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New sequencing technology has dramatically altered the landscape of whole-genome sequencing, allowing scientists to
initiate numerous projects to decode the genomes of previously unsequenced organisms. The lowest-cost technology can
generate deep coverage of most species, including mammals, in just a few days. The sequence data generated by one of
these projects consist of millions or billions of short DNA sequences (reads) that range from 50 to 150 nt in length. These
sequences must then be assembled de novo before most genome analyses can begin. Unfortunately, genome assembly
remains a very difficult problem, made more difficult by shorter reads and unreliable long-range linking information. In
this study, we evaluated several of the leading de novo assembly algorithms on four different short-read data sets, all
generated by Illumina sequencers. Our results describe the relative performance of the different assemblers as well as
other significant differences in assembly difficulty that appear to be inherent in the genomes themselves. Three over-
arching conclusions are apparent: first, that data quality, rather than the assembler itself, has a dramatic effect on the
quality of an assembled genome; second, that the degree of contiguity of an assembly varies enormously among different
assemblers and different genomes; and third, that the correctness of an assembly also varies widely and is not well
correlated with statistics on contiguity. To enable others to replicate our results, all of our data and methods are freely
available, as are all assemblers used in this study.

[Supplemental material is available for this article.]

The rapidly falling cost of sequencing means that scientists can

now attempt whole-genome shotgun (WGS) sequencing of almost

any organism, including those whose genomes span billions of

base pairs. Interest in genome sequencing of new species has in-

creased rapidly, inspired by high-profile successes such as the

panda genome (Li et al. 2010a), the turkey (Dalloul et al. 2010), and

several human resequencing efforts (Li et al. 2010b; Schuster et al.

2010; Ju et al. 2011), most of which used reads primarily or ex-

clusively from Illumina sequencers. The read lengths in these

projects ranged from 35 to 100 bp, and depth of coverage ranged

from 50-fold to 100-fold. In contrast, earlier WGS projects using

Sanger sequencing, such as the mouse (Waterston et al. 2002) and

dog (Lindblad-Toh et al. 2005) genomes, used read lengths of 750–

800 bp and required only sevenfold to 10-fold coverage.

The much deeper coverage of short-read sequencing projects

does not entirely compensate for the shorter read length. A side-by-

side comparison of the best assemblies produced with short-read

data shows that assemblies with longer reads have far better con-

tiguity than the latest short-read assemblies (Gnerre et al. 2011).

This illustrates that assembling large genomes from short reads

remains a very challenging problem, albeit one that has seen

considerable progress in just the past two years. Indeed, except for

a limited number of specialists in genome assembly, very few sci-

entists know how to optimally design a sequencing strategy and

then construct an assembly, and even these experts might not

agree. The GAGE (Genome Assembly Gold-standard Evaluations)

study was designed to provide a snapshot of how the latest genome

assemblers compare on a sample of large-scale next-generation

sequencing projects. The study, which was conceived in 2010 in

response to the growing use of NGS for de novo assembly and the

growing number of genome assembly packages, was designed to

help answer questions such as:

• What will an assembly based on short reads look like?

• Which assembly software will produce the best results?

• What parameters should be used when running the software?

As we show below, the answers to these questions depend

critically on features of the genome, the design of the sequencing

experiments, and on the software used for assembly.

Our results include the full ‘‘recipe’’ that we used for assem-

bling each genome with each assembler. It is important to note in

this context that similarly complete instructions are not available

for any of the major landmark genomes including human (Lander

et al. 2001; Venter et al. 2001) and mouse (Waterston et al. 2002),

nor for recently published genomes such as panda (Li et al. 2010a).

Whatever the cause, this lack of complete assembly information

has made it impossible for others to replicate the assemblies of
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major published species. In contrast, we describe all procedures

and parameters and provide the complete data sets used for each

assembly in our study (see the Supplemental Material). This, cou-

pled with the use of open-source assemblers, should permit repli-

cation of any of our results, in contrast with other recent assembly

evaluations such as the Assemblathon (Earl et al. 2011) in which

the assembly parameters were not described.

We also note that all of the data used in our evaluations were

real sequence data from high-throughput sequencing machines,

unlike the Assemblathon, which used data from a simulated ge-

nome (Earl et al. 2011). Simulated data may not capture the actual

patterns of errors in real data or the variability present in naturally

occurring genomes.

Results

The data

We chose whole-genome shotgun data from four deep-coverage

sequencing projects covering two bacteria, a bee, and the human

genome (Table 1). Three of the species were previously sequenced

and finished to a very high standard using conventional Sanger

technology, and later resequenced using Illumina technology.

Having a finished genome allowed us to evaluate the correctness of

each assembler on these species. We also included one species for

which the ‘‘true’’ assembly is unknown: the bumble bee, Bombus

impatiens. This genome is typical of many de novo assembly pro-

jects today, where the goal is primarily to create a draft-quality

assembly that is the first representative of that species. Correct or

not, these assemblies will likely remain for many years as the only

reference sequence available.

As Table 1 shows, the four genomes also represent a wide

range of genome sizes, from 3 million base pairs (Mb) to 250 Mb

(bee) to 3000 Mb (human). For human, however, we used only

a single chromosome (chromosome 14) as a representative for

the complete genome. We chose to use this smaller sample, just

1/30 of the genome, because some of the assemblers in our

comparison would take many weeks to assemble the complete

genome, and others would fail entirely. The NGS reads for hu-

man derived from a whole-genome sequencing project; we

created our data set by first mapping all reads to the genome

and then extracting those mapped to chromosome 14 (see

Methods).

The Staphylococcus genome has one main chromosome and a

small plasmid, while the Rhodobacter genome has two chromo-

somes and five plasmids. Thus even the bacteria had multiple

chromosomes. The read lengths (all Illumina) ranged from 37 to

124 bp.

