Skip to main content
. 2011 Dec 12;8(12):4608–4622. doi: 10.3390/ijerph8124608

Table 4.

Nonlinear regression of post-application urine concentration on algorithm.

Y = [{α0} + {α1} × mix + {α2} × method + {α3} × repair] × [1 − {β1} × gloves − {β2} × ppe_other].

2,4-D (n = 88) R-Squared = Regression 0.36
Variable 1 Coefficient P-value
Intercept α0 27 0.76
Mix α1, 58 0.53
Method α2 123 0.02
Repair α3 32 0.59
Gloves β1 0.75 <0.001
PPE other β2 0.26 0.26
Chlorpyrifos (n = 17) R-Squared = Regression 0.77
Variable1 Coefficient P-value
Intercept α0 8 0.22
Mix α1, Na 2 Na 2
Method α2 33 0.006
Repair α3 15 0.89
Gloves β1 0.51 0.014
PPE other β2 0.21 0.59

1 α0 represented the urinary concentration at the referent level of all factors, where α1, α2 and α3 parameters represented the increase in Y for mixing (1 = yes, 0 = no), use of hand spray (method = 1) or boom spray (method = 0) for 2,4-D, or boom spray (method = 1) or in-furrow (method = 0) for chlorpyrifos, and repairing equipment (1 = yes, 0 = no), respectively, and where β1 and β2 parameters represented the reduction factors for use of CR gloves (1 = yes, 0 = no) and/or other PPE (1 = yes, 0 = no), respectively.

2 na: all participants mixed chlorpyrifos and the regression omitted the variable.