
Method

Estimation of alternative splicing variability
in human populations
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1Bioinformatics and Genomics, Center for Genomic Regulation (CRG) and UPF, 08003, Barcelona, Catalonia, Spain; 2Departament

d’Estadı́stica, Facultat de Biologia, Universitat de Barcelona (UB), 08028, Barcelona, Catalonia, Spain; 3Functional Bioinformatics,
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DNA arrays have been widely used to perform transcriptome-wide analysis of gene expression, and many methods have
been developed to measure gene expression variability and to compare gene expression between conditions. Because
RNA-seq is also becoming increasingly popular for transcriptome characterization, the possibility exists for further
quantification of individual alternative transcript isoforms, and therefore for estimating the relative ratios of alternative
splice forms within a given gene. Changes in splicing ratios, even without changes in overall gene expression, may have
important phenotypic effects. Here we have developed statistical methodology to measure variability in splicing ratios
within conditions, to compare it between conditions, and to identify genes with condition-specific splicing ratios. Fur-
thermore, we have developed methodology to deconvolute the relative contribution of variability in gene expression
versus variability in splicing ratios to the overall variability of transcript abundances. As a proof of concept, we have
applied this methodology to estimates of transcript abundances obtained from RNA-seq experiments in lymphoblastoid
cells from Caucasian and Yoruban individuals. We have found that protein-coding genes exhibit low splicing variability
within populations, with many genes exhibiting constant ratios across individuals. When comparing these two pop-
ulations, we have found that up to 10% of the studied protein-coding genes exhibit population-specific splicing ratios. We
estimate that ~60% of the total variability observed in the abundance of transcript isoforms can be explained by vari-
ability in transcription. A large fraction of the remaining variability can likely result from variability in splicing. Finally,
we also detected that variability in splicing is uncommon without variability in transcription.

[Supplemental material is available for this article.]

The phenotypic differences observed between different cells (differ-

ent cell types within the same individual or the same cell type across

different individuals) are correlated to differences in the content of the

cell (i.e., the transcriptome). During the past years, many studies have

investigated transcriptome variation, mostly understood as variation

in gene expression. The goal of most of these studies is the identifi-

cation of genes showing differential expression (between individuals

and populations) that would correlate with phenotypic variation, but

also the localization of the genetic factors, such as single nucleotide

polymorphisms (SNPs) and copy number variants (CNVs), under-

lying changes in gene expression (i.e., expression Quantitative Trait

Loci, eQTLs) (Spielman et al. 2007; Storey et al. 2007; Veyrieras et al.

2008; Lalonde et al. 2011), or splicing (Zhang et al. 2009). Recently, Li

et al. (2010) have investigated gene expression variability as a phe-

notypic trait by itself, and thus likely to be subjected to selection.

In most of the mentioned cases, gene expression is measured

using DNA expression arrays. Unless specific designs are used, DNA

arrays produce only global gene expression values, but they cannot

deconvolute the specific abundance of each alternative splice form.

Little is known, therefore, about variability of alternative splicing

between individuals and about the amount and importance of dif-

ferential splicing when comparing populations. Recently, however,

massively parallel sequencing instruments have been used to directly

sequence the RNA content of the cell. RNA-seq (Cloonan et al. 2008;

Marioni et al. 2008; Mortazavi et al. 2008; Nagalakshmi et al. 2008;

Sultan et al. 2008; Wang et al. 2008; Wilhelm et al. 2008) and several

methods have been developed to use the sequenced reads to produce

quantification of individual transcript isoforms ( Jiang and Wong

2009; Zheng and Chen 2009; Trapnell et al. 2010).

Here, we have developed statistical methodology to measure

variability of splicing ratios within populations, to compare them

between populations, and to identify genes with population-spe-

cific splicing ratios. Furthermore, we have developed methodology

to deconvolute the relative contribution of variability in gene ex-

pression versus variability in splicing ratios to the overall vari-

ability of transcript abundances. Indeed (and ignoring other im-

portant factors such as poly-adenylation, exporting, etc.), the

abundance of a specific alternative splicing form in a given pop-

ulation of cells can be broadly assumed to be a function of two

phenomena: (1) the transcriptional rate of the gene and (2) the

relative rate of splicing of the resulting primary transcripts to the

specific alternative splicing form. In quantitative terms, given a gene

with n alternative splice forms, we can assume (in the cell’s steady-

state population) that the total number of copies xi of the transcript i

is the fraction fi of the total number of copies l of the primary

transcripts that are spliced to transcript i, that is, xi = lfi. If xi can be

determined for all transcript isoforms from a given loci, as in prin-

ciple is possible with RNA-seq, then both l and fi (i = 1, . . ., n) can be

immediately determined:

l = +n
i = 1xi and f i =

xi

l
:
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Little is known about the relative importance of the overall gene

