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Abstract
Background—Auditory mismatch negativity (MMN) and P300 event related potentials (ERP)
are reduced in schizophrenia patients, and healthy volunteers administered the N-methyl-D-
aspartate (NMDA) glutamate receptor antagonist, ketamine. In rodents, N-acetylcysteine (NAC), a
stimulator of the cystine-glutamate exchanger, attenuates the cognitive and behavioral effects of
NMDA receptor antagonists. Based on these findings, we tested whether NAC would reduce
ketamine effects on behavior, MMN, and P300 in healthy humans.

Methods—This randomized, double-blind, placebo-controlled study consisted of two test days
during which subjects (N=16) were administered oral NAC (3000 mg in divided doses) or
matching placebo 165 minutes prior to the infusion of saline and then ketamine (as a bolus of 0.23
mg/kg over one minute followed by 0.58 mg/kg for 30 min, and then 0.29 mg/kg for 40 min) in a
fixed order. Behavioral and ERP data including auditory MMN and P300 were collected during
each test day.

Results—Ketamine produced psychotic-like positive symptoms, reductions in working memory
and sustained attention performance, and amplitude reductions for the frequency- and intensity-
deviant MMNs and P300. NAC pretreatment did not reduce the behavioral or ERP effects of
ketamine. In addition, NAC reduced frequency-deviant MMN amplitude and increased target and
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novelty P3 amplitudes. The decrements in frequency-deviant MMN amplitude produced by
ketamine and NAC were not additive.

Conclusions—In contrast to previous studies in animals, NAC did not attenuate the effects of
ketamine in humans. NAC merits further investigation as a cognitive enhancing agent due to its
ability to increase the P300 amplitude.

Keywords
NMDA; glutamate; N-acetylcysteine; P300; MMN; ketamine

Introduction
The noncompetitive N-methyl-D-aspartate (NMDA) glutamate receptor antagonist ketamine
produces cognitive and behavioral effects that bear resemblance to the features of
schizophrenia (1–3). Several event related potentials (ERP) that are reduced in
schizophrenia, including mismatch negativity (MMN) (4, 5) and P300 (6–11) appear
sensitive to the effects of ketamine (12–15).

ERPs provide a quantitative assessment of neural activity. MMN is a negative voltage
deflection in the auditory ERP that peaks around 100–150 ms following any discriminable
deviant sound occurring during a series of repeated standard sounds (16). The MMN is
automatically elicited by deviant sounds, even when attention is directed away from the
auditory channel.

The P300 is a positive voltage deflection that peaks around 300 ms after the presentation of
an infrequent target, novel, or otherwise salient stimulus. P300 amplitude is thought to
reflect attentional resource allocation (17, 18), phasic attentional shifts (19), working
memory updating of stimulus context (20, 21) or stimulus salience (22, 23). Its latency is
thought to reflect processing speed or efficiency during stimulus evaluation (24). P3b is the
P300 elicited by infrequent task-relevant target stimuli and reflects top-down allocation of
attentional resources with a parietal scalp maximum. P3a is the P300 elicited by infrequent
task-irrelevant deviant stimuli, which are either novel or otherwise salient (25–27). It
reflects “bottom-up” orienting of attentional resources with a fronto-central scalp maximum
(28).

Because ketamine induces symptoms, cognitive and electrophysiological abnormalities that
are similar to those observed in schizophrenia, agents that attenuate the effects of ketamine
in humans are of interest for drug development (29). Drugs enhancing the activity of the
cystine-glutamate exchanger have been proposed as an exemplar of this approach (30). The
cystine-glutamate exchanger is expressed primarily in glial cells, but also in neurons (31, 32)
where it exchanges intracellular glutamate (Glu) for extracellular cystine (Figure 1). This
non-vesicular release of Glu into the extracellular space stimulates the presynaptic
metabotropic Glu receptors (mGluR2/3) (33, 34) that function as autoreceptors and inhibit
Glu release (35, 36).

