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Cancer is a disease driven by genetic variation and mutation. Exome sequencing can be utilized for discovering these
variants and mutations across hundreds of tumors. Here we present an analysis tool, VarScan 2, for the detection of
somatic mutations and copy number alterations (CNAs) in exome data from tumor–normal pairs. Unlike most current
approaches, our algorithm reads data from both samples simultaneously; a heuristic and statistical algorithm detects
sequence variants and classifies them by somatic status (germline, somatic, or LOH); while a comparison of normalized
read depth delineates relative copy number changes. We apply these methods to the analysis of exome sequence data from
151 high-grade ovarian tumors characterized as part of the Cancer Genome Atlas (TCGA). We validated some 7790
somatic coding mutations, achieving 93% sensitivity and 85% precision for single nucleotide variant (SNV) detection.
Exome-based CNA analysis identified 29 large-scale alterations and 619 focal events per tumor on average. As in our
previous analysis of these data, we observed frequent amplification of oncogenes (e.g., CCNE1, MYC) and deletion of tumor
suppressors (NF1, PTEN, and CDKN2A). We searched for additional recurrent focal CNAs using the correlation matrix
diagonal segmentation (CMDS) algorithm, which identified 424 significant events affecting 582 genes. Taken together, our
results demonstrate the robust performance of VarScan 2 for somatic mutation and CNA detection and shed new light on
the landscape of genetic alterations in ovarian cancer.

[Supplemental material is available for this article.]

Exome sequencing of tumor samples and matched normal con-

trols has the potential to rapidly identify protein-altering muta-

tions across hundreds of patients, potentially enabling the dis-

covery of recurrent events driving tumor development and growth

(International Cancer Genome Consortium 2010; Stratton 2011).

Yet the analysis of such data presents significant challenges. Se-

quencing coverage is nonuniform across targeted regions and

from one sample to the next (Ng et al. 2009; Bainbridge et al.

2010; Teer et al. 2010). Many regions achieve high read depth

(more than 1003), which can confound variant callers and depth-

based filters if not properly addressed (Ku et al. 2011). Repetitive

and paralogous sequences can give rise to numerous false positives.

The detection of somatic mutations in tumor genomes is even

more challenging. The genomes of primary tumors are geneti-

cally heterogeneous (Ding et al. 2010), with frequent rearrange-

ments (Campbell et al. 2008) and copy number alterations (CNAs)

(Beroukhim et al. 2010). Further, somatic mutations are relatively

rare compared with germline variation, often representing <0.1%

of variants in a tumor genome (Ley et al. 2008; Mardis et al. 2009).

Simply subtracting variants in the matched normal from variants

in the tumor (Wei et al. 2011) is poorly suited for the analysis of

exome sequence data, because it fails to account for regions that

were undersampled in the normal. Accurate mutation detection

requires a direct, simultaneous comparison of tumor–normal pairs

at every position in the exome, but few algorithms to do so have

been described.

Numerous algorithms have been developed to assess genome-

wide copy number using whole-genome sequencing (WGS) data.

Most of these approaches (Campbell et al. 2008; Alkan et al. 2009;

Chiang et al. 2009; Yoon et al. 2009; Abyzov et al. 2011) would

be confounded by exome data sets, because of the biases introduced

by hybridization and the sparse and uneven coverages throughout

the genome. However, when both DNA samples in a tumor–normal

pair were captured and sequenced under identical hybridization

conditions, we reasoned that it might be possible to detect somatic

CNAs (SCNAs) as deviations from the log-ratio of sequence coverage

depth within a tumor–normal pair, and then quantify the devia-

tions statistically. Such an approach would provide a gene-centric

view of copy number in a tumor sample, though it would be limited

to the ;1% of the genome captured by current exome platforms.

Previously, we published VarScan (Koboldt et al. 2009), an

algorithm for variant detection in next-generation sequencing

data. We have since released a new tool, VarScan 2 (http://varscan.

sourceforge.net), with several improvements, including the ability

to identify somatic mutation, loss of heterozygosity (LOH), and

CNA events in tumor–normal pairs. VarScan 2 analyzes sequence

data from a tumor sample and its corresponding normal sample

simultaneously, applying heuristic methods and a statistical test to

detect variants—single nucleotide variants (SNVs) and insertions/

deletions (indels)—and classify them by somatic status. By direct

comparison of normalized sequence depth, our method also detects

SCNAs in the tumor genome.

Here, we utilize VarScan 2 for the analysis of exome sequence

data from 151 patients with high-grade serous ovarian adenocar-

4Corresponding authors.
E-mail lding@genome.wustl.edu.
E-mail rwilson@genome.wustl.edu.
Article published online before print. Article, supplemental material, and pub-
lication date are at http://www.genome.org/cgi/doi/10.1101/gr.129684.111.

568 Genome Research
www.genome.org

22:568–576 � 2012 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/12; www.genome.org

http://varscan.sourceforge.net
http://varscan.sourceforge.net
mailto:lding@genome.wustl.edu
mailto:rwilson@genome.wustl.edu


cinoma (HGS-OVCa) that were initially characterized within the

Cancer Genome Atlas (TCGA) project (Cancer Genome Atlas Re-

search Network 2011). We present a robust pipeline for the de-

tection of both germline (inherited) and somatic (acquired) mu-

tations by exome sequencing and describe filtering approaches for

detecting variants with high sensitivity and specificity. To evaluate

the performance of our SCNA detection algorithm, we compare

our results to copy number data from high-density SNP array

and WGS approaches. Our results demonstrate the accuracy of

VarScan 2 for somatic mutation and CNA detection and enable a

new survey of the genetic landscape in ovarian carcinoma.