The assemblers

We chose eight of the leading genome assemblers, each of which is

able to run large, whole-genome assemblies using Illumina-only

short read data:

• ABySS (Simpson et al. 2009)

• ALLPATHS-LG (Gnerre et al. 2011)

• Bambus2 (Koren et al. 2011) (http://www.cbcb.umd.edu/software/

bambus).

• CABOG (Miller et al. 2008)

• MSR-CA (http://www.genome.umd.edu/MSR_CA_MANUAL.htm)

• SGA (Simpson and Durbin 2012)

• SOAPdenovo (Li et al. 2010b)

• Velvet (Zerbino and Birney 2008)

All of these are open source assemblers. For each genome and

each assembler, we ran multiple assemblies using different param-

eters until we obtained what appeared to be an optimal or near-

optimal result from that assembler. We used contig and scaffold N50

sizes as the primary metric to determine the best assembly for each

program, without consideration of assembly errors. This strategy

mimics what is commonly practiced among groups assembling

a new genome: the assembly with the largest contigs and scaffolds is

usually preferred. Software versions and details of the parameters

used for each assembly are given in the Supplemental Material.

Some of these assemblers use a modular design, making it

possible to mix and match different modules in different pro-

grams. For example, MSR-CA has its own ‘‘super-read’’ module to

error-correct high-coverage Illumina reads and extend them into

longer reads, which it then processes with modules from CABOG.

Bambus2 uses CABOG modules to build contigs and then builds

scaffolds from those.

Error correction and data cleaning

One of the most important steps in any assembly, often taking

much longer than the assembly itself, is the data cleaning process.

WGS data are never perfect, and the various types of errors can

cause different problems for different assemblers. High-quality

data can produce dramatic differences in the results: for example,

one assembly of the Rhodobacter sphaeroides data (using an earlier

release of SOAPdenovo) had a contig N50 size of just 233 bp, but

after error correction the same assembler achieved a contig N50 of

7793 bp, more than 30 times larger.

Some of the assemblers we ran have their own built-in error-

correction routines, but we wanted to tease apart the effectiveness

of error correction and the assembly algorithms themselves.

Therefore, the first step we ran with each of the data sets was

an independent error correction method. We allowed assemblers

that incorporate their own error correc-

tion routines to do further corrections in

addition to this pre-processing. Abyss,

SOAPdenovo, Velvet, and CABOG all

produced improved results using error

correction provided by a separate pro-

gram, while the other assemblers were

most effective when using their own error

correction routines.

For all data sets, we ran the Quake

error corrector (Kelley et al. 2010) to de-

tect and correct sequencing errors. Quake

bases its error detection on k-mers that

Table 1. Details of the four next-generation sequence data sets used for the GAGE assembly
comparison

Species S. aureus R. sphaeroides Human Chr14 B. impatiens

Size (Mb) 2.90 4.60 88.29 250 (est.)
Read length 101, 37 101 101 124
Fragment size, Library 1 180 180 155 400
Number of reads, Library 1 1,294,104 2,050,868 36,504,800 303,118,594
Fragment size, Library 2 3500 3500 2280–2800 3000–4000
Number of reads, Library 2 3,494,070 2,050,868 22,669,408 129,118,270
Fragment size, Library 3 35 kb 8 kb
Number of reads, Library 3 2,405,064 65,081,280
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occur only once or twice in a data set, indicative of a base-calling

error. It then tries to replace the lowest-quality base with another

base in order to create a k-mer that appears to belong to the ge-

nome. For most of the data sets, we also ran the ALLPATHS-LG

error corrector (Gnerre et al. 2011). Although ALLPATHS-LG is

primarily an assembler, we found that use of its corrected reads in

some cases led to better assemblies than those based on Quake.

Therefore, we extracted the corrected reads from ALLPATHS-LG

and used them as another input to all of the assembly algorithms.

We ran assemblers using both sets of error-corrected reads and

chose the better assembly to report.

For some data sets, additional customized pre-processing was

required. For B. impatiens, the large insert libraries (3 kb and 8 kb)

used an adaptor sequence as part of the library construction pro-

tocol. Both libraries had significant numbers of reads that con-

tained adaptor sequences. These adaptors were carefully trimmed

out from all reads.

The assemblies

In Tables 2–5, we present snapshots of each assembly using a few

metrics: the number, N50 size, and error-corrected sizes of contigs

and scaffolds. The N50 value is the size of the smallest contig (or

scaffold) such that 50% of the genome is contained in contigs of

size N50 or larger. Precise recipes describing how to run each of the

assemblers on each of our data sets can be found in the Supple-

mental Material and at http://gage.cbcb.umd.edu/recipes. These

include the parameters used for each assembler as well as the series

of steps required to run them, for those assemblers that require

multiple steps. If an assembler could not be run on a given data set,

then results for that assembler are not included.

Corrected assembly contiguity analysis

It is critical to note here that the statistics in Tables 2–5 can be very

misleading if an assembly contains errors; e.g., when two contigs

are erroneously concatenated, the resulting assembly has larger

contigs, but the assembly is worse, not better. Using the alignments

to the reference genomes, we reevaluated the contig sizes for the

three finished genomes. For this corrected analysis, we broke contigs

at every misjoin and at every indel longer than 5 bases. This pro-

duced a revised picture of what the assembly’s contiguity statistics

would be if every error could be identified and the assembly could

be split at that point. Note that errors can be very difficult to find,

and assemblies with large numbers of errors present other prob-

lems for analysis. To present a more complete picture, Tables 2–4

include the numbers of errors and corrected N50 statistics for each

assembler.

Evaluation of assembly accuracy

We assessed the correctness of the assemblies by aligning them to

a completed reference genome. Tables 6 and 7 summarize the

validation results for the three genomes for which a completed

reference is available: Staphylococcus aureus, R. sphaeroides, and

Hs14. A few common assembly problems are readily apparent:

many small ‘‘chaff’’ contigs, missing reference sequence, un-

necessarily duplicated contigs, repeat compressions, and wide-

spread contig ‘‘misjoin’’ errors. Some of these errors are specific to

certain assemblers (e.g., unaligned reference bases), while others are

endemic across all of them (e.g., contig misjoins).