Baker and colleagues (2008) reported that stimulation of the cystine-glutamate exchanger by
N-acetylcysteine (NAC) attenuated the behavioral and cognitive effects of phencyclidine
(PCP), a potent noncompetitive NMDA receptor antagonist. NAC delivers cysteine that is
oxidized to cystine in the extracellular space. The supply of cystine to the cells is a rate-
limiting step for the synthesis of glutathione (GSH), a major antioxidant. Given reduced
GSH concentrations in the cerebrospinal fluid and prefrontal cortex in schizophrenia (37),
stimulation of the cystine-glutamate exchanger by NAC may be beneficial in this disorder
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(38). In a clinical trial, NAC augmentation reduced symptoms (30) and another study
reported increase in MMN amplitude (39) in schizophrenia patients.

Our goal was to determine whether NAC pretreatment would attenuate the effects of
ketamine on behavior, cognitive function, and ERPs in healthy humans. We predicted that
ketamine would increase positive and negative symptoms, reduce working memory and
sustained attention performance, decrease MMN and P300. Based on the preclinical findings
above, we also predicted that NAC pretreatment would attenuate ketamine’s effects.

Methods and Materials
Subjects

The study was approved by the Institutional Review Boards of Yale Medical School and the
VA Connecticut Healthcare System. Healthy volunteers were recruited by advertisements.
All subjects gave written informed consent. They had no personal or family history of
psychiatric or substance abuse disorders as determined by Structured Clinical Interview for
DSM-IV, non-patient edition. Additionally, a family member or friend was contacted to
verify the information about the participant. Subjects were instructed to abstain from
psychoactive substance use for the duration of the study, including one week before and
after. Majority of the subjects were nonsmokers (14/16). The 2 smokers (1–2 cigarettes/day)
did not smoke on the test days, and showed no signs of withdrawal. Urine toxicology and
pregnancy tests were performed on each study day. Females were studied during the
follicular phase of their menstrual cycle (40, 41).

Study Design
The study was a double-blind, placebo-controlled study, consisting of two test days, where
subjects were randomized to active NAC on one and placebo NAC on the other test day.
Due to the potent effects of ketamine, blinding of ketamine was not possible. The test days
were at least 3 days apart (median: 7 days, 3 min, 65 max). NAC and placebo capsules were
administered orally in divided doses; 2000 mg followed by 1000 mg two hours later. Each
morning, 165 min after NAC or placebo administration, subjects received a one-minute
bolus of normal saline, followed by a 70 min long saline infusion during which behavioral,
cognitive and ERP data were collected. The order of tests were fixed and included the
following: Spatial working memory (SWM), Rapid visual processing (RVP), P300, MMN,
Positive and Negative Syndrome Scale, PANSS (42–44) general and positive and negative
subscales, the Clinical Administered Dissociative States Scale, CADSS (45), and a Visual
Analog Scale of mood states, VAS. The modified PANSS (general) was administered at
baseline and end of the test day (exit interview). Ketamine was administered intravenously
as a bolus of 0.23 mg/kg over one minute followed by 0.58 mg/kg for 30 min (SPM and
RVP), and then 0.29 mg/kg for 40 min (P300 and MMN). PANSS subscales, CADSS and
VAS were collected immediately following ketamine infusion.

Cognitive measures
Cognitive performance was assessed using Spatial Working Memory (SWM) and Rapid
Visual Processing (RVP) tasks administered using a computerized cognitive assessment
battery (CANTAB) (46). Working memory and attention have been consistently shown to be
impaired in schizophrenia (47, 48) and in healthy volunteers administered ketamine (43).
SWM is a test of spatial working memory and strategy performance. RVP is a test of visual
sustained attention with a small working memory component. Details on these tests are
available in the Supplement.
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ERP tasks
Subjects were seated in comfortable chairs in front of an LCD video display in an
acoustically shielded, dimly lit, testing chamber. They were monitored by video and could
interact with the research assistant. The subjects’ responses were continuously monitored on
a screen outside the chamber for drowsiness and task performance. EEG data were recorded
with Neuroscan Synamps amplifiers using a 1000 Hz sampling rate and a bandpass filter of .
05 to 100 Hz. For further information, please see Supplement.