Results
The VarScan 2 algorithm reads SAMtools pileup or mpileup output

from tumor and normal samples simultaneously, performing

pairwise comparisons of base calls and normalized sequence depth

at each position (Fig. 1). For variant detection, a heuristic algo-

rithm determines the genotype for normal and tumor samples

independently based on adjustable minimum thresholds for cov-

erage, base quality, variant allele frequency, and statistical signifi-

cance. In single samples, the latter value is computed by Fisher’s

exact test of the read counts supporting each allele (reference and

variant) compared to the expected distribution based on sequenc-

ing error alone. By default, VarScan 2 requires a minimum coverage

of 33, minimum phred base quality of 20, allele frequency of at

least 8%, and a P-value of <0.05. Variants with a variant allele

frequency of >75% are called homozygous. These represent the

initially recommended parameters, and they are fully adjustable by

the user.

At every position where one or both samples had a variant,

VarScan performs a direct comparison between tumor and normal

genotypes (heuristic) and supporting read counts (Fisher’s exact

test) to determine the somatic status. Variants present in both

samples are classified as somatic (acquired), variants heterozygous

in the normal but homozygous in the tumor are classified as LOH,

and variants shared between samples are classified as germline

(inherited). To further refine these predictions, we developed

a false-positive filter that removes likely false positives due to se-

quencing- or alignment-related artifacts. The filter evaluates each

variant for nine empirically derived criteria to distinguish true

variants from probable artifactual calls (Table 1; Supplemental

Fig. 1).

To identify SCNAs, VarScan 2 compares Q20 (base quality $

20) read depths between tumor and normal samples for contiguous

regions of coverage. After normalizing for the amount of input

data (unique bases mapped), the relative copy number change is

inferred as the log2 of the ratio of tumor depth to normal depth for

each contiguous region. The output of this algorithm—a set of

regions, each with defined start and stop positions and a log ratio

representing the copy number change in the tumor—is similar to

hybridization-based copy number data and amenable to the same

segmentation methods. Therefore, we apply a circular binary seg-

mentation (CBS) algorithm (Seshan and Olshen 2010) to delineate

segments by copy number and identify significant change-points.

A subsequent joining procedure merged adjacent segments of

similar copy number and classified them as either large-scale

(>25% of chromosome arm) or focal events (see Methods).

Application to 151 ovarian cancer tumor–normal pairs

To evaluate our methods, we applied them to exome data for tumor

samples and matched normals from 151 serous ovarian carcino-

mas that we previously characterized (Cancer Genome Atlas Re-

search Network 2011) as part of the Cancer Genome Atlas (Table 2).

On average, we identified 18,462 coding SNVs per tumor, of which

16,340 (88.5%) were germline variants, 2013 (10.9%) were LOH

events, and 109 (0.59%) were somatic mutations (Fig. 1). Gapped

alignments of the relatively long (76–100 bp), paired-end reads

in our data set also permitted the identification of small indels

ranging in size from 1–55 bp. On average, we detected 418 coding

indels per exome, of which 387 (92.6%) were germline variants, 23

(5.50%) were LOH, and eight (1.91%) were somatic mutations.

We also applied VarScan 2 to detect SCNAs. To minimize the

effect of variable coverage between tumor and normal samples, we

excluded nine samples with <50% of target CDS bases covered at

greater than 20-fold, and focused our analysis on 142 tumor–

normal pairs with sufficient sequence coverage (Supplemental

Information; Supplemental Table 1). On average across 142 patient

samples, we detected 29 large-scale events (eight gains and 21

losses) and 619 focal events (301 gains and 318 losses) per tumor

exome (Fig. 1; Supplemental Table 5).

Comparison of germline variants to high-density SNP
array genotypes

To evaluate the performance of our mutation detection approach,

we utilized orthogonal validation data from two sources. First, to

evaluate the accuracy of germline variant detection, we compared

VarScan 2 consensus genotypes for exome data to high-density

SNP array data made available by TCGA (Cancer Genome Atlas

Research Network 2011). To minimize the influence of sequence

Figure 1. The VarScan 2 mutation and copy number alteration de-
tection algorithms. Alignments in BAM format for a tumor–normal pair
are read simultaneously to identify inherited (germline), loss-of-hetero-
zygosity (LOH), and somatic mutation events. Variants in each category
are further classified as high confidence (HC) or low confidence (LC). HC
variants are filtered to remove false positives from common sequencing-
and alignment-related artifacts (see Table 1). The resulting variants are
annotated and organized by tier; the average number of ‘‘tier 1’’ coding
variants per tumor is shown for each category. At positions with at least
203 coverage (default), copy number alterations are detected by com-
parison of Q20 read depths from matched tumor–normal pairs, normal-
ized based on the amount of input data for each sample. Raw contiguous
regions from VarScan 2 are processed by circular binary segmentation
(CBS) and a subsequent merging procedure that joins adjacent segments
yields a set of somatic copy number alterations, which are further classified
as large-scale (>25% of chromosome arm) or focal (<25%) events. Shown
are the average numbers of events detected in 142 ovarian exomes.
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coverage, we compared only sites that achieved eightfold coverage

or higher in either the tumor or matched normal sample, and ex-

amined only those within the ;33-Mbp CDS target region. On

average, each sample had 5425 germline SNPs with informative

array genotypes and sufficient coverage in the exome. Genotype

concordance between VarScan 2 consensus genotypes and array

genotypes was 99.56% (Supplemental Information; Supplemental

Fig. 2A), supporting a high accuracy for germline variant detection

by VarScan 2.