For the analysis in Table 6, a ‘‘chaff’’ contig is defined as

a single contig <200 bp in length. In many cases, these contigs can

be as small as the k-mer size used to build the de Bruijn graph (e.g.,

36 bp) and are too short to support any further genomic analysis.

One of the more difficult aspects of genome assembly is the

estimation of repeat copy numbers. The statistics in Table 6 sum-

marizing duplicated and compressed reference bases illustrate

performance of the various assemblers on this task. A duplicated

repeat is one that appears in more copies than necessary in the

assembly, and a compressed repeat is one that occurs in fewer

copies. Interestingly, the duplicated repeats appear to be a pre-

ventable problem, one that many of the assemblers handle better

than others.

For example, in the S. aureus assemblies, ALLPATHS-LG,

Bambus2, and SGA all produce only on the order of hundreds of

bases in duplications. This may be explained by the tendency of

assemblers to output the fewest copies of a repeat that can be ex-

plained by the data. In contrast, compressed repeats appear to be a

systematic problem with the short-reads assemblers, with all assem-

blers compressing a significant number of base pairs. Suppression of

segmental duplications is a well-known deficiency of modern se-

quencing and assembly strategies (Kelley and Salzberg 2010).

Single nucleotide polymorphisms (SNPs) and short insertions

and deletions (indels), shown in Table 7, also vary by assembler.

The number of SNPs and indels varied by an order of magnitude,

possibly as a function of the ‘‘aggressiveness’’ of the assembler. An

important caveat regarding the human SNPs is that we did not

have a true reference for the human sample, NA12878, and this

individual genome contains many true SNPs when compared with

the human reference genome. However, because we are using a

common reference genome and read set, the relative number of

Table 2. Assemblies of S. aureus (genome size 2,872,915)

Assembler

Contigs Scaffolds

Num N50 (kb) Errors N50 corr. (kb) Num N50 (kb) Errors N50 corr. (kb)

ABySS 302 29.2 19 24.8 246 34 1 28
ALLPATHS-LG 60 96.7 20 66.2 12 1,092 0 1,092
Bambus2 109 50.2 190 16.7 17 1,084 0 1,084
CABOG Could not run: incompatible read lengths in one library
MSR-CA 94 59.2 34 48.2 17 2,412 3 1,022
SGA 252 4.0 10 4.0 456 208 1 208
SOAPdenovo 107 288.2 65 62.7 99 332 8 284
Velvet 162 48.4 42 41.5 45 762 17 126

The best value for each column is shown in bold. For all assemblies, N50 values are based on the same genome size. The Errors column contains the
number of misjoins plus indel errors >5 bp for contigs, and the total number of misjoins for scaffolds. Corrected N50 values were computed after
correcting contigs and scaffolds by breaking them at each error. See the evaluation section in the text for details on how errors were identified.
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SNPs between assemblers should be a valid proxy measure of their

single nucleotide errors.

A more aggressive assembler (e.g., SOAPdenovo) is prone to

creating more segmental indels as it strives to maximize the

lengths of its contigs, while a conservative assembler (e.g., SGA)

minimizes errors at the expense of contig size. Interestingly, each

assembler has a unique profile of indel error types. Figure 1 shows

indel profiles for indels <100 bp in the ALLPATHS-LG, CABOG, and

SOAPdenovo assemblies of human chr14. These plots demonstrate

that ALLPATHS-LG and CABOG share a similar error pattern, with

the majority of indel errors attributed to misestimation of tandem

repeat copy numbers, and a relative balance between compressions

and expansions. In contrast, SOAPdenovo shows tandem copy

errors with a slight bias toward compressions, in addition to an

unusual number of segmental deletions (characterized in Fig. 1 by

indels plotted at x > 0 and y » 0; for more details, see the Supple-

mental Material). With short reads, tandem repeat length estima-

tion is a notoriously difficult problem—however, many segmental

deletions can be avoided with careful use of mate-pair libraries or

read threading algorithms.

‘‘Misjoin’’ errors are perhaps the most harmful type, in that

they represent a significant structural error. A misjoin occurs when

an assembler incorrectly joins two distant loci of the genome,

which most often occurs within a repeat sequence. We have tallied

three types of misjoins: (1) inversions, where part of a contig or

scaffold is reversed with respect to the true genome; (2) relocations,

or rearrangements that move a contig or scaffold within a chro-

mosome; and (3) translocations, or rearrangements between

chromosomes. For scaffolds, relocations and indels are grouped

together as Reloc/Indel, where an indel error in a scaffold means

that a contig (>200 bp in length) has been deleted or inserted

incorrectly. These larger-scale indels are essentially relocations

where a contig has been moved. (Note that interchromosomal

rearrangements were not possible for our human assembly be-

cause only one chromosome was used. Table 7 reports both types

of errors under the ‘‘Reloc’’ category, but they are broken out

separately in the Supplemental Material.)

One conclusion from our analysis is that no assembler is

immune from this type of serious error, and certain assemblers

seem to be repeat offenders, while others are consistently more

correct. Figure 2 shows a dot plot of the Rhodobacter genome as

assembled into scaffolds by SOAPdenovo and Velvet. In this ex-

ample, SOAPdenovo has clearly captured the correct structure of the

chromosome and plasmids, and no misjoins are visible at this reso-

lution. However, the Velvet assembly exhibits multiple inversion

and relocation errors in the main chromosome. This relative perfor-

mance is captured in Table 7, where ALLPATHS-LG and SOAPdenovo

have the fewest scaffold misjoins (12) and Velvet has the largest (38).