The MMN paradigm, which was adapted from Näätanen and colleagues (49) comprised
three runs, each including frequent (50 % probability) standard tones and three types of
infrequent deviant tones (16.7 % probability for each type) presented every 500 ms. Details
of the MMN paradigm are available in the Supplement.

The auditory oddball (P300) paradigm included three runs, each containing a pseudo-
random sequence of 150 stimuli comprising 120 standards (80%), 15 targets (10%) and 15
novels (10%) presented with a stimulus onset asynchrony (SOA) of 1250 ms. For more
information on the P300 paradigm, please see the Supplement. The ERP data and signal
processing methods are detailed in the Supplement.

Physiological Measures/Adverse Events
Blood pressure and heart rate were monitored at regular intervals. Adverse events were
monitored before and after each test session. Ketamine levels were collected 10 minutes into
each infusion. Long-term safety assessments were completed at 1 week, 3 and 6 months
following study completion.

Statistical Analysis
All variables were examined for normality using normal probability plots and Kolmogorov-
Smirnov test statistics. Because of the skewed distributions of the SWM task performance
and other behavioral data, nonparametric analyses were performed (50). The raw behavioral
data were first converted into ranks and then were entered into a mixed model with NAC
(active vs placebo) and time (baseline, saline, ketamine, exit) as within-subject factors and
subject as the clustering factor. The variance-covariance structure was unconstrained. Of
main interest in all analyses was the NAC (NAC vs placebo) × ketamine (saline vs
ketamine) interaction. Contrasts were used to parse any significant interactions or main
effects. The overall alpha level for each scale (PANSS, CADSS, VAS) was fixed at p =
0.05. We used Bonferroni corrections for testing subscales, (e.g., PANSS positive and
negative symptom subscales). Because this is an entirely within-subject design, we have not
controlled for between-subject factors (such as education and gender). All other outcome
measures conformed to normality, so they were analyzed without the use of any
transformations, using linear mixed models with NAC (active vs placebo) and ketamine
(saline vs ketamine) as within-subject factors, subject as a random effect and an unstructured
variance-covariance matrix for condition within subject. The same post-hoc testing
procedure as described above was used to parse any observed significant interactions and
main effects. Bonferroni correction for six RVP measures was applied. Order effects were
considered, but they were dropped from the models because they were not significant.
Alternative correlation structures were also considered but dismissed because they did not fit
the data as well according to Schwartz Bayesian Criterion (BIC).

ERP data analysis
The ERP data from the MMN and P300 paradigms were normally distributed. For the MMN
data, a mixed model was fitted to examine the effects of NAC, ketamine and their
interaction on MMN amplitude. The fixed factors were NAC (NAC vs placebo), ketamine
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(ketamine vs saline), stimulus type (intensity, frequency, duration) and electrode (Fz, Cz,
Pz). For the P300 paradigm, a separate mixed model was fitted to examine the effects of
NAC, ketamine, and their interaction on P300 amplitude to targets and novels. The fixed
factors were NAC (active vs placebo), ketamine (ketamine vs saline), stimulus type (target
vs novel) and electrode (Fz, Cz, Pz). In both models, all possible interactions among the
fixed factors were considered and backward elimination procedure was used to drop non-
significant effects under the constraint that at each step the model had to be hierarchically
well formulated. Because the NAC × ketamine interaction was of utmost interest, it was
always kept in the models regardless of significance. Both models included a random effect
for subject, a NAC × ketamine within-subjects effect, and a structured variance-covariance
matrix across electrodes and stimulus types. The best fitting variance-covariance structure
was selected based on BIC. To explain significant interactions in the model, post-hoc
contrasts were performed.

Results
The subjects were healthy volunteers with a mean age of 27 ± 5.6 years, 13 males and 3
females, all right handed, with mean education of 16.8 ± 2.2 years and estimated IQ of 118.9
± 12.1 as measured by the National Adult Reading Test (NART). Fourteen of the subjects
were Caucasian, one was Native American and one was Hispanic. A total of 43 subjects
were consented; 21 of them never initiated the study due to ineligibility or scheduling
conflicts, and 6 subjects dropped out. Sixteen subjects completed the study procedures.
There were no serious adverse events. Four subjects reported mild nausea following the
ketamine bolus, but were no longer nauseated by the time data collection was initiated.
Plasma ketamine levels did not differ significantly between the active (mean 75.7 ± 32 ng/
ml) and placebo NAC (mean 66.4 ± 23.8 ng/ml) days [F(1,12)=3.33, p=0.10]. Ketamine led
to significant increases in blood pressure and heart rate (all p<0.001). Ketamine’s effect on
the vital sign changes did not differ significantly between the placebo and active NAC test
days (all p>0.5).

