the relevance of our findings to CV-N dynamics, we performed the 

GNM21,22 analysis of the PDB structure 2EZM, the NMA53,54 of the same structure using 

the ANM,40 and the PCA of the NMR ensemble of 40 structural models for CV-N.32 ANM 

modes have been observed in previous studies to correlate with the structural dynamics 

intrinsically accessible to enzymes1,55,56 and with the microseconds dynamics of G-protein 

coupled receptors.27 The distribution of NMR models also provides information on 

structural variabilities, which may be compared to those observed in MD runs.36,57,58

The correlations between the distribution of MSFs predicted by the GNM, <(ΔRi)2>GNM, 

and those observed in different MD runs are presented in Table I. The correlations vary from 

0.60 (with <(ΔRi)2>100ns,avg) to 0.74 (with <(ΔRi)2>25ns,avg). Here the subscript designates 

that the MSFs refer to the averages over multiple MD runs of a given duration (e.g., 12 runs 

of 25 ns each, or eight runs of 100 ns, etc). These results are consistent with our previous 

findings where correlations of 0.64 ± 0.04 were obtained36 between GNM-predicted MSFs 

and the MSFs inferred from multiple 10 ns MD simulations. The results presented in Fig. 

5C, Table II row 5 and Table SIII further show that the global modes predicted by the ANM 

correlate with the global modes derived from MD simulations, irrespective of the length of 

the simulation.

Tables II also displays the correlations between the principal modes of structural deviations 

inferred from NMR models (last row) and global modes observed in MD simulations. The 

correlations between the NMR principal modes and MD global modes, 0.55 ± 0.06, are not 

as high as those among MD runs with different lengths, 0.68 ± 0.11 (Table II). This may be 

attributed to the fact that there are only 40 models in the NMR ensemble, which may not 

provide a complete description of the accessible reconfigurations. The level of agreement 
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appears to decrease with increasing simulation duration, presumably be due to the 

inadequate sampling of the accessible (larger) conformational subspace by fewer 

independent runs. Finally, we examined the subspace spanned by the first ix global modes 

extracted from MD simulations, the NMR ensemble, and ANM predictions. As observed in 

Table SIV, there are large overlaps between these subspaces, with an average RMSIP (root 

mean-square inner product)59 of 0.59 ± 0.11. The observed subspace similarities at the low 

frequency region suggest the global motions observed in MD simulations and those 

predicted by the ANM share robust features uniquely encoded by the equilibrium structure.

The conformational dynamics usually consists of a continuous spectrum of motions, with 

varying frequencies and amplitudes. As such, it can hardly be divided into two distinctive 

groups, fast and slow. However, in the literature, for simplicity, two time regimes have been 

defined, sub-τc and supra-τc, to describe fast and slow motions, respectively. τc is the 

correlation time deduced from T1/T2 ratio measured by NMR spectroscopy. 12, 60 In the case 

of CV-N, the experimentally measured τc is 4.5 ns.48 Therefore, the time scale of present 

simulations includes motions in the ‘fast’ regime, as well as ‘slow’ regime. The frequency 

range of slow motions varies by two orders of magnitude up to 0.4 microseconds time scale. 

The conclusions drawn therefore apply to this time regime. Yet, it is worth noting that the 

most cooperative (global) modes of internal motions derived from short and long 

simulations share close similarities (compare, for example, panels A and B in Fig. 5). 

Furthermore, these global motions exhibit reasonable agreement with the results from ANM 

calculations, and NMR data, which also supports the robustness of the results from 

simulations and the fact that these robust modes are uniquely defined by the architecture.

CONCLUSION

In the present work, we have analyzed the amplitudes and directions of residue motions in 

multiple MD runs of durations varying in the range 1 ns – 400 ns. The simulation conditions 

were identical in all runs, except for the lengths of the simulations. Our data show that the 

distribution of residue fluctuations, or the MSF profile, is insensitive to the simulation 

length, while the amplitudes increase with simulation time. The square amplitudes exhibit a 

power law dependence on the simulation time, while the correlation times are linearly 

dependent. These findings suggest that the types of motions, but not their absolute size 

scales, can be accurately extracted from MD runs in the observed time regime, which 

includes both sub- and supra-τc motions up to hundreds of nanoseconds. Accurate 

assessment of the distribution of residues, however, and extraction of the global modes that 

predominantly define the common features of the RMSFs observed at various time 

windows, require performing multiple simulations and decomposing (by PCA) the 

trajectories to identify consensus modes.