To better understand concordance metrics, we investigated

the 2854 discrepancies between array and exome data (Supple-

mental Fig. 2B). Of these, 27% of these were genotyped as reference

(wild type) by array but called heterozygous (21%) or homozygous

variant (6%) in the sequencing data. On average, these sites

achieved high depth (2063 and 1293, respectively) and variant

allele frequencies (46.7% and 97.0%) by exome sequencing (Sup-

plemental Fig. 3). This suggests that many are true variants missed

by the array, possibly due to misclustering or allele dropout

(Koboldt et al. 2006). Another 17% of discrepancies were hetero-

zygous on both platforms, but the variant allele observed in se-

quence data was different from that reported by SNP array. An

examination of these revealed that the majority (83.3%) were re-

verse-complementary allele combinations (e.g., G/A variant in

exome data genotyped as C/T); most likely, the strand orientation

reported for the SNP array genotype was incorrect. The most

common discrepancy (45%) occurred at sites called heterozygous

by array but homozygous variant using exome data. Some 105 of

these (8.2%) had 100% variant allele frequency with 203 or more

coverage and are likely true homozygotes, but roughly half of all

such discrepancies (615, or 48%) had less than 203 coverage in

exome data and likely reflect an allelic bias favoring the variant. We

conclude that germline variants called using exome data are highly

accurate (99.56%), and a significant fraction of the discrepancies

can be attributed to array genotyping error or imbalanced allelic

representation in the sequence data.

Finally, to investigate the portion of the exome that is callable

by our method, we computed the fraction of CDS bases covered by

at least 20 reads (Supplemental Table 1) in each sample. As an es-

timate of overall sensitivity for coding variants, we also determined

the proportion of heterozygous SNPs (by array genotype) in the

CDS target that were detected by VarScan 2 as germline variants,

regardless of the coverage of those positions (Supplemental Fig. 4).

There were nine outlier samples that

achieved relatively poor CDS coverage

with correspondingly poor detection of

heterozygous SNPs. Excluding these, we

find that, on average, 79.62% of CDS

bases are covered 203 or more in each

sample and that 81.42% of heterozygous

SNPs are detected by VarScan 2. From

these metrics, we conclude that ;80%

of coding sequences are ‘‘callable’’ by

Agilent SureSelect exome sequencing and

VarScan 2 analysis.

Orthogonal validation
of somatic mutations

To assess the specificity of somatic muta-

tion detection, we validated putative so-

matic coding SNVs by PCR and deep

resequencing (Table 3). Of 5871 muta-

tions for which we obtained validation data, 5225 (89.00%) were

confirmed as true somatic mutations, 572 (9.74%) were refuted as

wild type, 63 (1.07%) were germline variants, and 11 (0.19%) were

due to LOH in the tumor. In general, exome sequence depth was

lower and observed variant allele frequency markedly reduced

among predicted SNVs that were refuted as wild type, compared

with validated somatic mutations (Supplemental Fig. 5). We also

attempted to validate 2458 putative mutations that were removed

by the false-positive filter. Of these, 292 were confirmed as valid

somatic mutations (11.88%) while 2073 (84.34%) were refuted as

wild type. Thus, our filtering strategy retained 94.71% of valid

mutations while removing 78.37% of false positives. We conclude

that this approach dramatically increases the true-positive rate of

mutation detection, with a relatively small reduction (5.3%) in

overall sensitivity.

To further assess the sensitivity of mutation detection, we

compared our predictions to validated somatic mutations reported

for 60 tumor–normal pairs that were analyzed externally (Cancer

Genome Atlas Research Network 2011). These cases harbored

a total of 3065 valid somatic mutations, of which we detected 2565

(83.7%). When we investigated the 500 valid mutations missed by

our approach, we found that 93 had been detected but deemed low

confidence (LC), 51 were high confidence (HC) but removed by

the filter, and 298 had less than fourfold coverage in one or both

Table 1. Empirically derived filtering parameters for putative somatic mutations

Parameter Description Requirement

Read position Average variant position in supporting reads,
relative to read length

Between 10 and 90

Strandedness Fraction of supporting reads from the forward
strand

Between 1%–99%

Variant reads Total number of reads supporting the variant At least four
Variant frequency Variant allele frequency inferred from read

counts
At least 5%

Distance to 39 Average distance to effective 39 end of variant
position in supporting reads

At least 20

Homopolymer Number of bases in a flanking homopolymer
matching one allele

Less than five

Map quality difference Difference in average mapping quality
between reference and variant reads

Less than 30

Read length difference Difference in average trimmed read length
between reference and variant reads

Less than 25

MMQS difference Difference in average mismatch quality sum
between variant and reference reads