Behavioral results
Ketamine increased PANSS positive symptom scores [ANOVA type statistic (ATS)=119.6,
df=2.1, p<.0001], but did not affect PANSS negative symptoms [ATS=1.1, df=1, p=0.31].
NAC did not produce positive or negative symptoms and did not modulate ketamine effects
on PANSS positive symptoms [NAC × time: ATS=0.90, df=2.1, p=0.41]. For PANSS
negative symptoms, there was a significant NAC × time interaction [ATS=6.58, df=1,
p=0.01], where PANSS negative symptoms were higher at exit than at baseline on the NAC
day [ATS=4.15, df=1, p=0.04], but the difference between baseline and exit values did not
survive correction for multiple testing.

Analysis of CADSS clinician-rated items revealed that ketamine increased dissociative
symptoms [Time ATS=180.1, df=1.4, p<.0001], with significant post-hoc comparisons of
ketamine to other conditions (all p<.0001); however, there were no differences in these
increases due to NAC [NAC × time, ATS=0.13, df=1.0, p=0.73]. CADSS self-rated items
showed a similar pattern of results with only a significant time effect [ATS=159.0, df=1.6,
p<.0001], indicating higher scores during ketamine than during saline, baseline and post-
ketamine assessments (all p<.0001). CADSS self-rated scores during saline were also
significantly higher than during baseline and exit (both p=0.002), but there were no
differences in these increases due to NAC [NAC × time, ATS=0.52, df=1.5, p=0.54].

For VAS anxiety scores, only a significant time effect was observed [ATS=9.8, df=2.0, p<.
0001]. VAS anxiety scores at post-ketamine were significantly lower than VAS anxiety
scores during baseline, saline and ketamine assessments (all p<.0001). There were no
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significant differences due to NAC [NAC × time, ATS=0.23, df=2.2, p=0.82]. VAS
euphoria scores showed only a significant time effect [ATS=35.8, df=2.2, p<.0001] where
higher scores were found during ketamine infusion than during baseline, saline and post-
ketamine assessments (all p<.0001). There were no significant differences due to NAC
[NAC × time, ATS=0.88, df=2.6, p=0.43].

Cognitive tests
For SWM “between searches error” (8 boxes, defined as occasions upon which the subject
revisits a box in which a token has previously been found), a significant ketamine effect was
observed [ATS=3.8, df=1, p=0.05], which did not survive correction for multiple tests.
SWM between searches error scores during ketamine were higher than during saline. The
NAC × ketamine interaction was not significant [ATS=2.6, df=1, p=0.11]. SWM “within
search error” (8 boxes, defined as the number of errors made within a search, i.e., repeated
responses to a box previously opened and shown to be empty) showed a significant
ketamine effect [ATS=11.7, df=1, p=0.0006]. SWM within search error scores during
ketamine were higher than SWM within search error scores during saline. The NAC ×
ketamine interaction was not significant [ATS=0.15, df=1, p=0.70].

The RVP A', (a signal detection measure of sensitivity to errors), showed a significant
ketamine effect [F(1,41)=12.1, p=0.001] where A' was significantly lower (worse
performance) on ketamine than on saline. The NAC × ketamine interaction was not
significant [F(1,41)=1.4, p=0.25]. For the probability of “Hit”, a significant ketamine effect
was observed as well [F(1,41)=13.0, p=0.0008], where the probability of hit was
significantly lower on ketamine than on saline. The NAC × ketamine interaction was not
significant [F(1,41)=1.7, p=0.20]. Similarly, for RVP number of correct rejections, a
significant ketamine effect was observed [F(1,41)=4.9, p=0.04], but failed correction for
multiple tests. RVP correct rejections during ketamine were decreased than during saline.
The NAC × ketamine interaction was not significant [F(1,41)=0.3, p=0.58].