expression l and of the splicing ratio fi in determining the specific

abundance fi of transcript isoform i, and how these contributions

vary across individuals and cell types. A priori one could postulate

four extreme behaviors for a given gene (Fig. 1): (1) constant gene

transcription and splicing ratios across individuals; (2) variable

gene transcription, but constant splicing ratios; (3) constant gene

transcription, but variable splicing ratios; and (4) variable gene

Figure 1. Variability in gene expression versus variability in splicing ratios. (A) Behavior of four different genes regarding expression and splicing
variability in human populations. Four genes with two splice forms each have been selected to illustrate possible extreme cases: (i) Low variability in both
gene expression and splicing (as exhibited by the Vacuolar protein sorting-associated protein 28 homolog gene, VPS28); (ii) variability in gene expression,
but quite constant splicing ratios (as exhibited by Prothymosin alpha, PTMA); (iii) constant gene expression, but variability in alternative splicing ratios (as
exhibited by the Coiled-coil domain containing 43 gene, CCDC43); and (iv) variability in both gene expression and alternative splicing ratios (as exhibited
by the Heterogeneous nuclear ribonucleoprotein M, HNRNPM). The x-axis denotes the 60 individuals in which the values have been profiled (data from
Montgomery et al. 2010) and the y-axis both absolute gene expression (measured in RPKMs; see text) and relative splicing ratios. (B) Attempts to quantify
variability in transcript expression and alternative splicing ratios. (cv) Coefficient of variation of gene expression. ( �d) Our proposal to measure variation in
splicing ratios. (Vt) Sum of the variances of the abundances of the different splice forms. (Vls/Vt) In our approach, the fraction of the total variability that can
be explained by variation in gene expression. The parameters that we introduce in this report— �d, Vls/Vt—seem to capture well our intuitive interpretation
of the variability in splicing ratios and the relative contribution of gene expression to total transcript variability (see text).
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transcription and splicing ratios. To investigate the relative impor-

tance of these two dimensions (gene expression and splicing ratios),

we have developed a method that relies on the comparison of the

original variance of the abundances of the splice isoforms across the

population with the variance when the abundances are estimated

under a model that assumes optimal constant splicing ratios.

As a proof of concept, we have applied the developed methods

to transcript quantifications obtained from RNA-seq data produced

by Pickrell et al. (2010) and Montgomery et al. (2010) in lympho-

blastoid cell lines of Nigerian and Caucasian origin, respectively.

While these are the first human RNA-seq studies available and many

issues remain to be fully understood (from biases in library prepa-

ration and sequencing to reliability of transcript quantifications),

our results are remarkably consistent in the two populations. We

have found that there is little variation in alternative splicing ratios

within human populations with many genes essentially exhibiting

constant splicing ratios across individuals. Around 60% of the var-

iability observed in the abundance of alternative transcripts can be

explained by variability in gene expression. On the other hand,

genes with the highest total transcript variability are enriched for

RNA binding functions; consistently, long non-coding RNAs

(lncRNAs) show higher expression variability than protein-coding

genes. Finally, although the comparison of the two populations

investigated here is confounded by the difficulty of separating bi-

ological from laboratory effects, our methodology identifies ;10%

of the investigated genes as showing population-specific splicing

patterns.

Results
We have used RNA-seq data from lymphoblastoid cell lines derived

from two different HapMap populations—Nigerian (YRI; 69 in-

dividuals from Pickrell et al. 2010) and Caucasian (CEU; 60 individuals

from Montgomery et al. 2010)—to obtain quantitative estimates of

transcript abundances. To be able to investigate the relative contri-

bution of transcription and alternative splicing to transcript abun-

dances, we have grouped transcripts sharing the same transcription

start site (TSS) into ‘‘virtual’’ genes, and quantified gene expression as

the sum of the abundances of the transcripts sharing the same TSS.

Note that this operational definition of the gene is not equivalent to

the standard notion, nor to the definition in the gene and transcript

annotations, since, in these cases, a gene can have multiple TSS.

Variability in alternative splicing ratios

We have measured variability of gene and transcript expression in

both populations using the coefficient of variation (cv) (Fig. 2). Here,

we have considered only genes that are expressed in all individuals in

both CEU and YRI populations. In general, profiles of gene expression

variability are very similar in the two populations (Pearson correlation

coefficient: 0.66 for genes, and 0.65 for transcripts) (Fig. 2). While

intrapopulation variability is low, we do not observe many genes with

constant expression across individuals. These results are overall con-

sistent with the ones previously reported by Li et al. (2010) using DNA

arrays. The higher expression variability observed in CEU compared

with YRI is also consistent with previous findings (Stranger et al.

2007). Interestingly, we have found that lncRNAs show greater

variability in gene expression than protein-coding genes (Fig. 2).

Incidentally, we have found that ;90% of the genes show sig-

nificant overdispersion if the expression counts are fitted by the

Poisson distribution (Fisher’s index of dispersion test, P-values ad-

justed from false discovery rate, 5% significance level). These results

suggest that other discrete probabilistic models may need to be

considered to fit accurately the global expression counts.

Variability of expression is larger at the transcript than at the

gene level (Fig. 2A). This is suggestive that changes in gene expression

cannot fully explain variations in the abundance of transcript iso-

forms. Most of this additional variability can be attributed to post-

transcriptional processing events, such as splicing, which act dif-

ferently in the different splicing forms. To investigate the variability

associated with alternative splicing, we have calculated the relative

abundance of each transcript within each gene, which we refer to as

splicing ratios. For these analyses, we have further considered only

those genes that have at least two alternative splice forms, one of

which at least is expressed in at least one individual in the two

populations investigated (given that variability in splicing could be

underestimated by including in our analysis genes with only one

splice form) (see Methods). Average cv in gene expression variability

in this restricted set is given in Table 1. Because very few lncRNAs

verify these conditions, we have further restricted our analyses to

protein-coding genes. We aim to specifically measure variability in

splicing ratios. Comparing splicing ratios, however, is more com-

plicated than comparing gene expression values, because the latter

are scalar, whereas the former are arrays (i.e., each gene will have

more than one associated transcript). Therefore, while the distance

between the expression of two genes can be simply computed as the

difference of expression values or the fold change, no straightfor-

ward extensions of these measures exist for splicing ratios. More-

over, splicing ratios are under the additional constraint that their

sum is 1 for a given gene. We have overcome these limitations by

using the Hellinger distance as a basic measure to compute differ-

ences in the splicing ratios of a gene in two individuals (see Methods).