Less than 100

Table 2. Exome sequencing data set summary

WU BI

Exome platform SureSelect (Agilent) SureSelect (Agilent)
Genes targeted 18,568 18,568
Exons targeted 188,260 188,260
CDS target size 33 Mbp 33 Mbp
Sequencing platform Illumina GAIIx Illumina GAIIx
Number of patients 91 60
Number of samples 182 120
Read length 2 3 100 bp 2 3 76 bp
Sequence per sample 15.2 Gbp 21.9 Gbp
Average mapping rate 98.34% 81.06%
Average duplication rate 12.58% 18.50%

There were 91 tumor–normal pairs sequenced at Washington University
(WU); BAM files for an additional 60 tumor–normal pairs sequenced at the
Broad Institute of MIT and Harvard (BI) were downloaded from dbGaP.
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samples at the time the binary alignment/map (BAM) files were

downloaded (Supplemental Information; Supplemental Table 2).

By adjusting for uncovered sites, our approach identified 2565 of

2767 (92.70%) mutations with sufficient sequence coverage. Taken

together, these results demonstrate that our approach yields high

sensitivity and precision for somatic mutation detection.

We attempted to validate 141 HC somatic indels detected by

VarScan 2. Of these, 85 (60.28%) were confirmed as somatic, 30

(21.28%) were refuted as wild type, and 26 (18.4%) were found to

be germline or LOH events (Supplemental Table 8). There were also

80 validated somatic indels among the externally analyzed tumor–

normal pairs. Some 73 had coverage in the BAM files that we

downloaded; of these, 65 (89.04%) were detected as HC somatic

mutations by VarScan 2. While more comprehensive evaluations

are needed, these results suggest that our method detects somatic

indels with high sensitivity (89%) but a moderate true-positive rate

(60%).

Comparison to single-sample methods for somatic
mutation detection

We next sought to demonstrate the superiority of our method,

which compares tumor and normal samples simultaneously, to

more simplistic approaches for somatic mutation calling. For this

analysis, we selected five ovarian cancer cases for which both

exome and whole-genome sequencing (WGS) data were available

(marked in Supplemental Table 1). By using the exome data, we

identified tumor-specific SNPs by a simple subtraction method (see

Supplemental Methods), which yielded 152,708 candidate muta-

tions per tumor (on average). In contrast, VarScan 2 detected 508

somatic mutations per tumor (on average) for the same data set

(Supplemental Table 9).

Given the large number of calls generated by the subtraction

method, it was possible that a significant fraction of these were

valid somatic mutations that had not been part of our validation

experiment. To investigate this possibility, we determined the

fraction of mutations called in each set that were also detected in

the WGS data by a different algorithm, named SomaticSniper

(Larson et al. 2011). Of the 2538 HC mutations called by VarScan

in exome data, 1716 (67.61%) were called by SomaticSniper in

WGS data. In contrast, only 7353 of 763,539 calls (0.96%) made by

the subtraction method were supported by SomaticSniper calls.

Next, we evaluated the sensitivity of each method to detect

the known somatic mutations described above. A total of 290

validated somatic mutations had been reported for these five cases

in the TCGA study. Of these, 247 (85.17%) were found by the

subtraction method, while 264 (91.03%) were detected by VarScan

2 (Supplemental Table 9). Surprisingly, these results suggest that

a subtraction method may also suffer slightly lower sensitivity

for valid somatic mutations, possibly due to false-positive calls in

the matched normal sample. We conclude that our method for

somatic mutation calling delivers comparable sensitivity and

dramatically higher precision, than do simple subtraction-based

approaches.

Orthogonal validation of SCNAs

To evaluate the accuracy of SCNA detection, we compared copy

number data for five ovarian tumors that were assessed by high-

density SNP array, exome, and WGS (see Supplemental Methods).

Strikingly, the exome-based copy number estimates from our al-

gorithm were remarkably consistent with those of array and WGS

data and demonstrated an ability to detect both large-scale and

focal events (see example in Fig. 2A). A systematic comparison of

these three approaches is more difficult, since both array and

exome data are limited to a very small fraction of the genome (SNPs

and exons, respectively); only WGS yields unbiased genome-wide

copy number estimates. All three approaches, however, should be

able to detect large-scale gains and losses of chromosome arms

because these events typically span several megabases. Thus, we

compared the overlap of large-scale events from exome, array, and

WGS data sets for the five cases (Fig. 2B; Supplemental Table 3). A

total of 206 large-scale CNAs were detected, of which 165 (80.10%)

were detected by all three approaches, suggesting that most of

these represent real events. Our exome-based method predicted

185 large-scale events (90% of the total); nearly all were supported

by array or WGS data sets, and 89.2% were supported by both. A

visual review of events not detected by WGS or array revealed that

most were present but did not meet thresholds for calling an am-

plification (log2 ratio > 0.20) or deletion (log2 ratio < �0.10). In

contrast, the ;10% of large-scale events missed by our exome

method were largely due to oversegmentation in sparsely targeted

regions of the genome. WGS data sets yielded the most calls

overall, likely reflecting a wider and more unbiased coverage of the

genome.