ERP results
MMN—We found no drug effects on the number of epochs for MMN deviants (all p>0.15).
There was a significant NAC × ketamine × stimulus type interaction effect on MMN
amplitude [F(2,494)=5.91, p=0.003]. Post-hoc tests revealed significant NAC × ketamine
interactions for the frequency [F(3,494)=4.28, p=0.005] and intensity [F(3,494)=5.44,
p=0.001], but not the duration [F(3,494)=1.1, p=0.3] deviants (Table I; Figures 2 and 4).
Ketamine alone reduced MMN amplitude for the intensity deviant [F(1,494)=7.3, p=0.007].
Ketamine’s effect on the intensity deviant remained significant [F(1,494)=8.82, p=0.003]
despite pretreatment with NAC. Both NAC alone [F(1,494)=5.43, p=0.02] and ketamine
alone [F(1,494)=11, p=0.001] reduced MMN amplitude for the frequency deviant. For the
frequency deviant, the effect of NAC and ketamine given together was no different from the
effect of NAC alone [F(1,494)=0.26, p=0.6] or that of ketamine alone [F(1,494)=0.23,
p=0.6].

The auditory oddball (P300) paradigm
Correct responses and reaction times—There were no drug effects on the number of
epochs for the P300 paradigm (statistics not performed due to limited variability). For
percent correct responses to targets, there were no significant effects of ketamine [ATS =2.3,
df=1, p=0.13], NAC [ATS =0.02, df=1, p=0.9], or NAC × ketamine interaction [ATS =0.02,
df=1, p=0.9]. For target reaction times, the findings were similar; there were no significant
effects of ketamine [ATS =2.1, df=1, p=0.15], NAC [ATS =0.15, df=1, p=0.7], or NAC ×
ketamine interaction [ATS =0.14, df=1, p=0.7].
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P300—In the overall model, there was a significant ketamine effect [F(1,313)=27.6,
p<0.0001], indicating that P300 amplitudes were smaller on ketamine than on saline (Table
I, Figures 3 and 4). This ketamine effect significantly depended on electrode (ketamine ×
electrode interaction [F(2,313)=9.94, p<0.001]), with the effect evident at Cz
[F(1,313)=23.4, p<0.0001] and Pz [F(1,313)=27.3, p<0.0001] but not Fz [F(1,313)=2.76,
p=0.1]. However, the ketamine effect did not significantly interact with the stimulus type
[F(1,310)=0.70, p=0.40]. Similarly, the ketamine × electrode interaction did not significantly
depend on stimulus type [F(2,310)=0.31, p=0.73], indicating that ketamine produced similar
reductions in the amplitudes of both target P3a and novelty P3b at central and parietal sites
(see Figure 3). While there was no main effect of NAC [F(1,313)=1.83, p=0.18], there was a
significant NAC × ketamine interaction [F(1,313)=5.58, p=0.02]; Figures 3 and 4. Post-hoc
tests showed that NAC alone, relative to placebo, significantly increased P300 amplitudes
[F(1,313)=5.29, p=0.02], an effect that did not significantly depend on stimulus type
[F(1,300)=0.46, p=0.50], electrode [F(2,300)=0.54, p=0.58], or their interaction
[F(2,300)=0.45, p=0.64], However, NAC pretreatment, relative to placebo, did not
significantly modulate P300 amplitude during ketamine administration [F(1,313)=0.01,
p=0.9]. Thus, despite NAC’s enhancing effect on P300, it did not prevent or attenuate
ketamine’s reduction of P300 amplitude. Other significant effects included a stimulus type ×
electrode interaction [F(2,313)=57.72, p<.0001]; Figures 3 and 4, confirming the expected
parietal distribution of the target P3b and the more centro-frontal distribution of the novelty
P3a. There were significant differences between target and novel stimuli values for all
electrodes (all p<0.001) where novel stimuli values were higher than targets for Fz and Cz
and lower for Pz.