Then, to measure the variability in the splicing ratios of a gene within

a population, we compute the mean Hellinger distance to the cen-

troid of the splicing ratios of the gene across all individuals in the

population d
� �

. As illustrated in Figure 1, �d seems to capture well our

intuition on splicing variability.

Figure 3A shows the distribution of �d across the protein-cod-

ing genes in the two populations investigated. The profile is very

similar between the two populations, even more than that of gene

expression variability (Pearson correlation coefficient: 0.81). The

distribution shows an accumulation of values at the lower end of

the distribution, followed by a smooth decay toward the higher

end. In addition, there is a substantial number of genes with es-

sentially no splicing variability. These results are indicative of low

variability in splicing ratios within populations.

There is correlation between the number of transcripts per gene

and splicing variability (Pearson correlation coefficients: 0.53 for

CEU, and 0.52 for YRI) (see Supplemental Fig. 1). This dependence of

d on the number of splice forms is also observed in the background

reference simulated data (see Methods) (Supplemental Fig. 2). The

observed distributions, however, depart considerably from the

background distributions in at least two features. First, the average

variability is smaller in the real than in the simulated background

distributions, and the distribution of �d is quite asymmetrical with an

excess of low variability values—in particular, in genes with a low

number of splice forms. There is, therefore, a large number of genes

that exhibit reduced splicing variability—larger than the number of

genes that exhibit reduced gene expression. Consistent with this low

splicing variability, we have found that a set of 215 genes known to

participate in splicing regulation show reduced variability in gene

expression compared with all genes (average cv for splicing factors:

0.54 in CEU and 0.42 in YRI, compared with 0.63 and 0.54 for all

protein-coding genes) (Fig. 2). Second, the range of variability values
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is much larger in the real than in the simulated values, with more

extreme values not only at the lower end of the distribution (as

expected given the reduction in splicing variability), but at the higher

end as well (Supplemental Fig. 2). This deviation is an indication that

variability in splicing usage appears to be under selective constraints,

with both low and high variability splicing ratios being actively

maintained in different genes. In contrast with variability in gene

expression and further supporting the somehow stricter control on

the regulation of splicing, we have found that the variability in

splicing ratios is strikingly similar in the two populations (Table 1).

We have also investigated whether there are genes that exhibit

different levels of variability in splicing ratios between YRI and CEU.

We have tested for homogeneity of the dispersion of the splicing

ratios in the two populations using the Anderson distance-based test

(see Methods). After correcting for multiple tests, for a significance

level of 0.05, we have identified 385 genes with differential splicing

variability between YRI and CEU. If we further consider only genes

with a splicing variability �d>0:2, there are 47 genes with at least

twice the splicing variability in CEU than in YRI, and 64 genes with

at least twice the variability in YRI than in CEU.

Furthermore, by comparing variability in splicing ratios within

and between populations, we can identify genes with population-

specific splicing ratios, that is, genes for which the splicing ratios are

similar within each population, but more different when comparing

populations. Note that the most dramatic scenario would be com-

plete differential usage of isoforms; that is, the case of genes in which

one isoform is uniquely used in one population (i.e., expressed in all

the individuals) and a different one is uniquely used in the other

population. In our case, we have found 44 genes satisfying this cri-

terion (out of the 1654 considered in the study) (see Supplemental

Table 2). These genes do not appear to be enriched for any particular

functional class, regarding GO analysis (see Methods). This is, of

course, a very strong definition of population-specific splicing usage.

We have therefore resorted to a more statistically sound approach

based on the conceptual framework that we have introduced here.

We have used a non-parametric test as described in Anderson (2001),

Figure 2. (A) Variability in gene expression within human populations. Distribution of the coefficient of variation of gene expression within Cau-
casian (CEU) and Nigerian (YRI) populations. Only genes that passed the first set of filters were considered here (see Table 2). (B) Variability in gene
expression between populations. Pearson correlation coefficients: 0.66 and 0.65 for genes and transcripts, respectively; P-value < 2.2 3 10�16 in all
cases. Only genes that passed the first set of filters were considered here (see Table 2), and values up to cv = 2 and cv = 6 have been represented in each
case.
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with the Hellinger distance as the dissimilarity measure to identify

genes with population-specific splicing patterns (see Methods). This

is a non-parametric test analogous to a multivariate analysis of the

variance. With the additional restriction that the gene has at least

one isoform that differs at least 20% in average abundance in one

population compared with the other, us-

ing this test we have found 156 significant

genes with an adjusted P-value <0.05. That

is, ;10% of the genes investigated here

show a noticeable and statistically signifi-

cant population-specific splicing pattern

when comparing YRI and CEU individuals.

We stress that the biological significance of

these analysis is confounded by the diffi-

culty of separating laboratory from bi-

ological effects (see Discussion and Sup-

plemental Methods).

Variability in gene expression versus
variability in alternative splicing

We are particularly interested in inves-

tigating the relative contribution of ex-

pression variability and splicing variabil-

ity in the total variability of individual

alternative transcript abundances. To some

extent, these are indicative of the relative

importance of transcription and splicing

in determining the abundance of in-

dividual transcript species.

In Figure 4A we plot variability in

expression (cv) versus variability in splicing
�d
� �

, and as it can be observed, there is low

correlation between them. While, as we

have pointed out, most genes tend to

accumulate at the lower end of the var-

iability range both for expression and

splicing, we can still partition the set of

all genes in four different subsets, re-

garding the four extreme behaviors pre-

viously introduced (Fig. 4A). Reassuringly,

there is a strong overlap between these

subsets in each of the two populations

investigated (Fig. 4C).