Effect of multiple libraries on assembly

An important question in the design of any whole-genome se-

quencing experiment is that of the number and sizes of paired-end

libraries to use. Creating long-range paired-end libraries can be

very helpful for assembly, but the sequencing protocols are much

more costly and technically more difficult. With today’s technology,

paired-end libraries in the 100–300-bp range are the most econom-

ical. To evaluate the effect of library variety and size on assembly, we

reassembled the Rhodobacter genome using the two original libraries

plus one additional library, which consisted of 100-bp reads from

210-bp fragments, downloaded from the Sequence Read Archive.

The 210-bp library had approximately the same number of reads as

Table 3. Assemblies of R. sphaeroides (genome size 4,603,060)

Assembler

Contigs Scaffolds

Num N50 (kb) Errors N50 corr. (kb) Num N50 (kb) Errors N50 corr. (kb)

ABySS 1915 5.9 76 4.2 1701 9 3 5
ALLPATHS-LG 204 42.5 49 34.4 34 3192 0 3192
Bambus2 177 93.2 373 12.8 92 2439 2 2419
CABOG 322 20.2 44 17.9 130 66 5 55
MSR-CA 395 22.1 52 19.1 43 2,976 5 2966
SGA 3067 4.5 12 2.9 2096 51 0 51
SOAPdenovo 204 131.7 422 14.3 166 660 3 658
Velvet 583 15.7 43 14.5 178 353 6 270

Columns are the same as in Table 2.

Table 4. Assemblies of human chromosome 14 (ungapped size 88,289,540)

Assembler

Contigs Scaffolds

Num N50 (kb) Errors N50 corr. (kb) Num N50 (kb) Errors N50 corr. (kb)

ABySS 51,924 2.0 704 2.0 51,301 2.1 9 2
ALLPATHS-LG 4529 36.5 2760 21.0 225 81,647 45 4702
Bambus2 13,592 5.9 11,943 4.3 1792 324 143 161
CABOG 3361 45.3 3181 23.7 479 393 597 26
MSR-CA 30,103 4.9 5550 4.3 1425 893 1068 94
SGA 56,939 2.7 981 2.7 30,975 83 19 79
SOAPdenovo 22,689 14.7 6424 7.4 13,502 455 268 214
Velvet 45,564 2.3 4910 2.1 3,565 1190 9156 27

Columns are the same as in Table 2.
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the 180-bp library. We assembled the genome 32 times, using all

combinations of two libraries and the short library along with each

assembler. The results are shown in Figure 3 and Supplemental Table

2. For ease of comparison, only two statistics are reported: the

number of contigs and the (uncorrected) N50 contig size.

For five of the assemblers, the best N50 statistic was

obtained with the 180-bp and 3-kb library combination; how-

ever, ABySS, SGA, and MSR-CA obtained better results using the

180-bp and 210-bp combination. The MSR-CA result was almost

twice as large, suggesting that it was able to extract more conti-

guity information from the additional coverage provided by the

second short fragment library. This result may also suggest that

the 3-kb library contained artifacts that reduced its usefulness for

some assemblers. We also note that the use of more than two

libraries might produce superior results for some assemblers: The

SOAPdenovo assembly of the giant panda genome (Li et al.

2010a) used five libraries with fragment sizes ranging from 150

bp to 10 kb.

Discussion

Comparison of assembly size and contiguity

The tables show very large differences in performance among as-

semblers, as well as variation in the performance of each individual

assembler when applied to different genomes. Note that larger

contigs are not always correct, and below we take note of some

cases where misassembled contigs produced artificially large N50

values. As Table 6 shows, certain assemblers generate chaff contigs

in large amounts. For Hs14, for example, SGA outputs more base

pairs in chaff contigs than it does for the rest of the assembly.

ABySS also has an unusually high quantity of chaff. This can be

indicative of the assembler being unable to integrate short repeat

structures into larger contigs, or not properly correcting erroneous

bases. These problems might create numerous very short, unam-

biguous paths through the graph. Alternatively, the other assem-

blers might simply be eliminating short contigs from their output.

In either case, though, this problem can easily be addressed by

ignoring the chaff contigs.

Coverage of the reference genome can be measured by the

percentage of reference bases aligned to any assembled contig. The

best assemblers have both a low incidence of chaff and a high

coverage of the reference genome. By this metric, ALLPATHS-LG

and CABOG perform admirably well on Hs14 with only 0.03% of

the assembly in chaff contigs, and only 2.8% and 1.7% of the

chromosome (respectively) missing from the assembly. It would

Table 5. Assemblies of the bumble bee, B. impatiens (estimated
size 250 Mb)

Assembler

Contigs Scaffolds

Num
N50
(kb)

E-size
(kb) Num

N50
(kb)

E-size
(kb)

ALLPATHS-LG Could not run: incompatible library types
CABOG 22,107 23.5 34.2 1191 1125 1367
MSR-CA 21,885 32.4 46.9 2551 1246 1528
SGA Program crashed: cause unclear
SOAPdenovo 15,957 57.1 78.2 5800 1374 1608
Velvet Program crashed: insufficient memory (256 GB)

Column headers have the same meanings as in Table 2.