Discussion
As hypothesized, ketamine produced significant increase in PANSS positive symptoms,
reduction in working memory and sustained attention performance, and MMN and P300
amplitudes. Ketamine’s reduction of MMN was only evident for frequency and intensity
deviants, sparing the duration deviant. This underscores that the MMNs elicited by different
deviant types are not uniform in their underlying generators (51–53). Notably, the duration
deviant MMN has been shown to have the greatest sensitivity to the schizophrenia effect (5,
54). Ketamine produced similar reductions of both the target P3b and novelty P3a,
suggesting that it impacted the generators and/or neurophysiological mechanisms common
to both of these P300 sub-components.

NAC alone did not have significant effects on behavioral or cognitive performance, but it
reduced frequency-deviant MMN amplitude and significantly increased P300 amplitude.
However, unlike the findings in rodents, NAC pretreatment did not attenuate the behavioral/
cognitive and ERP effects of ketamine in healthy volunteers.

Neurochemical mechanisms activated by acute systemic ketamine administration have been
reviewed elsewhere (55–57). While in vitro, ketamine has affinity not only for NMDA but
several other receptors including dopamine (58), selective D2 agonist bromocriptine,
dopamine precursor L-dopa (59) and D1 and D2 agonist apomorphine did not affect P300
amplitude in healthy volunteers (60). Consistent with these findings, pretreatment with the
D2 antagonist haloperidol did not affect ketamine’s effect on P300 (61). Acute depletion of
precursors of dopamine and 5-hydroxytryptamine (5-HT) alone or in combination did not
modulate MMN (62). Similarly, haloperidol failed to block perceptual changes induced by
ketamine (63). These findings do not implicate the dopaminergic system as a primary
modulator of ketamine’s effect on ERP or behavioral indices, but are in keeping with a
disinhibited prefrontal network activity resulting from NMDA receptor antagonism (12–15,
64).
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Our findings suggest that in humans, stimulation of the mGluR2/3 receptors by NAC does
not enhance the NMDA receptor function impaired by ketamine. The dissociation between
the animal and human data may represent differences primarily in the effects of NAC, since
ketamine’s effects in humans paralleled those in rodents. It is possible that the distribution of
the cystine-glutamate exchanger that differs between species and locally in the brain plays a
role in this (31, 65). Interestingly, NAC supplementation in smaller doses (2000 mg /d vs
3000 mg/d in our study) was found to improve some symptoms in patients with
schizophrenia (66). While this discrepancy may suggest a limitation of the ketamine model
for schizophrenia, other explanations such as the effect of chronic NAC administration (6
months in the clinical trial vs single day pretreatment in our study) is difficult to rule out. In
another study, 2000mg/d NAC treatment over 2 months was associated with increase in
MMN in a small sample of schizophrenic patients (39), however, their MMN measurements
were confounded by N1, and the subjects’ attention was not diverted away from the auditory
channel that is typically done while studying MMN. Thus, their findings may have limited
relevance to our findings.

Glutamatergic modulation of MMN has been studied in detail using intracortical recordings
in primates (64) where PCP decreased MMN to the frequency and intensity deviants in a
dose dependent fashion. Our findings in healthy humans parallel these data showing reduced
MMN for the frequency and intensity deviants in response to ketamine. NAC, however,
produced a reduction of the frequency deviant MMN amplitude. The divergence of NAC’s
effects on pre-attentive processes (MMN) and attention-mediated processes orienting to
novelty and detection of targets may be due to the differences in regional distribution/
regulation of cellular mechanisms underlying generation of P300 (67–70) and MMN (16,
71, 72).