However, because the scale and units are different, the direct

comparison of expression and splicing variability in these partitions

does not allow us to address the question of which contributes most

to the variability of alternative transcript abundance. To address

this question, we have implemented a multiplicative model (see

Methods). In short, for a given gene, we estimate the fraction of the

total variability in the abundance of alternative splice forms that

can be explained under a model that assumes constant splicing

rates across all individuals. Let Vt be the total variability in the

abundance of alternative transcripts (i.e., the sum of the variances

of the abundances of the transcripts in the population), and let Vls

be the variability computed under the model of constant splicing

ratios. When the ratio Vls/Vt is close to 1, most of the variability in

alternative transcript abundances can be explained by variability

in gene expression. In contrast, if the ratio is close to 0, changes

in gene expression cannot explain the observed variability, and

we assume that this is mostly the result of variability in alterna-

tive splicing ratios. As shown in the examples of Figure 1, Vls/Vt

captures well our intuition on the relative importance of splic-

ing versus transcription variability in total transcript abundance

variability.

Figure 5 shows the distribution of this measure in the two

populations investigated. The profile of the distribution is similar

Table 1. Summary of calculated variability for the studied gene set

Genes expressed
in all individuals

(n = 1654)

CEU YRI

Variability in gene
expression (cv)

0.48 0.40

Standard deviation (s) 0.20 0.18
Variability in alternative

splicing ratios (�d)
0.30 0.32

Standard deviation (s) 0.18 0.18
Variability in gene

expression versus
variability in alternative
splicing (Vls/Vt)

0.62 0.56

Standard deviation (s) 0.25 0.26

Figure 3. (A) Variability in alternative splicing within human populations. Distribution of the splicing
variability within Caucasian (CEU) and Nigerian (YRI) populations. Splicing variability, represented here
by �d, has been measured as the mean Hellinger distance to the centroid of the relative abundances of
alternative splice forms (see Methods). (B) Variability in alternative splicing between populations.
Pearson correlation coefficient: 0.81; P-value < 2.2 3 10�16.
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in both populations, and the distributions are highly correlated

(Pearson correlation coefficient: 0.73). The mean of the distribution

is 0.62 in CEU and 0.56 in YRI, indicating that, on average, variation

in expression can explain ;60% of the variation in the abundance of

individual transcripts. We assume that a large fraction of the remain-

ing unexplained variance arises from variation in alternative splicing

ratios. In addition, the distribution is quite asymmetric, with a de-

pletion of values at the lower end of the distribution of Vls/Vt and an

accumulation at the higher end, indicating that there are few genes in

which variability in transcript abundances can be explained ex-

clusively by variations in alternative splicing. In other words,

variability in splicing seems unusual without variability in gene

expression, while the converse appears to be quite common.

Finally, we have investigated whether genes with different

patterns of expression versus splicing var-

iability belong to specific functional cate-

gories. Toward that end, we have selected

the bottom 10% genes with the lowest Vls/

Vt, that is, those genes in which most var-

iability can be attributed to splicing vari-

ability; and the top 10% genes with high-

est Vls/Vt, that is, the genes in which most

variability can be attributed to expression

variability. Again, regarding GO analysis,

these genes do not appear to be enriched

for any particular functional class. We have

also investigated whether there are func-

tional categories associated with genes that

have high total transcript variability Vt

(i.e., the variability resulting from both

changes in gene expression and splicing).

By selecting the 10% with highest Vt and

considering only the genes common to

both populations (39 genes) (see Supple-

mental Table 3), we have seen that genes

with high total variability are enriched

in structural and RNA binding functions

(Supplemental Table 3).

Discussion

We have developed statistical methodology

to measure variability of splicing ratios

within populations, to compare them be-

tween populations, and to identify genes

with population-specific splicing ratios. We

have furthermore developed a model to

deconvolute the relative contribution of

variability in gene expression versus vari-

ability in splicing ratios to the overall vari-

ability of transcript abundances. Finally, we

have applied this methodology to estimates

of transcript abundances obtained from

RNA-seq experiments performed in lym-

phoblastoid cell lines derived from Cauca-

sian (CEU) and Yoruban (YRI) individuals.

Our results indicate that protein-cod-

ing genes exhibit low variability in gene

expression in human populations and that

variability in gene expression is quite cor-

related between human populations, as

previously described by Li et al. (2010). We

have also found that splicing variability appears to be even further

restricted with many genes exhibiting almost constant splicing ratios

across individuals. Consistent with this observation, we have found

that genes involved in the regulation of splicing show less expression

variability within populations than human genes overall. While

there is strong correlation in splicing variability between pop-

ulations—stronger than the correlation in gene expression—we

have identified a non-negligible fraction of genes (;10% of the

studied set) that are characterized by noticeable and statistically

significant population-specific splicing ratios.

We have furthermore attempted to investigate the relative con-

tribution of the variability in gene expression and in splicing ratios to

the total variability in the abundance of individual transcript

forms. In our approach, we implicitly assume that the abundance

Figure 5. Variability in gene expression versus variability in alternative splicing as measured by Vls/Vt.
See text for an explanation of the multiplicative model.