Table 6. Statistics showing bases that failed to align or were present in different copy numbers in the reference genomes and the assemblies
of S. aureus, R. sphaeroides, and Hs14

Assembler
Assembly size

(%)
Chaff size

(%)
Unaligned ref

bases (%)
Unaligned asm

bases (%)
Duplicated ref

bases (%)
Compressed ref

bases (%)

S. aureus (2.87 Mb)
ABySS 127.0 66.00 1.37 <0.01 23.30 0.99
ALLPATHS-LG 99.9 0.03 0.62 <0.01 0.03 1.27
Bambus2 98.5 0 1.32 <0.01 <0.01 1.29
MSR-CA 99.6 0.02 1.30 <0.01 0.83 1.01
SGA 98.5 21.38 1.91 <0.01 0.03 1.30
SOAPdenovo 101.3 0.35 0.38 0.01 1.44 1.41
Velvet 99.2 0.45 0.79 0.03 0.10 1.28

R. sphaeroides (4.60 Mb)
ABySS 108.0 1.65 3.01 0.15 10.04 0.04
ALLPATHS-LG 99.7 0.01 0.47 0.01 0.38 0.30
Bambus2 94.9 0 4.93 <0.01 <0.01 0.24
CABOG 92.1 <0.01 7.51 0.01 0.12 0.70
MSR-CA 96.9 0.02 3.52 0.04 1.04 0.49
SGA 97.8 4.95 2.31 0.02 0.06 0.92
SOAPdenovo 99.9 0.45 0.88 0.02 1.07 0.51
Velvet 97.8 0.54 1.60 0.01 0.29 0.92

Human chromosome 14 (88.29 Mb)
ABySS 83.1 41.37 17.78 0.03 0.59 0.52
ALLPATHS-LG 95.6 0.03 2.76 0.03 0.27 2.57
Bambus2 77.3 <0.01 20.55 0.07 0.14 4.04
CABOG 97.7 0.03 1.68 0.06 0.16 1.71
MSR-CA 92.5 0.18 8.10 0.57 1.69 2.27
SGA 93.3 107.82 6.97 0.06 0.14 2.14
SOAPdenovo 104.9 3.77 1.83 0.60 6.76 3.76
Velvet 84.7 6.25 15.12 0.31 0.09 0.64

The true size of each genome is shown next to the species name. All table values are expressed as a percentage of the true genome size. Column headers
are defined in the main text. Additional statistics are provided in the Supplemental Material.
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appear that these assemblers are able to resolve the complex repeat

structure of the human genome by a combination of accurate error

correction and good use of mate-pair information. Despite its per-

formance on Hs14, however, CABOG leaves more of R. sphaeroides

uncovered (7.5%) than any other assembler.

To provide a context, it is also worth considering whether

some genomes are intrinsically more difficult to assemble than the

others. Assembly difficulty is partly a function of repetitiveness,

which also interacts with read length: In general, a repeat sequence

creates a gap unless the reads fully contain (and are longer than)

the repeat. Assemblers can fill in many of these gaps using paired-

end information, as long as the paired-end distances are longer

than the repeats. One measure of repetitiveness is K-mer unique-

ness (Schatz et al. 2010), defined as the percentage of a genome

that is covered by unique sequences of length K. We computed this

ratio for the three known genomes in our study and compared it

with the full human genome and the nematode Caenorhabditis

elegans (Fig. 4). As the figure shows, the two bacteria are less re-

petitive than Hs14, and Hs14 is noticeably less repetitive than the

full human genome.

Importance of error correction

For all four genomes and for all eight assemblers used in GAGE, the

best assemblies were created from reads that had been processed

through extensive error correction routines. As noted above, contig

sizes after error correction often increased dramatically, as much as

30-fold. This highlights the critical importance of data quality to

a good assembly. For most of the assemblers, the best results came

from using reads that had been corrected either by Quake or by

ALLPATHS-LG (for details, see the Supplemental Material). MSR-CA

and SGA produced better results using their own built-in error cor-

rection routines, but in all cases, error correction was a key part of the

assembly process.

S. aureus

Table 2 shows that SOAPdenovo produced much larger contigs for

S. aureus than any of the other systems, with an N50 size of 288 kb.

Table 7. Statistics on insertions, deletions, and misassembly errors in the various assemblies of S. aureus, R. sphaeroides, and Hs14

Indels Contigs Scaffolds

Assembler SNPs #5 bp >5 bp Misjoins Inv Reloc Misjoins Inv Reloc/indel

S. aureus (2.87 Mb)
ABySS 258 20 9 5 3 2 1 1 0
ALLPATHS-LG 79 4 12 4 0 4 0 0 0
Bambus2 28 56 164 13 2 11 0 0 0
MSR-CA 191 23 10 12 6 6 3 3 0
SGA 32 2 2 4 1 3 — — —
SOAPdenovo 246 25 31 17 1 16 8 1 7
Velvet 217 6 14 14 5 9 17 5 12

R. sphaeroides (4.60 Mb)
ABySS 692 288 34 21 2 19 3 0 3
ALLPATHS-LG 218 150 37 6 0 6 0 0 0
Bambus2 189 149 363 5 0 5 2 0 2
CABOG 536 145 24 10 1 9 5 4 1
MSR-CA 807 179 32 10 1 9 5 2 3
SGA 336 116 4 4 0 4 - - -
SOAPdenovo 527 155 406 8 0 8 3 1 2
Velvet 413 148 27 8 0 8 6 6 7

Human chromosome 14 (88.29 Mb)
ABySS 60,408 9987 678 13 6 7 9 9 0
ALLPATHS-LG 55,317 27,559 2558 101 44 57 45 0 45
Bambus2 64,869 17,141 5411 3266 1722 1544 143 37 106
CABOG 81,125 28,420 2883 149 46 103 597 389 208
MSR-CA 153,104 21,933 3082 1234 653 581 1068 210 858
SGA 70,976 15,483 681 150 90 60 — — —
SOAPdenovo 98,185 21,347 3902 1261 520 741 268 17 251
Velvet 79,399 17,505 4172 369 199 170 9156 3824 5332

Column headers are defined in the main text.

Figure 1. Comparison of the indel profiles for three assemblies of hu-
man Chr14. Every indel in the assembly is defined by the two aligned
segments on either side. For each indel, the x-axis displays the distance
between the two adjacent segments in the reference, and the y-axis dis-
plays the distance in the query. Thus, the point x = 100, y = 0 indicates
a 100-bp deletion in the assembly, relative to the reference. Deletions
from the assembly lie below the line y = x, and insertions in the assembly lie
above. The indels can be roughly categorized by quadrant: (top right)
divergent sequence; (bottom right) segmental assembly deletion; (bottom
left) tandem repeat collapse/expansion; (top left) segmental assembly in-
sertion. No points lie on the line y = x because only indels >5 bp are dis-
played. For details, see the Supplemental Methods.
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However, after comparing it with the reference genome, we found

that SOAPdenovo contained multiple assembly errors (Table 2).