A similar comparison for focal copy number events is chal-

lenging, since exome and SNP array data sets survey different,

noncontiguous portions of the genome. To address this, we per-

formed a three-platform comparison of copy number events af-

fecting coding sequences. At every exon, we determined a copy

number status (amplification, deletion, or neutral) based upon the

best-overlapping segment from SNP array, exome, or WGS copy

number data sets. There were 677,434 copy-number–altered exons

(about 135,000 per case) in the five cases at which we could make

this comparison. Of these, 72.1% were detected by two platforms

and 44.49% were detected by all three (Fig. 2C), suggesting that

this comparison strategy is reasonably accurate given the different

portions of the genome surveyed by each platform.

Our exome-based method detected 488,721 focal events

(72.14% of the total), achieving higher sensitivity than the SNP

array (65.39%) but lower than WGS (79.05%). This result is

Table 3. Estimated sensitivity and precision of mutation
detection with VarScan 2 based upon orthogonal validation data

Experimental validation (91 cases)

Total with validation data 5871
Validated somatic 5225
Validated germline 63
Validated loss of heterozygosity 11
Validated wild type 572

Sensitivity for valid somatic mutations 92.30%
Precision of mutation calls 89.00%

Detection of reported mutations (60 external cases)
Valid somatic mutations reported 3065
Valid somatic mutations with coverage 2773

Detected by VarScan 2565
Detection sensitivity 83.69%
Adjusted sensitivity 92.50%

Sensitivity refers to the fraction of known, validated somatic mutations
that were detected, whereas precision reflects the proportion of detected
SNVs that were validated. In externally analyzed samples, we also com-
pute the ‘‘adjusted sensitivity,’’ which reflects the detection of known,
validated somatic mutations with sufficient coverage in the BAM files
analyzed.

VarScan 2: Somatic mutation and CNA discovery
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somewhat unsurprising, given the limited resolution of SNP arrays

and the superior coverage breadth and uniformity offered by WGS.

If we consider the intersection of events supported by both the

array and WGS platforms to be a gold standard, there were 395, 868

such focal events, of which our method detected 301,376

(76.13%). There were 161,944 events (23.91%) detected by exome

or WGS methods but not by SNP arrays, consistent with the ex-

pectation of limited resolution for the array platform. A significant

portion of the focal events that we detected using exome data

(80.60%) were supported by at least one other platform, suggesting

that the majority are likely to be real events. This is particularly

promising because the exome method detected a higher fraction of

platform-specific calls (94,819), which are likely to include small

focal copy number changes missed by other platforms.

Encouraged by these results, we next compared recurrent

large-scale gains and losses in the 142 exome cases included in this

study to those of a larger data set (489 cases, array data) analyzed by

TCGA (Cancer Genome Atlas Research Network 2011). Most of the

cases we studied were part of the TCGA analysis, which identified

30 recurrent large-scale alterations (eight gains and 22 losses), all of

which had been reported previously. Our method identified all

recurrent gains and losses reported by TCGA (Fig. 3; Supplemental

Information; Supplemental Table 4; Cancer Genome Atlas Re-

search Network 2011). Further, the frequencies of arm-level events

detected in our data set and the TCGA data set were highly corre-

lated (r2 = 0.84 for gains, 0.86 for losses), suggesting that our

exome-based approach was sufficiently robust to recapitulate the

results of our previous array-based findings. Taken together, the

results suggest that our method identifies somatic CNAs with an

accuracy comparable to array-based and WGS approaches and that

our set of 142 cases is representative of the larger cohort (n = 489)

studied by TCGA.

Figure 2. Detection of large-scale and focal copy number alterations by sequencing- and array-based approaches. (A) Deletions and focal amplifications
of chromosome 4 in sample TCGA-24-1103. Copy number estimates from array (gray), WGS (light blue), and exome (dark blue) indicate two regions of
deletion as well as a focal amplification (window). Red lines indicate segmented exome CBS calls. (Below) Variant allele frequencies in the normal (blue) and
tumor (green) indicate regions of loss of heterozygosity (LOH) in deleted segments. (B) Intersection of large-scale copy number alterations detected by
SNP array, whole-genome sequencing, and exome sequencing approaches for five HGS-OVCa cases. For details, see Supplemental Table 3. (C ) In-
tersection of gene-level (focal) copy number alterations detected by SNP array, whole-genome sequencing, and exome sequencing approaches for five
HGS-OVCa cases.
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Identification of recurrent CNAs with CMDS

High-grade serous ovarian tumors possess highly rearranged ge-

nomes, owing in part to defects in homologous recombination

pathways (Patel et al. 1998; Xu et al. 1999; Bowtell 2010; Cancer

Genome Atlas Research Network 2011). Genetic alterations that

promote carcinogenesis, e.g., the amplification of oncogenes and

deletion of tumor-suppressor genes, are likely to be recurrent across

multiple tumors. Indeed, when we analyzed the mean copy

number change across 142 cases genome-wide (Fig. 4), we observed

a striking pattern of recurrent copy number events. Many of these

correspond to large-scale gains and losses

shown in Figure 3. Focal amplifications

and deletions are also apparent; the ma-

jority of these have already been reported

in ovarian cancer (Cancer Genome Atlas

Research Network 2011). Notable exam-

ples include amplifications MYC, CCNE1,

and EVI1 (also called MECOM), as well

as deletions of tumor suppressors NF1,

PTEN, and CDKN2A/CDKN2B (Fig. 5).