Figure 4. (A) Variability in gene expression versus variability in alternative splicing. The population
mean of each variable is indicated by the dotted lines. The Pearson correlation between the two variables
is 0.13 and 0.08 for CEU and YRI, respectively. (B) The set of all genes can be divided into four subsets
according to their variability in expression and splicing. We have used the mean of the variability in gene
expression and in splicing to subdivide the set of all genes in four subsets. (Subset 1) Genes with low
variability in both expression and splicing. (Subset 2) Genes with relatively high variability in gene
expression, but low variability in splicing. (Subset 3) Genes with low variability in expression, but rel-
atively high variability in splicing. (Subset 4) Genes with relatively high variability in expression and
splicing. (C ) Number of genes in each subset in the two human populations and their overlap.

Splicing variability in human populations
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of a given transcript (splice) form is a function of (1) the primary

transcriptional output of the gene (gene expression) and (2) the

fraction of this transcriptional output that is spliced to the specific

transcript isoform (splicing ratio). Changes in the absolute abun-

dance of a particular transcript isoform may thus be due to changes

in the basal expression level of the gene, to changes in its splicing

ratio, or to a combination of both. Strictly speaking, however, our

model measures only the relative contribution of the variability of

gene expression to total variability in the abundances of transcript

isoforms. The unexplained variability needs to be attributed to

other factors, among which we assume splicing to be the most

prominent one. The results of our analyses on the mentioned RNA-

seq data sets suggest that, on average, changes in gene expression

contribute ;60% to changes in individual transcript abundance.

Interestingly, while we have found that there are many genes in

which all transcript variability can be explained by changes in gene

expression, we have found that there are very few genes in which

most transcript variability can be attributed to splicing variability.

This indicates that variation in splicing without variation in ex-

pression [such as in the case in Fig. 1A(iii)] does not seem to be very

common. This is consistent with a growing body of evidence sug-

gesting a functional coupling between transcription and pre-mRNA

splicing (Bentley 2005; Pandit et al. 2008) and a role of this coupling

in the regulation of alternative splicing (Kornblihtt 2007).

Overall, these results delineate a scenario in which both ex-

pression and splicing contribute to the regulation of transcript

abundances, but modulation through gene expression may some-

how be predominant. Indeed, sequence-specific elements recognized

by transcription factors in promoter regions are often arranged in

unique configurations, conferring an individualized transcription

program to each gene. In this way, by modulating the behavior of the

factors that cooperate to specifically recognize one such promoter

configuration, it is theoretically possible to regulate the expression of

a single gene. Splicing, in contrast, is governed by generic conserved

sequence motifs (the splice sites), which are under strong purifying

selection. While there is a plethora of additional factors that con-

tribute to the specificity in the regulation of splicing, it is unclear

whether the number of such factors—one order of magnitude smaller

than the number of transcription factors—offers the combinatorial

power sufficient to confer on each gene a specific splicing program.

One could speculate, thus, that while specific signals in the sequence

of the primary transcript can also contribute to a given splicing pat-

tern of a gene, modulation of its splicing behavior through regulation

of the expression of splicing factors may be difficult without affecting

concomitantly that of many other genes.

We have also found that the genes showing highest total vari-

ability within populations are strongly enriched in RNA binding

functions. Consistently, we have found that long non-coding RNAs,

with which RNA binding proteins are likely to interact, show higher

expression variability than protein-coding genes. LncRNAs are an

emerging class of long, multi-exonic, and often polyadenylated genes,

which may be as numerous as protein-coding genes (Harrow et al.

2006). Our results are consistent with lncRNAs playing a role in the

fine-tuning and the modulation of the expression levels of genes and

transcripts. Indeed, given the low variability in the expression of

protein-coding genes, phenotypic differences between individuals in

human populations are unlikely to be due to the turning on and off

of entire sets of genes, not to dramatic changes in their expression

levels, but rather to modulated changes in transcript abundances.

LncRNAs—with more variable expression, and also under less selec-

tive constraint (Ponting et al. 2009)—would play, in our opinion, an

important role in this modulation.

In any case, we must acknowledge the limitations of our

speculations. RNA-seq is still a technology in its infancy, not yet

completely understood. The data sets on which our analyses are

based belong to the first population of studies performed and the

only ones published so far. Moreover, methods to infer transcript

abundances from RNA-seq data are in the early stages of de-

velopment, and their accuracy and reliability have not yet been

contrasted. Finally, in order to generate data sets in which our

transcript quantifications are reliable, we have strongly filtered the

GENCODE set of genes and transcripts. By considering only genes

expressed in all individuals in the two populations, we are actually

reducing gene expression variability. Relaxing this criterion, ex-

pression and transcript variability indeed increase, but the overall

trends remain (see Supplemental Table 1). There are several lines of

evidence, however, that suggest that our transcript quantitations,

when restricted to the sets analyzed here, are biologically mean-

ingful. First, our results regarding gene expression are quite consis-

tent with the ones obtained by Li et al. (2010). This is remarkable,

since gene expression values in Li et al. (2010) are estimated from

DNA microarrays and our values are estimated from RNA-seq data.

Second, there is high concordance in the behavior of the CEU and

YRI populations—particularly striking given the fact that they have

been estimated from two RNA-seq data sets independently obtained

in two different laboratories. This, on the other hand, certainly

confounds the analysis in which we compare the splicing ratios of the

two populations. Given the experimental design of these two studies,

it is simply impossible to discern population from laboratory effects

when comparing the two populations. The fact that our expression

estimates correlate similarly with two previous microarray studies (see

Supplemental Methods) and that we are able to recapitulate the

higher expression variability in CEU versus YRI populations, found

previously by Stranger et al. (2007) in a controlled study, suggest,

however, that the laboratory effects are not large enough to mask all

biological signal. In any case, we emphasize that even if a fraction of

genes detected with differential splicing ratios are due to laboratory

effects, this does not invalidate the methodology that we have de-

veloped here to detect such differences.