Breaking the assembly at these errors produced a much smaller

N50 value of 63 kb. The N50 size for ALLPATHS-LG was initially 97

kb, and with many fewer assembly errors, breaking the contigs

reduced the N50 value less dramatically, to 66 kb, making it the

best of the assemblers on this genome. MSR-CA’s corrected N50

of 48 kb placed it below SOAPdenovo, but with about half as many

assembly errors (34 vs. 65), MSR-CA would appear preferable to

SOAPdenovo.

ALLPATHS-LG, MSR-CA, and Bambus2

all produced very large scaffolds, with

MSR-CA producing a single scaffold con-

taining the entire main chromosome.

However, this scaffold contained several

inversions, and only ALLPATHS-LG and

Bambus2 produced scaffolds with no

major errors.

Note that CABOG was not run on S.

aureus because one of the two paired-end

libraries contains reads of just 37 bp, and

CABOG has a minimum read length of 64

bp.

R. sphaeroides

For Rhodobacter (Table 3), Bambus2 had

the smallest number of contigs and scaf-

folds, with relatively large N50 sizes in

both categories. The largest contigs were

built by SOAPdenovo (with an N50 size of

132 kb), followed by Bambus2 (93 kb) and

ALLPATHS-LG (42 kb).

As with Staphylococcus, however, the errors in the assemblies

made some, particularly SOAPdenovo, appear to be better than

they really were. With 422 errors, SOAPdenovo was the most error-

prone of all the assemblers for Rhodobacter, and after breaking

contigs at these errors, its N50 size was just 14.3 kb, dropping it to

fifth place for contiguity. Bambus2 had almost as many errors and

dropped even further after correction, to 12.8 kb. ALLPATHS-LG’s

contiguity dropped the least, and after correction its contig N50 of

34.4 kb was the best, followed by MSR-CA at 19.1 kb.

Figure 2. A dot-plot comparison of the SOAPdenovo and Velvet scaffolds of R. sphaeroides. The finished reference chromosomes are plotted on the
x-axis and the assembly scaffolds on the y-axis. Dotted lines indicate scaffold or chromosome boundaries. The apparent rearrangement at the top right of
the SOAPdenovo plot is an artifact of the circular reference plasmid.

Figure 3. Assemblies of R. sphaeroides using four different combinations of paired-end libraries as
input to the assemblers. Each run used either one library (180 bp only) or a different combination of two
libraries from 180 to 3000 bp. Note that N50 values are uncorrected; see Table 3 for the true N50 sizes
for the 180 bp + 3 kb combination, which are much lower in some instances; e.g., SOAPdenovo has
a corrected N50 of 14.3 kb (rather than 131.7 kb) for assembly with the 180-bp and 3-kb libraries.
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ALLPATHS-LG also produced the best scaffolding results, with

the main chromosome entirely spanned by a single scaffold, closely

followed by MSR-CA and Bambus2. SOAPdenovo’s scaffolding re-

sults were a distant fourth place, approximately five times smaller

than ALLPATHS-LG. An important caveat on these results is that

the Rhodobacter data set was created following the ALLPATHS-LG

‘‘recipe’’ for library construction, which makes it an ideal data set

for that assembler.

Although the overall results were similar for the two bacterial

data sets, the sizes of the contigs were generally much larger for

S. aureus, and the contigs for a given assembler varied by as much as

sixfold (for ABySS). This variation illustrates how one of the most

important variables in predicting assembly contiguity may be the

genome itself, which is an element that cannot be controlled.

Human chromosome 14

For the human chromosome data, most of the assemblers pro-

duced relatively poor results, and the differences between the best

and worst assemblers were dramatic. As with Rhodobacter, the se-

quencing strategy and mate-pair data were designed specifically for

ALLPATHS-LG, and the creators of some of the assemblers might

not have anticipated or taken full advantage of this type of data

(particularly the library with overlapping mates). Regardless of the

reason, ALLPATHS-LG and CABOG clearly outperformed all of the

other assemblers in the contiguity statistics shown in Table 4.

CABOG’s contigs were 30% larger than those from ALLPATHS-LG

(45.3 kb vs. 36.5 kb), but both were far larger than those produced by

any of the other methods, most of which built contigs in the 2–4-kb

range. Even more dramatic was the exceptionally large scaffold pro-

duced by ALLPATHS-LG, which contained almost the entire chro-

mosome in one scaffold of 81.6 Mb. The largest scaffold generated

by any other assembler was one produced by Velvet, at only 4.6 Mb.

After adjusting for misassemblies (Table 4), CABOG remained

slightly ahead of ALLPATHS-LG, with both dropping substantially,

to 23.7 kb and 21.0 kb, respectively. They remained far ahead of the

third-best assembler, SOAPdenovo, with an N50 size of just 7.4 kb.

It is also important to note that all of the leading performers had

thousands of assembly errors on this chromosome, which trans-

lates into tens of thousands of errors on a full human genome.

Fewer errors were found in the assemblies of ABySS (704 errors) and

SGA (981 errors), but their more-cautious approaches produced

very small contig N50 sizes of 2.0 and 2.7 kb. Thus, despite all ef-

forts at error correction and repeat identification, assembly of a

mammalian genome from NGS data remains an extremely chal-

lenging problem.

B. impatiens

Unlike the other three genomes, the bumble bee (B. impatiens) does

not have a finished reference. Based on the results above, conti-

guity and size statistics should be interpreted very cautiously; it is

possible that assembly errors, if known, would dramatically

change these values, as they did in our experiments on S. aureus

above. Nonetheless, we found that SOAPdenovo generated contigs

with nearly double the N50 size of CABOG, 57 kb versus 24 kb. The

scaffold N50 sizes were all similar, although SOAPdenovo’s were

slightly larger than the others. Worth noting here is that in ex-

periments using an earlier (2010) release of SOAPdenovo, it could

only produce contigs with an N50 of 6.4 kb, indicating a sub-

stantial improvement in that assembler in its more recent version.