Intriguingly, we also observed tight

focal amplifications of EPH receptors

EPHB3 (3q27) and EPHB4 (7q22) (Figs. 4,

5), which are known to be overexpressed

in ovarian carcinoma (Alam et al. 2008)

but were not significant in SNP array data

for 489 cases analyzed by TCGA. We rea-

soned that the high-resolution, exome-

centric nature of our data set might en-

able identification of new recurrent CNAs

(RCNAs) in ovarian cancer. To identify

such regions, we applied the correlation

matrix diagonal segmentation (CMDS)

algorithm (Zhang et al. 2010) to seg-

mented exome-based copy number data

for 142 cases. CMDS employs a pop-

ulation-based approach to identify sta-

tistically significant RCNAs and is partic-

ularly sensitive for focal events. Our analysis identified 424

significant focal RCNAs targeting 582 known genes (Supplemental

Table 6). Gene set analysis of these 582 genes revealed 10 signifi-

cantly enriched pathways (P < 0.0005) (Supplemental Table 7).

Focal adhesion (23 genes, P = 1.22 3 10�13) and ECM–receptor

interaction (15 genes, P = 7.87 3 10�12) were the most significant

pathways, suggesting that cell–cell and cell–matrix adhesion

molecules are often dysregulated in high-grade ovarian carcinoma.

Discussion
In summary, we have developed an approach for simultaneous

detection of germline variants, somatic mutations, LOH, and

SCNAs using exome sequence data from matched tumor and

normal samples. Unlike other methods for mutation detection, our

algorithm reads data from tumor and normal samples simulta-

neously, enabling direct pairwise comparisons of base calls at each

position. For germline variant detection, we observed a high ge-

notype concordance (99.56%) between the VarScan results and

high-density SNP arrays, with a significant fraction of discordant

sites attributed to imbalanced allelic representation or errors in the

array data.

For somatic mutation detection, we demonstrated that our

method provides similar sensitivity and a dramatically higher true-

positive rate compared with more simplistic approaches that an-

alyze tumor and normal samples independently. We also demon-

strated that our filtering strategy removes the vast majority of false

positives due to sequencing or alignment artifacts, while pre-

serving sensitivity for true mutations. Indeed, in exome sequence

data for 151 ovarian tumors characterized by TCGA, our approach

identified 5225 valid somatic mutations with 94.71% sensitivity

and a 89.00% true-positive rate. We observed a comparable sensi-

tivity (89%) and a moderate true-positive rate (60%) for validated

somatic indels, though the number of such variants in our data set

Figure 3. Recurrent chromosome-arm gains and losses in ovarian
cancer. Eight significant gains and 22 significant losses of chromosome
arms identified by TCGA in SNP array data for 489 cases were re-
capitulated using exome data for 142 cases. Observed frequencies were
highly correlated between data sets for both gains (r2 = 0.84) and
losses (r2 = 0.86).

Figure 4. Global copy number alteration profile of ovarian cancer. Average log2 of copy number
difference is plotted for chromosomes 1–22 and X. Amplifications are shown in red, deletions in blue,
and neutral regions in gray. Significant peaks associated with known oncogenes or tumor suppressor
genes are indicated.
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(158) was relatively small. It should also be noted that our method

detects indels based upon gapped Smith-Waterman alignments

and will miss larger events that cannot be spanned by a single

read.

By evaluating tumor and normal samples simultaneously

using heuristics and a Fisher’s exact test, the VarScan 2 algorithm

offers some key advantages for mutation detection in cancer. First,

it exploits the digital nature of massively parallel sequence data to

detect small but significant differences between normal and tumor

samples. This capability is especially important for studies of hu-

man cancers, as tumor samples are often genetically heteroge-

neous (Ding et al. 2010), while matched normals may contain

DNA from malignant cells, particularly among patients with liquid

tumors (Ley et al. 2008; Mardis et al. 2009).

We also described a novel method for detecting SCNAs using

exome data and undertook a number of analyses to demonstrate its

accuracy. First, in five ovarian cancer cases, we compared the re-

sults of our method to those of both SNP array and WGS platforms.

These comparisons demonstrated that 95% of large-scale events

and 80% of focal events identified by our approach are supported

by an orthogonal platform. For focal CNAs of coding sequences,

the sensitivity of our method (72%) was higher than that of SNP

arrays (65%) but lower than that of WGS (79%). Second, we

compared RCNAs in our data set of 142 cases to the results of our

previous study (Cancer Genome Atlas Research Network 2011). We

identified all recurrent large-scale CNAs initially reported for these

samples (using array data for 489 cases), with frequencies that were

highly correlated (r2 = 0.84 for gains, 0.86 for losses). We also

confirmed frequent focal copy number perturbations of known

ovarian cancer genes (e.g., gains of MYC, RAB25, and CCNE1 and

losses of NF1, CDKN2A/B, and PTEN) consistent with both our

previous findings and results reported by other studies using dif-

ferent methods (Bast et al. 2009). Further, we identified new pu-

tative focal amplifications (EPHB3 and EPHB4) that had not been

significant in our previous analysis but are known to be overex-

pressed in ovarian tumors (Alam et al. 2008). Overexpression of

EPHB4 in particular has been implicated in numerous cancers; in

ovarian cancer, it is significantly associated with advanced disease

and correlates with poor outcome (Kumar et al. 2007). While these

findings have not been validated by orthogonal approaches, they

illustrate the potential for our method to generate new hypotheses

of events that may be driving carcinogenesis.