Even though our biological speculations are based overall on

acceptable transcript quantification data, we also believe that the

main contribution of our work is, at this point, methodological. The

methods that we have introduced here to study variability in alter-

native splicing could be useful because RNA-seq experiments are

increasingly becoming the de facto standard for transcriptome pro-

filing. Indeed, together with the identification of genes that change

expression, the identification of genes that change splicing ratios

may contribute to the understanding of the molecular events un-

derlying the phenotypic differences observed between conditions.

As important as the identification of genes with condition-specific

expression patterns may be, the identification of genes with condi-

tion-specific splicing patterns. Identifying, in addition, whether the

behavioral changes of genes observed between two conditions are

mostly under transcriptional or splicing regulation may have im-

portant technological and therapeutic consequences.

Methods

Processing RNA-seq data

RNA-seq data sets

We used the RNA-seq data sets produced by Montgomery et al.
(2010) and Pickrell et al. (2010). Both groups sequenced RNA from
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lymphoblastoid cell lines from the HapMap project (International
HapMap Consortium 2003, 2005, 2007; International HapMap 3
Consortium et al. 2010) using Illumina platforms. Montgomery
et al. (2010) sequenced 60 Caucasian (CEU) individuals, while
Pickrell et al. (2010) sequenced 69 Nigerian (YRI) individuals. In
total, more than 1 billion 36-bp long paired reads were sequenced
by Montgomery et al. (2010), and more than half a billion 35-bp-
long reads were sequenced by Pickrell et al. (2010). We mapped the
reads to the human genome version hg19, using the GEM mapper
software (http://gemlibrary.sourceforge.net).

Transcript and gene quantitation

Mapped reads were used to obtain transcript expression estimates.
As a reference genome annotation, we used GENCODE version 3c
(Harrow et al. 2006) produced in the framework of the ENCODE
project. Based on the RNA-seq reads mapping to each loci, we used
the Flux Capacitor (http://big.crg.cat/services/flux_capacitor) (for
more information, see Montgomery et al. 2010) to produce quan-
titative estimates of transcript abundances measured as RPKMs
(reads per kilobase per million mapped reads) (Mortazavi et al.
2008).

We considered the set of transcripts sharing the same tran-
scription start site (TSS) as our operational definition of a gene. The
expression of a gene, defined in this way, is the sum of the abun-
dances of all its transcripts. Note that this operational definition of
a gene is not equivalent to the standard notion of a gene or to the
definition in the GENCODE annotation, since, in these cases, agene
can have multiple TSS. However, it allows us to separate more clearly
the effects of transcription from those of RNA processing (mostly
splicing) in the abundance of individual transcripts.

Filtering the gene and transcript sets

Since our main goal is to investigate alternative splicing variability
across individuals, we have focused our analysis on protein-coding
genes (1) that are expressed in all individuals, (2) that have at least
two annotated splice forms and (3) in which each of the isoforms
has an expression level of at least 1 RPKM in at least one individual
in each of the two populations investigated. After taking these
filters into account, we performed our analyses on a total of 1654
genes and 4668 associated transcripts common to the two pop-
ulations (see Table 2). There is high concordance between the sets
of genes and transcripts detected as expressed in the two pop-

ulations, which can be taken as an indication of the robustness of
our expression and splicing estimates. A second larger data set of
8389 protein-coding genes expressed in all individuals in the two
populations and 12,883 associated transcripts has been used for
our initial analysis of gene expression variability.

Calculating and comparing the variability of alternative
splicing ratios

Let’s assume a gene with n alternative splice forms, the relative ratios
of which have been determined in a population of k individuals. We
set off to estimate the variability of the ratios in the population.

Given the mutual dependence among splicing ratios within
a gene, we use a multivariate approach to describe their variability
and to compare it across populations. Geometrically, each gene can
be represented as an n-dimensional space, in which the coordinates
are the relative ratios of the n splice forms and each point corre-
sponds to one individual of the population. Because for any in-
dividual the sum of its relative transcript expressions is equal to 1, the
individual coordinates are restricted to lie inside a subspace ofRn. For
instance, if the gene has two transcripts, the k individuals in R

2 lie in
a line segment joining the points (1, 0) and (0, 1). For three tran-
scripts, the k individuals inR

3 are located in an equilateral triangle of
side length 1 (Supplemental Fig. 3). In general, for n transcripts, the
points are restricted inside the geometrical figure named the standard
simplex, which generalizes to n dimensions the notion of the triangle
on R

3.
Let us now introduce some notation: For each individual j, the

expression level of a given gene g is represented as a concatenation
of the expression level xij of each one of its n transcripts, thus
obtaining the vector xj = (xij). Denoting with

f ij = xij=+
n
i = 1xij

the relative expressions of each transcript, fj = (fij) is the vector of
splicing proportions for the j individual.