The fact that NAC enhanced P300 amplitude in healthy humans suggests that NAC further
increases the capacity of normally functioning glutamatergic networks subserving this
measure. This may be due to a transient increase in extrasynaptic Glu levels as NAC
promotes uptake of cystine into the cells in exchange for Glu, suggesting a role for NAC via
an extrasynaptic effect. Supporting this perspective, a recent study found that NAC
treatment was associated with a decrease in the binding potential of a tracer with affinity for
an allosteric site on mGluR5, which are extrasynaptically expressed (73). This suggestion
would further necessitate an inverted U-shape relationship between extrasynaptic Glu levels
and P300 amplitude, since ketamine induces potent increases in extrasynaptic Glu levels
(74) and leads to reduced P300, shifting from optimal peak glutamate levels to excessive
levels associated with the descending portion of the inverted-U function. Alternatively, the
effect of NAC on P300 may be linked to stimulation of presynaptic autoreceptors leading to
decreased Glu release, suggesting a synaptic effect as suggested by Baker and colleagues
(2008). This possibility more readily fits our observation since ketamine leads to enhanced
Glu release opposite to the effect of NAC, consistent with these agents’ divergent effects on
P300. The effect of NAC may also involve additional/alternative mechanisms including
increasing glutathione synthesis within the cells and/or its reducing properties as
demonstrated earlier (75). Further preclinical electrophysiological studies are needed to
clarify these mechanisms.

Regarding the methods, repeated measure designs as we have employed are sensitive to test
effects, however, by randomizing subjects to active and placebo NAC, we have minimized
this potential problem as our primary outcome measure was the effect of NAC pretreatment
on ketamine-induced changes. Our P300 paradigm was not traditional as the standard stimuli
were 20, 30 or 40 Hz click trains (500 ms) instead of typical higher frequency tones with
shorter duration. However, this is unlikely to affect the results because the same paradigm
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was used for all drug conditions. Moreover, our results on P300 are consistent with other
groups’ findings on ketamine using traditional P300 paradigms (12, 15, 61).

In summary, NMDA antagonism as modeled by systemic ketamine administration in healthy
volunteers led to expected changes in behavioral/cognitive measures and reduction in ERP
indices of pre-attentive reflections of sensory echoic memory (MMN), and top down (P3b)
and bottom up (P3a) attentional processes. NAC alone was associated with a reduction in
MMN for the frequency deviant and significant increases in P300 amplitude for both target
and novel stimuli. Pretreatment with NAC did not affect the changes induced by ketamine.
Our finding of interactive effects of NAC and ketamine for the ERP indices, but a lack
thereof for the behavioral/cognitive measures suggest that electrophysiological indices lay
more proximal to the biochemical processes induced by these agents and that further
mechanisms play a role in modulating complex behavior. These findings also suggest that
improvements in endophenotypes may not readily translate into functional improvement.
The beneficial effect of NAC on P300, a measure of target detection, merits further
investigation as a potential cognitive enhancing agent.
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Figure 1.
The interaction between the glial cystine–glutamate exchanger and presynaptic mGluR2/3.
NAC by supplying cystine, activates the exchanger, which leads to increased Glu in the
extracellular space. This stimulates the mGluR2/3 and reduces synaptic release of Glu
(Baker et al., 2008). In addition, by enhancing cystine uptake, NAC promotes the synthesis
of glutathione, which is a major antioxidant (Himi et al., 2003). Note that the cystine-
glutamate exchanger is also expressed on cortical neurons although subcellular localization
of the exchanger has not been well characterized (Burdo et al., 2006). Blue arrows, chemical
reaction/effect; line with bar, inhibition; pink arrows, transport.
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Figure 2.
Grand average difference wave ERPs for Intensity (left) and Frequency (right) deviants are
plotted from electrodes Fz, Cz, and Pz to show interactive effects of N-acetylcysteine (NaC)
and ketamine on auditory mismatch negativity (MMN) amplitude. Time is shown in
milliseconds (ms) on the x-axis and amplitude in microVolts (µV) on the y-axis. Scalp
topographic maps of MMN amplitude are shown for the negative peak chosen from the
grand average across all conditions at electrode Cz for Intensity (173ms) and Frequency
(139ms) deviants.

Gunduz-Bruce et al. Page 16

Biol Psychiatry. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Grand average ERPs for Targets (left) and Novels (right) are plotted from electrodes Fz, Cz,
and Pz to show interactive effects of N-acetylcysteine (NaC) and ketamine on auditory P300
amplitude. Time is shown in milliseconds (ms) on the x-axis and amplitude in microVolts
(µV) on the y-axis. Scalp topographic maps of P300 amplitude are shown for the positive
peak chosen from the grand average across all conditions at electrode Pz for Targets
(333ms) and Cz for Novels (319ms).
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Figure 4.
Interactive effects N-acetylcysteine and ketamine on auditory P300 (target and novel
stimuli) and MMN amplitude (intensity and frequency deviants) shown as least square
means and standard errors across conditions.