The present study also explains why and how simulations that sample several order of 

magnitude faster events may provide insights into the conformational mechanics of much 

slower processes. Our in-depth examination of the spectra of essential modes retrieved from 

the different simulations suggests that highly robust and usually functional modes that 

persist (or fully evolve) at longer times can be discerned even in short simulations provided 

that the dominant modes are extracted by a PCA of the combination of multiple trajectories. 
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The motions are robustly defined by the shape of the native state energy minimum, which 

apparently governs protein fluctuations not only in the close neighborhood but also during 

relatively large excursions away from the minimum. The fact that the GNM and ANM 

results are consistent with MD simulation results also points to the dominance of shape of 

the energy landscape near the native state minimum in defining the accessible routes/modes 

of reconfiguration.

The observations made here for CV-N are consistent with different levels of coverage of the 

native state energy well, shorter simulations covering the bottom only, while longer 

simulations reaching distant locations while remaining in the same well. CV-N’s high 

stability at room temperature61 made it a good candidate for performing extended 

simulations without the risk of significant structural changes or large conformational drift. In 

principle, the shape of the energy landscape would affect the observed shifts in fluctuation 

profiles. One might expect to see a broad range of excursions under native state conditions 

when that the structure’s stability is mainly entropic in nature, i.e., when the structure has 

access to multiple microstates while maintaining its native fold. In such cases, the observed 

size of fluctuations would exhibit a relatively more pronounced dependence on the 

simulation duration. This behavior is evidenced by the higher exponent observed in loop 

regions that enjoy multiple conformations. It remains to be seen if the residue fluctuation 

profiles of proteins predominantly stabilized by enthalpic interactions (native state 

characterized by a deep, but not necessarily broad energy, minimum), exhibit any shifts 

similar to those observed here for CV-N prior to the onset of their unfolding.
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Figure 1. 
Experimental and computational literature data exhibit similar motional behavior for short 

and long times. (A) Order parameters S2 of G protein B 3 extracted from NMR data: spin-

relaxation,7 dashed black; and RDC,8 solid black. (B) Order parameters S2 of GB1 extracted 

from MD trajectories12 of 10 ns (dashed black) and 175 ns (solid black). Secondary 

structure elements are depicted at the top of each panel.
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Figure 2. 
Mean-square-fluctuation profiles of CV-N from simulations with different durations. The 

MSFs <(ΔRi)2> of residues averaged over twenty independent 1 ns, sixteen 5 ns, twelve 25 

ns, eight 100 ns and two 400 ns runs are shown in blue, red, green, magenta, and black, 

respectively. Secondary structure elements of the protein are depicted at the top with 

disulfide bonds represented by dashed yellow lines and residues in the sugar binding sites 

labeled by asterisks. The inset shows the CV-N structure in ribbon representation. Domains 

A and B are colored green and blue, respectively, and the two sugar binding sites are colored 

red. Amino acid sequence positions are labeled for every 10th residue.
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Figure 3. 
The magnitude of the fluctuations increases with increasing simulation time. (A) and (B) 

Comparison of MSFs for different simulations. (A) <(ΔRi)2> of residue i in the 5 ns 

simulation (y axis) is plotted against <(ΔRi)2> of the same residue in the 1 ns simulation (x 

axis). (B) <(ΔRi)2> of residue i in the 400 ns simulation (y axis) versus <(ΔRi)2> of the 

same residue in the 25 ns simulation (x axis). (C) The relationship between MSF and 

simulation time is a power function, with exponent 0.26. The MSF scaling factors for 

different simulations are plotted against the corresponding ratios of simulation lengths.
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Figure 4. 
Power law exponents for CV-N residues. The results are shown on domain A (green), and 

domain B (blue). The upper abscissa displays residue positions in domain A, and the lower 

abscissa, the residue positions in domain B. The secondary structures with disulfide bonds 

(dashed yellow lines) are represented on the top, and residues comprising the binding sites 

are labeled by asterisks.
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Figure 5. 
Shared global mode between theory and simulations. The CV-N backbone structure is 

shown in tube representation (red) with the directions of the global motion for the 1 ns 

simulation (A) and the 400 ns simulation (B), or the second mode predicted by the ANM (C) 

depicted by blue, green, and yellow arrows, respectively. The correlation coefficients 

between pairs of modes displayed are 0.77 (blue/green), 0.69 (blue/yellow), and 0.64 (green/

yellow). Primary sequence positions are labeled for every 10th residue.
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