To measure the variability of each gene and compare it across
populations, we follow the methodology of Anderson (2006). Be-
cause the Anderson approach allows several possible dissimilar-
ities, we have chosen the Hellinger distance (Rao 1995; Legendre
and Gallagher 2001) in order to measure the discrepancy in
splicing ratios between two individuals j1, j2. The Hellinger dis-
tance is defined as

Table 2. Applied filters and gene sets used in our study

CEU YRI CEU YRI

TSS (gene IDs) Transcripts TSS (gene IDs) Transcripts TSS (gene IDs) Transcripts TSS (gene IDs) Transcripts

Annotation set 82,828 (22,524) 101,537 82,828 (22,524) 101,537 3020 (2219) 3147 3020 (2219) 3147
TSS expressed in

all individuals
9433 (8491) — 12,138 (10,249) — 215 (212) — 318 (309) —

Overall count 9433 (8491) 14,404 12,138 (10,249) 18,125 215 (212) 227 318 (309) 341

Common TSS 8389 (7768) 183 (180)
Common transcripts 12,883 194

Transcripts expressed
in at least one
individual (RPKM > 1)

— 80,523 — 82,402

TSS with at least two
transcripts

1906 (1881) — 2250 (2210) —

Overall count 1906 (1881) 5259 2250 (2210) 6229

Common TSS 1654 (1641)
Common transcripts 4688
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d f j1 ; f j2

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+

i = 1

n ffiffiffiffiffiffiffi
f ij1

q
�

ffiffiffiffiffiffiffi
f ij2

q� �2
s

: ð1Þ

Both the Hellinger and the Euclidean distance between two
arbitrary points on the n-standard simplex range between 0 and

ffiffiffi
2
p

for n $ 2. However, the Hellinger values compared with the Eu-
clidean are comparatively higher for pairs of individuals nearest to
the edges of the simplex, that is, with more extreme proportions,
and, conversely, they are smaller for pairs near the center. For in-
stance, in a gene with two splicing forms, the Euclidean distance
between two individuals with proportions (0.5, 0.5) and (0.55, 0.45)
is ;0.071. The more extreme individuals (0.9, 0.1) and (0.95, 0.05)
are also at Euclidean distance 0.071, while the Hellinger distances
for the same two situations are, respectively, 0.050 and 0.096.

Anderson defines the multivariate dispersion of a given group
of k individuals—in our case, the variability of the relative expres-
sions—as the mean distance of the k points to its centroid cm:

�d =
1

k
+

j = 1

k

d f j; cm

� �
: ð2Þ

The centroid cm is defined by Anderson as the spatial median
of the sampled points, that is, the point that minimizes the sum of
distances between the sampled points. It shows better statistical
properties than the vector of means, or even the vector of scalar
medians (for further details, see Anderson 2006). In genes with
similar splicing ratios across the individuals in the population,
dispersion of the points around the centroid is minimal, and �d
tends to 0. As the differences in alternative splicing ratios between
individuals increase, �d increases, tending to a maximum value.

When k > n, it can be shown that �d #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2=

ffiffiffi
n
p� �q

.

The meaning of the values of �d can be more easily interpreted
when compared with the values in a reference distribution. For
that purpose, we have conducted a Monte Carlo simulation of �d,
assuming random proportions of splicing isoforms, for different
numbers of splicing isoforms ranging from n = 2 to n = 15. We have
computed 1000 simulations (corresponding to 1000 genes) in each
case assuming samples of k = 60 and k = 69 individuals. The pro-
portions of the splicing isoforms have been drawn from a uniform
distribution. The Monte Carlo distribution of �d provides us with
reference values for the mean, median, standard deviation, and
several percentiles (see Supplemental Fig. 2). These simulated dis-
tributions are symmetrical, showing a Gaussian-like shape. In-
terestingly, while the average variability increases with the number
of splice forms, the range of variabilities decreases, with genes
showing more homogeneous values of variability for a larger
number of splice forms. Supplemental Figure 2 was designed to
help understanding the meaning of the values of �d (see also Sup-
plemental Methods). The computations are simulated in the sim-
plified context of uniform random proportions over the standard
simplex, assuming additionally independent values between in-
dividuals. The ‘‘true’’ distribution of �d is not known, and it is very
unlikely that it will follow the uniform model, but our purpose is
not to establish a model for �d, but only a reference model in con-
ditions of total randomness. The observed values of �d seem to
follow an asymmetrical distribution with a longer right tail and
a second low peak. When compared with our reference distribu-
tion, most genes show less variability than expected from the in-
dependent random pulls.

We have also tested for homogeneity of the dispersion
of splicing proportions across populations. We have used the
Anderson distance-based test (Anderson 2006). This is more robust
than the traditional likelihood test (for details, see Anderson

2006), and it can be easily combined with a permutation proce-
dure that does not assume normality of the residuals. To reduce
the false discovery rate, we have adjusted the P-values of the in-
dividual comparisons using the Benjamini and Hochberg ap-
proach (Benjamini and Hochberg 1995).

The method betadisper of the R package vegan (Oksanen et al.
2010) computes for a given gene the value of �d for the two sampled
populations and their homogeneity permutation test. By using the
method p.adjust of the package stats, we can adjust the false dis-
covery rate. Further details on the availability of the scripts used to
compute �d can be found in the Supplemental Methods.

Identification of genes with population-specific
splicing patterns

If variability of alternative splicing ratios is homogeneous between
the two populations for a given gene, we could further test whether
there is homogeneity of the splicing ratios themselves (and not of
their variability as in the previous section). In other words, we can
test for a given gene whether the splicing ratios within one pop-
ulation are homogeneous and different from the splicing ratios in
the other population. This could be used to identify genes that
have differential splicing in one population versus the other, that
is, population-specific splicing ratios. Considering again the in-
dividuals geometrically embedded in an n -dimensional space (n =

number of splice forms), we consequently use the non-parametric
distance test described in Anderson (2001), with the Hellinger
distance as a dissimilarity measure. The Anderson test is analogous
to a multivariate analysis of variance without probabilistic distri-
bution assumptions. The P-values of the individual gene com-
parisons are adjusted again using the Benjamini and Hochberg
correction.