Gunduz-Bruce et al. Page 18

Biol Psychiatry. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Gunduz-Bruce et al. Page 19

Ta
bl

e 
I

M
ed

ic
at

io
n 

ef
fe

ct
s 

on
 M

ea
n 

Pe
ak

 A
m

pl
itu

de
s 

(L
ea

st
 s

qu
ar

es
 m

ea
ns

 a
nd

 s
ta

nd
ar

d 
er

ro
rs

) 
of

 P
30

0 
(t

ar
ge

t a
nd

 n
ov

el
),

 a
nd

 M
M

N
 d

if
fe

re
nc

e 
w

av
es

(i
nt

en
si

ty
, f

re
qu

en
cy

 a
nd

 d
ur

at
io

n 
de

vi
an

ts
) 

at
 m

id
lin

e 
el

ec
tr

od
es

 (
Fz

, C
z 

an
d 

Pz
).

P
la

ce
bo

+s
al

in
e

P
la

ce
bo

+k
et

am
in

e
N

A
C

+s
al

in
e

N
A

C
+k

et
am

in
e

P
30

0
T

ar
ge

ts
F

z
2.

5 
±

 0
.8

3.
2 

±
 0

.8
5.

2 
±

 0
.8

3.
4 

±
 0

.8

C
z

7.
7 

±
 1

.0
5.

5 
±

 1
.0

9.
9 

±
 1

.0
5.

4 
±

 1
.0

P
z

11
.8

 ±
 1

.1
8.

1 
±

 1
.1

12
.6

 ±
 1

.1
8.

2 
±

 1
.1

N
ov

el
s

F
z

5.
6 

±
 0

.8
5.

2 
±

 0
.8

7.
6 

±
 0

.8
5.

3 
±

 0
.8

C
z

10
.5

 ±
 1

.0
7.

0 
±

 1
.0

11
.5

 ±
 1

.0
7.

4 
±

 1
.0

P
z

10
.7

 ±
 1

.2
5.

7 
±

 1
.2

10
.8

 ±
 1

.2
6.

1 
±

 1
.2

M
M

N
In

te
ns

it
y

F
z

−
3.

5 
±

 0
.2

−
2.

7 
±

 0
.2

−
3.

4 
±

 0
.2

−
2.

6 
±

 0
.2

C
z

−
3.

2 
±

 0
.2

−
2.

5 
±

 0
.2

−
3.

4 
±

 0
.2

−
2.

6 
±

 0
.2

P
z

−
2.

1 
±

 0
.2

−
2.

0 
±

 0
.2

−
2.

4 
±

 0
.2

−
2.

1 
±

 0
.2

F
re

qu
en

cy
F

z
−

3.
3 

±
 0

.3
−

2.
7 

±
 0

.3
−

3.
1 

±
 0

.2
−

2.
9 

±
 0

.2

C
z

−
3.

3 
±

 0
.3

−
2.

6 
±

 0
.3

−
2.

7 
±

 0
.2

−
2.

5 
±

 0
.2

P
z

−
2.

3 
±

 0
.2

−
1.

7 
±

 0
.2

−
1.

8 
±

 0
.2

−
1.

9 
±

 0
.2

D
ur

at
io

n
F

z
−

3.
2 

±
 0

.3
−

3.
1 

±
 0

.3
−

3.
2 

±
 0

.3
−

2.
8 

±
 0

.3

C
z

−
3.

1 
±

 0
.3

−
3.

1 
±

 0
.3

−
3.

3 
±

 0
.3

−
2.

8 
±

 0
.3

P
z

−
2.

4 
±

 0
.2

−
2.

3 
±

 0
.2

−
2.

4 
±

 0
.2

−
2.

1 
±

 0
.2

Biol Psychiatry. Author manuscript; available in PMC 2013 June 01.