By use of the CMDS algorithm, we identified 424 significant

focal RCNAs containing some 582 genes. Gene set analysis iden-

tified focal adhesion and ECM–receptor interaction as significantly

altered pathways. These findings are consistent with current

knowledge of ovarian carcinoma and other epithelial cancers, in

which dysregulation of cell–cell and cell–matrix signaling repre-

sents a key step in tumor development, growth, and invasion.

Taken together, these results suggest that our method for exome-

based CNA detection both confirms and extends the results of

traditional approaches.

Importantly, the samples studied here all were processed us-

ing similar hybrid capture protocols (Agilent SureSelect) and were

sequenced on the same platform (Illumina GAIIx). By comparing

samples from the same individual sequenced under identical

conditions, our approach to CNA detection avoids GC content

and mapping biases that complicate traditional sequence-based

methods. However, the CNA calling could be confounded by

paired samples that were sequenced under different conditions or

on different sequencing platforms. Further, although we normal-

ized for data input (unique bases mapped), it is possible that fluc-

tuations in capture specificity and/or sequence representation

could influence sequence depth between sample pairs, which

might affect our results. One possible strategy to address this would

be to normalize for unique on target bases (i.e., capture specificity)

using the results of coverage reporting software such as RefCov

(T. Wylie and J. Walker, http://gmt.genome.wustl.edu/gmt-refcov/

current). Discordant read-pairs may also offer a source of sup-

porting evidence for CNAs caused by structural variation (SV).

We are currently evaluating both strategies to improve sensi-

tivity and specificity.

Exome sequencing has the potential to rapidly screen the

coding regions of tumor samples for somatic alterations. The

analysis methods described here will help realize that potential by

enabling the simultaneous identification of germline variants,

mutations, and SCNAs in matched tumor–normal pairs. By design,

an exome sequencing strategy prioritizes protein-altering muta-

tions, which are not only easier to interpret in the context of

pathways and biological processes but may encode ‘‘druggable’’

targets. It is important to realize, however, that exome sequencing

surveys only ;1% of the tumor genome. This strategy will miss

many noncoding mutations, as well as larger events (e.g., SV) that

may contribute to tumor development and progression. Ulti-

mately, WGS will be required to identify the full spectrum of so-

matic alterations in tumor genomes.

Methods

Mutation detection algorithm
Given pileup input for a tumor sample and matched normal
control, the mutation detection algorithm performs several steps
at each position. First, it determines if both samples meet the
minimum coverage requirement (by default, three reads with base
quality $20) and determines a genotype for each sample in-
dividually based upon the read bases observed. By default, a variant
allele must be supported by at least two independent reads and at
least 8% of all reads. If no variant allele meets the criteria, the
position is called wild type (homozygous reference) in that sample.
If multiple variant alleles are observed, the most-supported (by
read count, and then by base quality) variant allele is chosen.
Variants are called homozygous if supported by 75% or more of
all reads at a position; otherwise they are called heterozygous.
Positions where neither sample is determined to be variant are

Figure 5. Frequent copy number alteration of ovarian cancer genes.
Exome-based copy number estimates were used to compute the pro-
portion of ovarian cancer tumors (n = 142) exhibiting amplification or
deletion of key ovarian cancer genes. Asterisks (*) indicate significantly
altered genes identified from SNP array data in our previous study.
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excluded unless the –validation flag is set to 1. Next, at positions
where one or both samples have a variant, the algorithm performs
a direct comparison between normal and tumor as follows.

If the genotypes do not match, then their read counts are
evaluated by one-tailed Fisher’s exact test in a two-by-two table (see
Supplemental Fig. 6), comparing the number of reference-sup-
porting reads (outcome 1) and variant-supporting reads (outcome
2) observed in tumor (category 1) to the numbers that were ob-
served in normal (category 2). If the resulting P-value meets the
significance threshold (default 0.10), then the variant is called
somatic (if the normal matches the reference) or LOH (if the nor-
mal is heterozygous). If the difference does not meet the signifi-
cance threshold, the variant is called germline and processed as
described below.

If the genotypes match, the variant is called germline. The
variant P-value is computed by one-tailed Fisher’s exact test (FET)
in a two-by-two table, comparing the total number of reference-
supporting reads and the total number of variant supporting reads
(normal and tumor values are combined) to the expected distri-
bution for a nonvariant position due to sequencing error (0.01%).
For example, the expected read distribution for a nonvariant po-
sition with 5003 coverage in each sample would be 999 reference-
supporting reads, and one variant-supporting read due to se-
quencing error.

Germline, LOH, and somatic mutations are further catego-
rized as HC or LC by the VarScan processSomatic command. By
default, somatic mutations are deemed HC if the variant allele
frequency is at least 10% in tumor, <5% in normal, and the FET
P-value is less than 0.07. Germline variants are deemed HC if they
have at least 10% variant allele frequency in both normal and tu-
mor samples. LOH variants are deemed HC if the variant allele
frequency is at least 10% in the normal sample and the FET P-value
is less than 0.07. Any variant not meeting the HC criteria is deemed
LC. Positions that are homozygous in normal but heterozygous in
tumor (gain of heterozygosity) or where the variant allele is not the
same (e.g., a SNP and an indel) are presumed to be sequencing/
alignment artifacts and are discarded.