The method adonis of vegan (Oksanen et al. 2010) computes
the Anderson test of homogeneity of splice forms for a given gene.
The method p.adjust of the package stats adjusts the false discovery
rate.

Quantifying the relative importance of variability in gene
expression and variability in alternative splicing into individual
transcript variability

While the coefficient of variation and the dispersion in the Hel-
linger distances proved appropriate to measure variability in gene
expression and splicing ratios, from their direct comparison it is
not possible to quantify their relative contribution to the observed
variability in the total abundance of individual alternative splice
forms. To address this issue, we propose here a multiplicative
model, based on the calculation of two parameters: Vt and Vls

(defined below).
Here we also follow a multivariate approach. Let’s assume a gene

with n splicing forms and the absolute abundances of these forms
measured in k individuals. For each individual, these abundances can
be represented by a point in R

n, restricted here only to be in the
positive orthant (these are all absolute abundance values). The
measure most often used to describe scatter about the mean in
multivariate data is the total variation (Seber 1984). This is the sum of
the variances in the abundances of the alternative splice forms across
the k individuals, or, more technically, the trace of the covariance
matrix of the abundances of the alternative transcript isoforms. We
refer to this sum of variances here as Vt. This is a quantity often used
as a measure of variation in Principal Component Analysis: If the k
points are projected on any subspace of Rn, Vt is an upper bound of
the dispersion of the projected points.

Let us assume an hypothetical gene with possibly different
global expressions on the k individuals but constant splicing ratios.

Gonzàlez-Porta et al.

536 Genome Research
www.genome.org



Denoting by lj the global expression of the j individual and by
( f1, . . ., fn) the vector of constant splicing ratios, the absolute ex-
pression of the i splicing on the j individual is simply ljfi. In the
geometrical representation, the k points corresponding to the
abundances of the different splice forms from this gene in the dif-
ferent individuals in the population perfectly align on a line that
follows the direction traced by the vector f = [ fi ]n31 (Supplemental
Fig. 4A). In general, any gene fitting exactly this model will include
only points belonging to a line embedded in the full n-dimensional
space. Obviously, if the model fits the data without error, the varia-
tions measured over the line and over the entire space are exactly the
same.

In general, however, a gene will probably show differences be-
tween individuals in splicing ratios, and the points will not draw
a line, but a complex n-dimensional scatterplot. Using the least
squares criteria, we have obtained for this situation an analytical
expression for the line of R

n with non-negative coefficients that
minimizes the distance between the original and the k projected
points. In other words, we can express in a closed form the estimation
of f and l1, . . ., ln that better fits the n-values of alternative splice
abundances, when a multiplicative model (of constant splicing ra-
tios) is assumed. We refer to the variation of the projected points in
this line as to Vls. In general, unless the points are originally already in
a line, the projection will imply a loss of information—as data points
are projected from n dimensions to 1—and the variability of the
projected points (Vls) will be smaller than the original variability (Vt)
(Supplemental Fig. 4B).

The projections on this straight line are linear transformations
of the original alternative splice abundances, but we have demon-
strated that it is not necessary to obtain their explicit values to ob-
tain their variability. This can be easily obtained from the original
abundance values (for technical details, see the Supplemental
Methods).

The ratio (Vls/Vt) 3 100, that is, the ratio of the variability in the
projected line over the total variability, allows us to measure the
adequacy of the multiplicative model in terms of the percentage of
explained variability. It can be interpreted similarly to the R2 co-
efficient of the linear models or to the amount of variation explained
by a subset of eigenvectors in Principal Component Analysis. For
instance, a ratio close to 1 indicates that the multiplicative model,
which assumes constant splicing ratios across individuals, explains
almost all of the observed variability. That is, most of the variability
in the abundances of the gene’s alternatively splicing forms is the
result of the variability in gene expression, and not of variability in
splicing ratios. Conversely, a ratio close to 0 indicates that the mul-
tiplicative model fits the data poorly and that variability in gene
expression explains little of the observed variability. One could thus
assume that variability in splicing ratios is the major determinant of
the observed variability in the abundances of alternative splice
forms.

Further details on the availability of the scripts used to com-
pute both Vls and Vt parameters can be found in the Supplemental
Methods.

GO analysis

We used the DAVID software (Huang et al. 2009a,b) to investigate
functional enrichment in four different gene sets: (1) the top 10%
of genes with the highest Vls/Vt, that is, genes in which most
variability can be attributed to changes in transcription; (2) the top
10% of genes with lowest Vls/Vt, genes in which most variability
can be attributed to splicing; (3) the 10% of genes with the lowest
Vt; and (4) the 10% of genes with the highest Vt. For each category,
we considered only the genes common to both populations and set
a false discovery rate of <5% and a P-value inferior to 0.05 as

thresholds for the identification of significantly over-represented
GO terms. The reference population was defined by all genes taken
into account in this study (i.e., common genes in the two pop-
ulations that passed the filters specified in Table 2). Additionally,
we used the same approach for the set of 44 genes in which one
isoform is uniquely used in one population (i.e., expressed in all
the individuals) and a different one is uniquely used in the other
population.

Splicing factors

A total of 309 genes related to RNA splicing were identified
through the database AmiGO (version 1.7) (Carbon et al. 2009),
201 of which were found expressed in all individuals and used in
the analyses.

Data access
Flux Capacitor quantifications for genes and transcripts in the
Caucasian and Yoruban populations, as well as the scripts used in
this paper, can be found online at http://big.crg.cat/bioinformatics_
and_genomics/SplicingVariability.
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