Most of the other assemblers could not assemble these data at

all, for various reasons. ALLPATHS-LG could not be used because it

requires at least one library with overlapping mate pairs, which

this project did not have. The other assemblers appeared to be

unable to handle the large number of reads (;500 million), and

most of them crashed, often after several days running on a 256-GB

multi-core computer. This illustrates an underappreciated fact of

genome assembly with current technology: For larger genomes,

the choice of assemblers is often limited to those that will run

without crashing.

Shared assembly errors

To address the question of whether assembly errors were common

or different among all of the algorithms, we looked at the inter-

sections of errors on the assembly of Hs14. Insofar as the errors are

unique, then it might be beneficial to merge the results of multiple

assemblers to produce a consensus assembly. We focused on errors

>5 bp, which include the collapse or expansion of small tandem

repeats as well as larger errors. As shown in Figure 5, Bambus2,

Velvet, and SOAPdenovo had significantly more unique errors than

the other assemblers, ranging from just over 2000 (SOAPdenovo) to

4000 (Bambus2). SGA had by far the fewest unique errors. Among

the shared errors, ALLPATHS-LG and CABOG had the largest num-

bers, suggesting that these two assemblers might agree with one

another and possibly that some of their errors might represent true

haplotype differences. Finally, there were about 200 errors shared by

all eight assemblers, indicating that these are likely true variations in

the target genome rather than errors.

Conclusions

Figure 6 summarizes the results across the three genomes for which

the true assembly is available. ALLPATHS-LG demonstrated con-

sistently strong performance based on contig and scaffold size,

with the best trade-off between size and error rate, as shown in the

figure. MSR-CA also performed relatively well, although with more

Figure 4. K-mer uniqueness ratio for the three genomes assembled in
GAGE: the bacteria S. aureus and R. sphaeroides and human chromosome
14. The ratio is defined as the percentage of a genome that is covered by
unique (i.e., non-repetitive) DNA sequences of length K. Shown for
comparison are the k-mer uniqueness ratios for the full human genome
and for the nematode C. elegans.
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errors than ALLPATHS-LG. Bambus2 seems to be a very capable

scaffolder, as shown in Figure 6, but its contigs contain numerous

small errors. (An explanation for this result is that contig merging

is a very recent addition to Bambus2, one that is still under de-

velopment.) The latter two assemblers use parts of the CABOG

assembler for many of their core functions, and in this respect their

performance is not independent. SOAPdenovo produced results

that initially seemed superior to most assemblers, but on closer

inspection it generated many misassemblies that would be im-

possible to detect without access to a reference genome. Despite its

poor performance on human, SOAPdenovo performed very well on

the bacteria, creating contigs that were eight times larger than

it built on the human data. Finally, Table 7 and Figure 6 show that

Velvet had a particularly high error rate for its scaffolds, creating

many more inversions and translocations than any other algorithm.

As illustrated by the differences between the original and

corrected N50 values in Tables 2–4, an

assembler can produce a large N50 value

by using an overly aggressive assembly

strategy, which, in turn, will yield a higher

number of errors. In contrast, more

conservative assemblers might produce

smaller contigs but fewer errors. For the

genomes examined here, ALLPATHS-LG

and CABOG stood out as assemblers ca-

pable of producing both high contiguity

and high accuracy. SOAPdenovo often

produced similar or larger N50 values, but

it appears to achieve this by sacrificing

correctness. For all three of the previously

sequenced genomes, SOAPdenovo showed

a higher rate of chaff, duplications, com-

pressions, SNPs, indels, and misjoins than

CABOG and ALLPATHS-LG. Considering

all metrics, and with the caveat that it

requires a precise recipe of input libraries,

ALLPATHS-LG appears to be the most

consistently performing assembler, both

in terms of contiguity and correctness.

For all of the assemblers, contig sizes for the human chro-

mosome assembly were smaller than contigs for either of the

bacterial genomes. The problem would only be more difficult if we

had used the entire genome rather than a single chromosome. We

conclude that, despite very significant improvements in assembly

technology, the problem of assembling a large genome from short

reads remains very difficult. The remarkable gains in sequencing

throughput of recent years will require further improvements, es-

pecially in read length and in paired-end protocols, before we are

likely to see accurate, highly contiguous mammalian assemblies.

Thanks to algorithmic improvements, the assemblers used in

this study can handle very large data volumes, but they will need

longer-range linking information if they are to match or exceed the

quality of assemblies based on Sanger sequencing technology.

Finally, we should note that all of the assemblers considered

here are under constant development, and many will be improved

by the time this analysis appears. Evaluations of assemblers such as

GAGE are useful snapshots of performance, but ongoing reevalu-

ation will be necessary as algorithms and sequencing technology

change. Assembly evaluations should also be reproducible, which

requires that the complete recipes for running these complex

programs should be provided, as we have done here for the first

time.

Methods
Data for S. aureus were downloaded from the Sequence Read Ar-
chive (SRA) at NCBI, accession numbers SRX007714 and SRX016063.
The R. sphaeroides data have SRA accessions SRX033397 and
SRX016063. The SRA libraries downloaded had higher coverage
than was needed for most experiments. Each library was therefore
randomly sampled to create a data set with 453 genome coverage,
giving a total of 903 coverage for each genome.