CNA detection algorithm

Given pileup input for a tumor sample and matched normal, the
CNA detection algorithm first determines that at least one of the
samples meets the minimum coverage requirement. To reduce
noise from spurious differences at low coverage, the default setting
for this parameter (20) is higher than that of mutation detection.
Next, the algorithm computes the depth of high-quality bases
(phred base quality $20) individually for tumor and normal sam-
ples. These depths are recorded for each consecutive position until
(1) a gap in minimum coverage is encountered, (2) the end of the
chromosome is reached, or (3) the ratio of tumor depth to normal
depth changes significantly, as computed by Fisher’s exact test. For
each contiguous region, the relative copy number change (C) in
the tumor is inferred as the log base 2 of the normalized depth
ratio:

C = log2 DT=DNð Þ � IN=ITð Þð Þ:

Here DT is the average tumor depth, DN is the average normal
depth, IN is the number of uniquely mapped bases in the normal
BAM, and IT is the number of uniquely mapped bases in the tumor
BAM. The number of uniquely mapped bases is computed using
SAMtools flagstat information for each BAM file, specifically as

I = RM � 1�Dupð Þ � L;

where RM is the number of reads mapped, Dup is the proportion of
mapped reads marked as duplicates, and L is the average read
length. Raw copy number regions with chromosome, start posi-

tion, stop position, and log2 value underwent CBS in the DNAcopy
package (Seshan and Olshen 2010) to produce segmented calls
delineated by significant change-points of at least three standard
deviations (Supplemental Methods). Adjacent segments of similar
copy number from the CBS algorithm were merged by an in-
ternally developed Perl script (MergeSegments), and classified by
size. Events encompassing >25% of a chromosome arm were
classified as large-scale; all others were considered focal events.

Software implementation

The VarScan 2 core software was developed in Java; the false-pos-
itive filter was implemented in Perl. Binary executables, scripts,
and source code are free for noncommercial use and available at
http://varscan.sourceforge.net. The false-positive filter requires the
bam-readcount utility (D. Larson et al., https://github.com/genome/
bam-readcount), which is written and compiled in C.

Ovarian cancer data

The ovarian cancer data set, including exome sequence data, SNP
array data, and validated somatic mutations, was generated and
published by the Cancer Genome Atlas Research Network (Cancer
Genome Atlas Research Network 2011). The WGS data for the five
cases utilized in the cross-platform copy number comparison will
be described in a separate publication. Exome and WGS sequence
data are available in BAM format at the dbGaP database (http://
www.ncbi.nlm.nih.gov/gap). Identifiers for samples in this study
are in Supplemental Table 1.

Mutations were called in exome data for 151 tumor–normal
pairs by the VarScan somatic command with the following pa-
rameters: –min-coverage 4,–min-var-freq 0.08,–p-value 0.05,–strand-
filter 1–min-avg-qual 20. HC mutations were filtered to remove false
positives using the criteria described in Table 1 (see Supplemental
Methods). Filter-passed somatic mutations were annotated using
gene structure and UCSC (Karolchik et al. 2003) annotation in-
formation, assigning each mutation to one of four tiers as pre-
viously described (Ley et al. 2008; Mardis et al. 2009). Only tier 1
mutations, which alter coding sequence (nonsynonymous, syn-
onymous, splice site, or noncoding RNA), were reported in Figure 1
or selected for orthogonal validation. CNAs were called in exome
data for 142 tumor–normal pairs (nine poor-coverage tumors were
excluded) by the VarScan copynumber command with the follow-
ing parameters: –min-coverage 20–min-region-size 100. Raw CNA
calls underwent CBS and a subsequent merging procedure as de-
scribed in Supplemental Methods.

RCNA identification, annotation, and pathway analysis

The CMDS algorithm (Zhang et al. 2010) was applied to identify
regions of statistically significant RCNAs. For each tumor sample,
the merged segmented copy number events (see Supplemental
Methods) were cross-referenced with the coordinates of about
200,000 protein-coding exons to obtain the mean log2 of copy
number change for the start position and stop position of each
exon. CMDS was configured to run with a minimum of 20 markers
(exon starts or stops), corresponding to roughly one region tested
per gene. Regions meeting the significance threshold (P < 0.0001)
were merged if within 100 kb of one another, yielding a set of 520
candidate RCNA regions. These were visually reviewed to identify
target genes, and remove peaks encompassing six or more un-
related genes, as the target of these nonfocal events was unclear.

The cytoBand.txt and refGene.txt files from the UCSC Genome
Browser Database (Karolchik et al. 2003) version hg18 were used to
annotate CNA events with cytogenetic band and RefSeq gene in-
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formation, respectively, using a customized Perl script. Informa-
tion on specific genes from the RefSeq and KEGG databases was
retrieved using GeneCards (Safran et al. 2002) version 3.0. Path-
way-based analysis of 582 RCNA genes was performed using KEGG
and GO database information using WebGestalt Gene Set Analysis
Toolkit version 2.0 (http://bioinfo.vanderbilt.edu/webgestalt/) with
the default settings (hypergeometric test, BH correction, at least two
genes per category).
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