To create the human chromosome 14 data set, reads se-
quenced from cell line GM12878 were downloaded from the
SRA under the following accession numbers: SRR067780,
SRR067784, SRR067785, SRR067787, SRR067789, SRR067791–
SRR067793, SRR067771, SRR067773, SRR067776–SRR067779,
SRR067781, SRR067786, SRR068214, SRR068211, SRR068335.
Reads came from one short fragment library (mean read length 101

Figure 5. Comparison of insertion and deletion errors among all eight
assemblers for human chromosome 14. (Blue) The indel errors >5 bp in
length that are unique to each assembler. (Red bars) Indel errors made by
at least one other assembler. (Green bars) Indels shared by all assemblers,
which might represent true differences between the target genome and
the reference.

Figure 6. Average contig (A) and scaffold (B) sizes, measured by N50 values, versus error rates, av-
eraged over all three genomes for which the true assembly is known: S. aureus, R. sphaeroides, and
human chromosome 14. Errors (vertical axis) are measured as the average distance between errors, in
kilobases. N50 values represent the size N at which 50% of the genome is contained in contigs/scaffolds
of length N or larger. In both plots, the best assemblers appear in the upper right.
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bp, fragment size 155 bp), two short jump libraries (101-bp mean
read length, 2536-bp mean insert size), and two fosmid libraries
(76-bp mean read length, 35,295-bp mean insert length). The
original set of >1 billion reads was mapped against the entire hu-
man genome (GRCh37/hg19) using Bowtie (Langmead et al.
2009); reads mapping to multiple locations were randomly dis-
tributed across those locations (parameters: -l 28 -n 3 -e 300 -3 20 -M
1-best). Only reads mapping to Hs14 were retained. Each read in
a pair was mapped separately to allow for inclusion of real distri-
bution of insert sizes (including chimeric reads) and to avoid ex-
cessively filtering the data so as to better reflect the distribution in
the original data set. The overall coverage of Hs14 was 603, as
shown in Supplemental Figure 1, and the number of gaps in cov-
erage was 108, with gap sizes ranging from 1 to 2412 bp.

The B. impatiens data were sequenced at the Keck Center for
Comparative and Functional Genomics, University of Illinois and
released for public use by Gene Robinson.

Reads were error-corrected using both Quake and the
ALLPATHS-LG error corrector (for details, see the Supplemental
Methods). All assemblers were run using multiple parameters and
with corrected and uncorrected reads as input; the best assembly for
each genome was chosen.

For the three previously finished genomes, N50 sizes were
computed based on the known size of the genome. For the bum-
ble bee, N50 sizes used the estimated genome size of 250 Mb.
Contigs and scaffolds of 200 bp or longer were used for all
computations.

Because N50 size might sometimes be a misleading statistic,
we also computed another statistic, which we call E-size. The E-size
is designed to answer the question: If you choose a location (a base)
in the reference genome at random, what is the expected size of the
contig or scaffold containing that location? This statistic is one
way to answer the related question: How many genes will be
completely contained within assembled contigs or scaffolds, rather
than split into multiple pieces? E-size is computed as:

E = +
c

ðLcÞ2

G
;

where LC is the length of contig C, and G is the genome length
estimated by the sum of all contig lengths. E-size is computed
similarly for scaffolds. To be consistent across all assemblies, we
only considered contigs and scaffolds of 200 bp or longer in
computing the E-size, and we used a constant value of G for all
assemblies of a given genome. After computing E-sizes for all as-
semblies and all genomes, we found that they correlated very
closely with N50 sizes in every case, validating our choice of N50
size as a representative assembly size metric. E-sizes for all assemblies
can be found in Supplemental Table 1.

For evaluating correctness, alignment statistics and mis-
assemblies were tallied using the program dnadiff (Phillippy et al.
2008) from MUMmer v3.23 (Kurtz et al. 2004). dnadiff operates by
constructing local pairwise alignments between a reference and
query genome using the Nucmer aligner. The aligned segments are
then filtered to obtain a globally optimal mapping between the
reference and query segments, while allowing for rearrangements,
duplications, and inversions. This technique was later described in
detail by Dubchak et al. (2009) as the SuperMap algorithm. Con-
veniently, this method identifies both a one-to-one mapping of
segments as well as any duplicated sequences. When applied to
assembly mapping, it can be used to measure the quantity and
types of common misassemblies.

To create the alignments, contigs <200 bp were excluded, and
the remainder were aligned using nucmer (Kurtz et al. 2004) with
the options ‘‘-maxmatch -l 30 -banded -D 5.’’ Combined with its
default options, this invocation requires a minimum exact-match

anchor size of 30 bp and a minimum combined anchor length of
65 bp per cluster. Clusters are further required to have no more than
90 bp separation or more than five inserted bases between any two
adjacent anchors. Acceptable clusters are then used to seed banded
Smith-Waterman alignments (Smith and Waterman 1981). After
running nucmer, alignments with <95% identity or >95% overlap
with another alignment were discarded using delta-filter. dnadiff was
then executed on the remaining alignments with default parameters,
and correctness statistics were tabulated from its output (see the
Supplemental Material).

For the scaffolds, we calculated three types of errors: indels,
where there is an incorrect interleaving of multiple scaffolds; in-
versions, where a scaffold switches strands within a chromosome;
and translocations, where a scaffold maps to multiple chromosomes
in the reference. We also counted the number of gaps where the
scaffold gap-size estimate is at least 1 kb off and the average absolute
difference between the scaffold gap estimate and true gap size in
each assembly. Details of how the scaffolds were aligned are in the
Supplemental Material.

Any alignment-based metric is subject to the accuracy of
the underlying alignments. Because complex repeat structures
made the correct determination of alignment boundaries difficult
in some cases, the figures presented here are to be taken only as
estimates of the various features of each assembly. This is espe-
cially true of the misjoin features, which penalize small contig
misassemblies just as severely as more major rearrangements.
However, even allowing for some alignment-based error, the rel-
ative performance of each assembler would likely remain the
same, and we should emphasize that all assemblies were analyzed
with identical methods and against the same reference genomes.

Data access
All data sets, including error-corrected reads for each genome, are
freely available from http://gage.cbcb.umd.edu/data.
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